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Zero-temperature phase transitions and their anomalous influence on thermodynamic
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The q-state Potts model on a diamond chain has mathematical significance in analyzing phase transitions and
critical behaviors in diverse fields, including statistical physics, condensed matter physics, and materials science.
By focusing on the three-state Potts model on a diamond chain, we reveal rich and analytically solvable behaviors
without phase transitions at finite temperatures. Upon investigating thermodynamic properties such as internal
energy, entropy, specific heat, and correlation length, we observe sharp changes near zero temperature. Magnetic
properties, including magnetization and magnetic susceptibility, display distinct behaviors that provide insights
into spin configurations in different phases. However, the Potts model lacks genuine phase transitions at finite
temperatures, in line with the Peierls argument for one-dimensional systems. Nonetheless, in the general case of
an arbitrary q state, magnetic properties such as correlation length, magnetization, and magnetic susceptibility
exhibit intriguing remnants of a zero-temperature phase transition at finite temperatures. Furthermore, residual
entropy uncovers unusual frustrated regions at zero-temperature phase transitions. This feature leads to the
peculiar thermodynamic properties of phase boundaries, including a sharp entropy change resembling a first-
order discontinuity without an entropy jump, and pronounced peaks in second-order derivatives of free energy,
suggestive of a second-order phase transition divergence but without singularities. This unusual behavior is also
observed in the correlation length at the pseudocritical temperature, which could potentially be misleading as a
divergence.
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I. INTRODUCTION

The one-dimensional Potts model, while simpler than
higher-dimensional models, exhibits a range of intriguing
properties making it a focus of study. It can often be solved ex-
actly, offering valuable insight into statistical systems without
the need for approximations or numerical methods [1]. These
models lay the groundwork for understanding more complex
behaviors in higher dimensions and are central to the study
of phenomena like phase transitions in statistical physics [2].
They can represent a variety of physical and mathematical
systems, such as counting colored planar map problems [3].
Additionally, they provide a practical platform for testing
new computational methods, including Monte Carlo algo-
rithms and machine learning techniques applied to statistical
physics [4].

Even though a finite-temperature phase transition is absent
in one-dimensional models with short-range interaction, it is
still feasible to define and study a pseudocritical temperature.
This is commonly perceived as the temperature at which
a system fluctuation reaches a peak, often associated with
the system specific heat, which generally exhibits a peak at
the pseudocritical temperature. In this sense, recent research
has unveiled a series of decorated one-dimensional models,

notably the Ising and Heisenberg models, each exhibiting a
range of structures. Among these are the Ising-Heisenberg
diamond chain [5,6], the one-dimensional double-tetrahedral
model with a nodal site comprising a localized Ising spin
alternating with a pair of mobile electrons delocalized within
a triangular plaquette [7], the ladder model with an Ising-
Heisenberg coupling in alternation [8], and the triangular tube
model with Ising-Heisenberg coupling [9]. Pseudotransition
phenomena were detected in all these models. While the first
derivative of the free energy, like entropy, internal energy,
or magnetization, demonstrates a jump akin to an abrupt
change when the temperature varies, the function remains
continuous. This pattern mimics a first-order phase transition.
Nevertheless, a second-order derivative of free energy, such
as the specific heat and magnetic susceptibility, showcases
behavior typical of a second-order phase transition at a finite
temperature. This peculiar behavior has drawn attention for
a more meticulous study, as discussed in Ref. [10]. More
recently, Ref. [11] has provided additional discussion of this
property and an exhaustive study of the correlation function
for arbitrarily distant spins surrounding the pseudotransition.
Furthermore, certain conditions were proposed to observe
the pseudotransition, which is associated with residual
entropy [12,13].
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Recent discoveries have positioned azurite
[Cu3(CO3)2(OH)2] as an intriguing quantum antiferro-
magnetic model, as described by the Heisenberg model on a
diamond chain. This has led to numerous riveting theoretical
investigations into diamond chain models. Notably, Honecker
et al. [14] probed the dynamic and thermodynamic traits of
this model, while comprehensive analysis was conducted
on the thermodynamic attributes of the Ising-Heisenberg
model on diamondlike chains [15–19]. Additional studies
into the Ising XY Z diamond chain model were inspired
by current research, including experimental explorations
of the natural mineral azurite and theoretical calculations
of the Ising XXZ model. Particular attention was drawn by
the appearance of a 1

3 magnetization plateau and a double
peak in both magnetic susceptibility and specific heat in
experimental measurements [20–22]. It is relevant to note that
the dimer interactions (interstitial sites) exhibit considerably
stronger exchange interaction than the nodal sites on x
and y axes, especially in the z component. Consequently,
this model can be accurately represented as an exactly
solvable Ising-Heisenberg model. Further supporting this,
experimental data regarding the magnetization plateau align
with the approximated Ising-Heisenberg model [15,23,24].

In the context of one-dimensional Potts models, Sarkanych
et al. [25] introduced a variation featuring invisible states
and short-range coupling. The notion of invisible in this
context refers to an additional level of energy degeneracy
that contributes solely to entropy without affecting interac-
tion energy, thus catalyzing the first-order phase transition.
This proposal was inspired by low-dimensional systems such
as the simple zipper model [26], a descriptor of long-chain
DNA nucleotides. To account for narrow helix-coil tran-
sitions within these systems, Zimm and Bragg [26] put
forth a largely phenomenological cooperative parameter. This
innovative approach has since sparked numerous inquiries
[27–30]. In one-dimensional cooperative systems, Potts-like
models [27,29] serve as an effective representation, provid-
ing a study of helix-coil transitions in polypeptides [28], a
classic application of theoretical physics to macromolecu-
lar systems, yielding insightful comprehension of helix-coil
transition properties. The reversible adsorption demonstrated
by polycyclic aromatic surface elements in carbon nanotubes
(CNTs) and aromatic DNA further enriches these studies.
To consider DNA-CNT interactions, Tonoyan et al. [30] ad-
justed the Hamiltonian of the zipper model [26]. Similarly,
our earlier work [31] proposed a one-dimensional Potts model
combined with the Zimm-Bragg model, which we call here
simply the Potts-Zimm-Bragg model, leading to the observa-
tion of several distinctive properties.

The paper is structured as follows. Section II presents
our proposal for a q-state Potts model on a diamond chain
structure. Section III analyzes the zero-temperature phase
transition, residual entropy, and corresponding magnetiza-
tions. Section IV discusses the thermodynamic solution for
finite-q states and explores physical quantities such as en-
tropy, magnetization, specific heat, magnetic susceptibility,
and correlation length. This section also highlights the pres-
ence of pseudocritical temperatures. Section V summarizes
our findings and draws conclusions. Some details of the

FIG. 1. Schematic representation of the Potts model on the dia-
mond chain structure.

methods used, such as the decoration transformation and
the application of Markov chain theory, are given in the
Appendixes.

II. POTTS MODEL ON A DIAMOND CHAIN

Despite the simplicity of the one-dimensional Potts model,
it possesses several intriguing properties that render it a wor-
thy subject of study. With this in mind, consider a q-state
Potts model on a diamond chain structure, as depicted in
Fig. 1. The unit cell in this model is composed of three
types of spins: two dimer spins σa and σb, interconnected
by the coupling parameter Jab, and a nodal spin σc, inter-
acting with the dimer spins through the parameter J1. The
corresponding Potts Hamiltonian, based on this setup, can be
articulated as

H = −
N∑

i=1

[
Jabδσ a

i ,σ b
i
+ h1δσ c

i ,1 + h2
(
δσ a

i ,1 + δσ b
i ,1

)
+ J1

(
δσ c

i ,σ a
i

+ δσ c
i ,σ b

i
+ δσ c

i ,σ a
i+1

+ δσ c
i ,σ b

i+1

)]
, (1)

where σ = {1, . . . , q}.
It is noteworthy that the Hamiltonian (1) can be mapped

onto an effective one-dimensional Potts-Zimm-Bragg model
[31], as detailed in Appendix A. This suggests that the Potts
model on a diamond chain can be equated to a bona fide one-
dimensional Potts-Zimm-Bragg model as studied in Ref. [31].
It should be noted, however, that the effective parameters
of the effective Potts-Zimm-Bragg model now depend on
temperature.

Transfer matrix of the q-state Potts model

In what follows we will focus our attention on the thermo-
dynamics properties; to obtain the partition function we will
use the standard transfer matrix technique. After obtaining
each elements of the transfer matrix, the q-dimension transfer
matrix elements have the structure

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

d1 t1 t1 · · · t1 t1
t1 d2 t2 · · · t2 t2
t1 t2 d2 · · · t2 t2
...

...
...

. . .
...

...

t1 t2 t2 · · · d2 t2
t1 t2 t2 · · · t2 d2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)
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Therefore, let us write the transfer matrix eigenvalues sim-
ilarly to those defined in Ref. [10], whose eigenvalues become

λ1 = 1
2

[
w1 + w−1 +

√
(w1 − w−1)2 + 4w2

0

]
, (3)

λ2 = 1
2

[
w1 + w−1 −

√
(w1 − w−1)2 + 4w2

0

]
, (4)

λ j = (d2 − t2), j = {3, 4, . . . , q}, (5)

where the elements are expressed as

w1 = d1, (6)

w−1 = d2 + (q − 2)t2, (7)

w0 =
√

q − 1 t1, (8)

considering the notation

d1 = z1
[
(q − 1 + x2z2)2 + (y − 1)

(
q − 1 + x4z2

2

)]
, (9)

d2 = (q − 2 + x2 + z2)2

+ (y − 1)
(
q − 2 + x4 + z2

2

)
, (10)

t1 = √
z1[q − 2 + x(z2 + 1)]2

+ √
z1(y − 1)

[
q − 2 + x2(z2

2 + 1
)]

, (11)

t2 = (q − 3 + 2x + z2)2

+ (y − 1)
(
q − 3 + 2x2 + z2

2

)
, (12)

where we used the notation x = eβJ1 , y = eβJab , z1 = eβh1 ,
and z2 = eβh2 . We can also obtain the corresponding transfer
matrix eigenvectors, which are given by

|u1〉 = cos(φ)|1〉 + sin(φ)√
q − 1

q∑
μ=2

|μ〉, (13)

|u2〉 = − sin(φ)|1〉 + cos(φ)√
q − 1

q∑
μ=2

|μ〉, (14)

|uj〉 =
√

j − 2

j − 1

(
1

j − 2

j−1∑
μ=2

|μ〉 − | j〉
)

, j = {3, . . . , q},

(15)

where φ = 1
2 cot−1( w1−w−1

2w0
), with −π

4 � φ � π
4 .

By using the transfer matrix eigenvalues, we express the
partition function as

ZN = λN
1 + λN

2 + (q − 2)λN
3

= λN
1

[
1 +

(
λ2

λ1

)N

+ (q − 2)

(
λ3

λ1

)N
]
. (16)

It is evident that the eigenvalues satisfy the relation λ1 > λ2 �
λ3. Hence, assuming q is finite, the free energy in thermody-
namic limit (N → ∞) reduces to

f = −T ln(λ1). (17)

It is important to acknowledge that the free energy for
any finite-q state presents a continuous function, without any
singularities or discontinuities. As a result, we should not
anticipate any genuine phase transition at a finite temperature.

Furthermore, we can also compute the free energy
(17) from the effective one-dimensional Potts-Zimm-Bragg
model [31]. The specifics of this mapping are outlined in
Appendix A. Note that the effective parameters of the Potts-
Zimm-Bragg model are temperature dependent.

III. ZERO-TEMPERATURE PHASE DIAGRAM

In order to describe the ground state of the q-state Potts
model on a diamond chain we use the following notation for
the state of ith unit cell:∣∣[μi

νi

]
αi

〉
i = {∣∣μi

νi
αi

〉
i or

∣∣νi

μi
αi

〉
i

}
. (18)

Here μi, νi, and αi stand for the states of sites a, b, and c in the
ith unit cell and the square brackets inside a ket vector denote
two equivalent configurations for the values of Potts spins on
a and b sites. Assuming q � 3 in Hamiltonian (1), we identify
the ground states

|FM1〉 =
∏

i

∣∣1

11
〉
i, |FM2〉 =

∏
i

∣∣μ
μ
μ

〉
i, (19)

|FR1〉 =
∏

i

∣∣1

1μi
〉
i, |FR2〉 =

∏
i

∣∣[1

μi

]
1
〉
i, (20)

|FR3〉 =
∏

i

∣∣[μi

νi

]
μi

〉
i, |FR4〉 =

∏
i

∣∣νi

νi
μi

〉
i, (21)

|FR5〉 =
∏

i

∣∣[μi

νi

]
1
〉
i, |FR6〉 =

∏
i

∣∣[1

νi

]
μi

〉
i, (22)

|FR7〉 =
∏

i

∣∣[ξi

νi

]
μi

〉
i. (23)

Here the state indices μ, ν, and ξ are in a range 2, . . . q and
are not equal to each other if they are written in the same
ket vector. The cell index i indicates that the site states in
neighboring cells can differ, so for the frustrated phases the
ground state consists of all relevant combinations and has
nonzero residual entropy.

Expressions for energy and entropy per unit cell for the
ground states (19)–(23) are given in Table I. It is important
to note that the internal energy at zero temperature does not
depend on q, while the residual entropy is completely deter-
mined by q. The frustrated phases are numbered in order of
increasing residual entropy for q � 7. The dependence on q
of the residual entropy for different phases is shown in Fig. 2.

The ground-state phase diagrams assuming that h1 = h2 =
h are shown in Figs. 3(a)–3(f) in different planes. The states
FM1,2 are of the pure ferromagnetic type. The FM1 (FM2)
phase is realized if h > 0 (h < 0). In general, the phase FM2

is a multidomain and it consists of q − 1 kinds of equivalent
macroscopic domains having all spins of a diamond chain in
the μ state. The state FR1 is the first of the frustrated-type
states. The a and b spins are in a state 1, while c spins may be
in any of μi = 2, . . . , q states, so the FR1 phase is realized
only if h > 0 and J1 < 0. The number of states of c spins
determines the entropy of the phase, S0 = ln(q − 1) per unit
cell. In the second frustrated phase FR2, the spin a equals
μ = 2, . . . , q, and the two remaining spins in the unit cell
equal 1, so this phase exists at Jab < 0. Due to the equivalence
of sites a and b, the entropy of the FR2 phase is greater by ln 2.
Frustrated phases FR3,4,7 exist only if h < 0. In the FR3 phase,
the spin states in the unit cell do not equal 1. The state of the
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TABLE I. Ground-state energy, residual entropy, and magnetizations of a diamond Potts chain.

Ground state ε0 S0 mc mab

FM1 −(4J1 + Jab + 3h) 0 1 2
FM2 −(4J1 + Jab) 0 0 0
FR1 −(Jab + 2h) ln(q − 1) 0 2
FR2 −(2J1 + 2h) ln[2(q − 1)] 1 1
FR3 −2J1 ln[4(q − 2)] 0 0
FR4 −Jab 2 ln(q − 2) 0 0
FR5 −h ln[(q − 1)(q − 2)] 1 0
FR6 −h ln[2(q − 2)2] 0 1
FR7 0 ln[(q − 2)(q − 3)2] 0 0

FM1-FM2 −(4J1 + Jab) 0 1
q

2
q

FM1-FR1 8J1 − Jab ln(q) 1
q 2

FR1-FR2 −2(J1 + h) ln[2(q − 1)] 1 1
FM1-FR2 2(J1 + Jab) ln(2q − 1) 1 2q

2q−1

FM2-FR3 −2J1 ln(4q − 7) 0 0
FR2-FR3 −2J1 ln[4(q − 1)] 1

q
2
q

FM2-FR4 −2Jab 2 ln(q − 1) 0 0
FR1-FR4 −Jab 2 ln(q − 1) 1

q
2
q

FR1-FR6 Jab ln(2q2 − 7q + 7) 0 2(q2−3q+3)
2q2−7q+7

FR2-FR6 2J1 ln
{

1
2 [3q2 − 9q + 8 + φ1(q)]

}
a φ1(q)−q2+7q−8

2φ1(q)
φ1(q)+q2−3q+4

2φ1(q)

FR4-FR7 0 ln[(q − 2)(q2 − 5q + 7)] 0 0
FR6-FR7 0 ln[(q − 1)(q − 2)2] 1

q
2
q

FR3-FR7 0 ln[(q − 1)2(q − 2)] 0 0

FM1-FR1-FR2 6J1 ln
{

1
2 [3q − 2 + φ2(q)]

}
b q+φ2 (q)

2φ2 (q)
3φ2 (q)−q+2

2φ2 (q)

FR1-FR2-FR6 2J1 ln
{

1
2 [3q2 − 8q + 7 + φ3(q)]

}
c φ3(q)−q2+6q−7

2φ3(q)
2{(q2−2q+2)[q2−7+φ3(q)]+10−2q}

φ3(q)[3q2−8q+7+φ3(q)]

FM1-FM2-FR2-FR3 −2J1 ln(4q − 3) 1
q

2
q

FR1-FR4-FR6-FR7 0 ln[(q − 1)(q2 − 3q + 3)] 1
q

2
q

FM2-FR3-FR4-FR7 0 3 ln(q − 1) 0 0
FR2-FR3-FR6-FR7 0 ln[q2(q − 1)] 1

q
2
q

O 0 3 ln(q) 1
q

2
q

aφ1(q) = √
q(q3 + 2q2 − 15q + 16).

bφ2(q) = √
q2 + 4q − 4.

cφ3(q) = √
q4 + 4q3 − 30q2 + 44q − 15.

c spin and the state of one of the spins a or b are the same,
σ c

i = σ
(a,b)
i , but the states of spins a and b in the same unit

cell are different, σ a
i �= σ b

i , so this phase appears as a ground
state only if Jab < 0. Formally, the number of states of an ele-
mentary cell is 2(q − 1)(q − 2). However, for the given phase,
the state of the chain should look the same when moving
along the chain from left to right or in the opposite direction.
This mirror symmetry generates the restriction σ

(a,b)
i−1 = σ c

i =
σ

(a,b)
i , so the total number of states per unit cell in the FR3

phase is 4(q − 2). In turn, for the FR4 phase, the conditions
σ

(a,b)
i−1 �= σ c

i and σ c
i �= σ

(a,b)
i must be met, so the total num-

ber of states per unit cell decreases from (q − 1)(q − 2) to
(q − 2)2. Under the assumption h1 = h2, the energies of the
FR5 and FR6 phases are equal, and these states do not mix
at the microscopic level, that is, the unit cells of these states
cannot alternate in the chain. Formally, the chain state in the
FR6 phase region in Fig. 3 should be a phase separation con-
sisting of macroscopic domains of the FR5 and FR6 phases.
The entropy of the FR5 phase is determined by the total
number of states in the unit cell, that is, (q − 1)(q − 2). In the

FR6 phase, the conditions σ
(a,b)
i−1 �= σ c

i �= σ
(a,b)
i give 2(q − 2)2

states instead of the formally possible 2(q − 1)(q − 2) states
in the unit cell. Nevertheless, at q > 3 the entropy of the FR5

phase is less than the entropy of the FR6 phase; therefore,
the free energy of the FR6 phase at any finite temperature is
the lowest, and in the limit at T → 0 we will have the FR6

phase as the ground state. However, the FR5 contributes to
the state at the FR2-FR6 phase boundary. In the frustrated
phase FR7, all the spins in the unit cell are pairwise unequal
and are not equal to 1, so formally the number of states of
an elementary cell is (q − 1)(q − 2)(q − 3). The restriction
σ c

i−1 �= σ
(a,b)
i reduces the total number of states per unit cell to

the value (q − 2)(q − 3)2. If q � 7, the entropy of the FR7

phase has the highest value among the other ground-state
phases.

The case q = 3 is special; the corresponding phase diagram
is shown in Fig. 4. If q = 3, then the states of the FR7 phase
cannot be realized, since in this case there are only two differ-
ent Potts spins with q �= 1 for the three sites in the unit cell.
The phase FR7 is absent and its region in the phase diagram
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FIG. 2. Dependences on q of the residual entropy for different
phases of the ground state (see Table I).

is taken by other phases. Also, the phase diagram contains
both the FR6 phase and the phase-separated state FR5 + FR6,
which consist of equal fractions of the macroscopic domains
of the phases FR5 and FR6. Both FR6 and FR5 + FR6 phases
and the boundary phase have the same entropy S = ln 2. The
structure of the ground state here can be explored using the
methods of the theory of Markov chains (see Appendix B).

To obtain the residual entropy S0 as a limit at zero temper-
ature, we use equations for the internal energy ε and the free
energy f ,

ε = f + TS, f = −T ln(λ1), (24)

where λ1 is the maximum eigenvalue of the transfer matrix.
Then

S = ln

(
λ1

e−βε

)
. (25)

An explicit expression of λ1 is given by Eq. (3) and we can
write it in the form

λ1 = e−βε0ϕ(e−β(ε1−ε0 ), e−β(ε2−ε0 ), . . .). (26)

Here ε0 is the ground-state energy for given parameters of the
Hamiltonian, so relations εk > ε0 are fulfilled for all k. The
form of ϕ depends on the ground state. Since ε tends to ε0 at
zero temperature, we obtain

S0 = ln[ϕ(0)]. (27)

To find ϕ(0), it is enough to zero out all exponential terms
having εk �= ε0 and replace e−βε0 by unity in λ1.

A similar procedure can be defined for the magnetizations
mc and mab in the ground state. So, for the magnetizations mc

and mab we have the equations

mc = 1

λ1

∂λ1

∂ (βh1)
, mab = 1

λ1

∂λ1

∂ (βh2)
. (28)

FIG. 3. Ground-state phase diagrams for the case q > 3 in the
Jab-J1 plane for (a) h > 0 and (b) h < 0, in the Jab-h plane for (c) J1 >

0 and (d) J1 < 0, and in the J1-h plane for (e) Jab > 0 and (f) Jab < 0.
The green lines show the FM1-FM2 boundaries where both adjacent
phases and the boundary phase have zero entropy. The red lines are
the FR1-FR2 boundaries, where SFR1 < SFR1-FR2 = SFR2 .

If we define
∂λ1

∂ (βh1)
= e−βε0ψc(e−β(ε1−ε0 ), e−β(ε2−ε0 ), . . .), (29)

∂λ1

∂ (βh2)
= e−βε0ψab(e−β(ε1−ε0 ), e−β(ε2−ε0 ), . . .), (30)

then in the ground state we get

mc = ψc(0)

ϕ(0)
, mab = ψab(0)

ϕ(0)
. (31)

The ground-state energy ε0, the residual entropy S0, and mag-
netizations mc and mab, which were found using Eqs. (27) and
(31), are given in Table I for all phases and phase boundaries.

There is another way to get the values given in Table I
and study the properties of the ground state in detail. This
method, based on the theory of Markov chains, is described
in Appendix B.

The values in Table I show that the entropy of all phase
boundaries is greater than the entropy of adjacent phases.
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FIG. 4. Ground-state phase diagrams for the case q = 3 in the
Jab-J1 plane for (a) h > 0 and (b) h < 0, in the Jab-h plane for
(c) J1 > 0 and (d) J1 < 0, and in the J1-h plane for (e) Jab > 0 and
(f) Jab < 0. The green lines show the FM1-FM2 boundaries where
both adjacent phases and the boundary phase have zero entropy.
The blue lines show the new boundaries between the FR6 phase and
the phase-separated state FR5 + FR6. The red lines are the FR1-FR2

boundaries, where SFR1 < SFR1-FR2 = SFR2 .

The exceptions are two phase boundaries. The first is the
FM1-FM2 boundary, where the entropy of both adjacent
phases and the boundary state is zero. The second is the
FR1-FR2 boundary, where the boundary state is such that
SFR1 < SFR1-FR2 = SFR2 . This phase boundary is truly an
anomalous property, leading to a peculiar phase pseudotran-
sition at finite temperature, which we will explore in the next
section.

IV. THERMODYNAMICS OF THE q-STATE POTTS MODEL

In what follows, we will analyze the thermodynamic prop-
erties of the model in detail. First, we will examine the
three-state models (q = 3), which exhibit some peculiar prop-
erties, distinct from the behavior for q > 3. Later, we will
explore the case when q > 3. It is worth noting that the be-
havior for any q > 3 tends to be rather consistent across finite

FIG. 5. (a) Internal energy U as a function of the external mag-
netic field, for three different temperature values T = {0.1, 0.2, 0.3}
assuming fixed parameters Jab = −1, J1 = 1, and q = 3. (b) Entropy
S for the same conditions as in (a). (c) Correlation length. (d) Spe-
cific heat.

values of q. For the purposes of this discussion, we will focus
specifically on q = 5, without losing its core properties.

A. Three-state Potts model

Indeed, the two-state Potts model is equivalent to the Ising
model, which differs significantly from the q > 2 state Potts
model. A primary feature to highlight in the latter is the
emergence of frustration. The three-state Potts model, being
the first to exhibit this frustration behavior, is expected to
display peculiar characteristics. In contrast, all higher-q-state
Potts models tend to behave similarly. The one-dimensional
three-state Potts model provides a richer set of behaviors than
the two-state Ising model, yet it is still analytically solvable.
Surely, in the one-dimensional case, there is no phase tran-
sition at finite temperature for the Potts model with q > 2
states, which can be proven via the Peierls argument [2]. This
property makes the one-dimensional three-state Potts model
a tractable system to study, helping investigations into more
intricate systems and behaviors within statistical physics. Its
study contributes to the broader field of statistical physics and
has implications in several scientific disciplines. In this sense,
here we will consider the special case of the three-state Potts
model on a diamond chain.

Initially, we will explore the thermodynamics and magneti-
zation properties in the vicinity of the zero-temperature phase
boundary that separates FM1 and FM2. Figure 5(a) illustrates
the internal energy U as a function of the external magnetic
field. We assume the same magnetic field for both nodal and
dimer sites (h1 = h2 = h). Three different temperature values
are considered to demonstrate the behavior of the internal en-
ergy. At h = 0, corresponding to the zero-temperature phase
transition between FM1 and FM2 (refer to Fig. 4), an evident
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FIG. 6. (a) Magnetization mc as a function of the external
magnetic field h, for three different temperature values T =
{0.1, 0.2, 0.3}, assuming fixed parameters Jab = −1, J1 = 1, and
q = 3. (b) Magnetization mab as a function of the external magnetic
field h, for the same set of fixed parameters as in (a). Magnetic
susceptibilities (c) χc and (d) χab are plotted assuming the same
conditions as in (a) and (b).

change is observed. As the temperature increases, a small peak
emerges at h = 0, which grows with higher temperatures. In
Fig. 5(b) the entropy S is shown as a function of the external
magnetic field, under the same conditions as in Fig. 5(a). Here
we notice the absence of residual entropy at zero temperature,
in accordance with the argument in Refs. [12,13], suggesting
the presence of a pseudocritical temperature at this bound-
ary. Figure 5(c) displays the correlation length ξ = 1/ln( λ1

λ2
)

as a function of h, using the same parameter set as in Figs. 5(a)
and 5(b). Once again, a sharp peak at h = 0 confirms the phase
transition at zero temperature. Interestingly, in this case, there
is not just one pseudocritical temperature but infinitely many.
For any temperature Tp � 0.2, we observe a sharp peak in the
correlation length at a null magnetic field. Finally, Fig. 5(d)
presents the specific heat under the same conditions. In con-
trast to a typical pseudocritical peak, an intense peak appears,
with a small minimum at h = 0. As the temperature decreases,
the specific heat tends to zero, as expected.

In the following analysis, we explore the magnetic proper-
ties of the system, specifically the magnetization and magnetic
susceptibility. Figure 6(a) illustrates the magnetization mc of
the nodal site as a function of the external magnetic field h for
temperatures T = {0.1, 0.2, 0.3}. The parameters Jab = −1
and J1 = 1 remain fixed throughout. In the low-temperature
region, we observe the saturated phase (FM1) and a phase
transition at h = 0, where the magnetization drops to zero,
corresponding to FM2. It is important to note that FM2 ex-
hibits null magnetization since, according to the definition in
Eq. (20), it aligns in any state other than 1. Moving on to
Fig. 6(b), we present the dimer magnetization mab, which ex-
hibits behavior similar to that in Fig. 6(a). Figure 6(c) exhibits

FIG. 7. (a) Internal energy U as a function of temperature for
three specific values T = {0.01, 0.05, 0.1}, assuming fixed parame-
ters Jab = −1.4, J1 = −1, and q = 3. (b) Entropy S under the same
conditions as in (a). (c) Correlation length ξ . (d) Specific heat C.

the magnetic susceptibility χc as a function of the external
magnetic field h, under the same aforementioned conditions.
Notably, it displays sharp peaks reminiscent of pseudocritical
phase transitions, particularly for temperatures Tp � 0.2. Sim-
ilarly, Fig. 6(d) illustrates the dimer magnetic susceptibility
χab as a function of h, employing the same conditions as in
Figs. 6(a)–6(c). Figures 6(c) and 6(d) exhibit characteristic
sharp peaks distinct from the double peak observed in the
specific heat plot depicted in Fig. 5(d), which occurs around
h = 0.

There is a peculiar behavior for q = 3, so we will now
investigate the anomalous interface between FR5 and FR5 +
FR6, which represents another phase boundary that requires
analysis. Figure 7(a) illustrates the internal energy U as
a function of the external magnetic field h, with the pa-
rameters Jab = −1.4 and J1 = −1 held constant. The graph
uses three distinct temperatures for illustrative purposes.
The internal energies for these temperatures appear to be
almost identical, with minor variations around h = ±1.4,
where a zero-temperature phase transition occurs. In con-
trast, Fig. 7(b) depicts the entropy S as a function of the
same set of temperatures. Unlike the internal energy, the
entropies for these temperatures are distinctly different un-
der the same set of parameters. A peak is noticeable at the
same magnetic field h = ±1.4, underscoring the impact of
the zero-temperature phase transition. On the other hand, the
correlation length ξ indicates a curvature change at a dis-
parate temperature, approximately around h ≈ ±0.8, but no
evidence of phase transition influence at h = ±1.4 is dis-
cernible. Finally, Fig. 7(d) demonstrates the specific heat as a
function of temperature, maintaining the same parameters as
in Fig. 7(a). A double peak is observable around h = ±1.4,
but no signs of unusual behavior are evident at h ≈ ±0.8.
Although there is no anomalous behavior for U , S , and C
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FIG. 8. (a) Magnetization mc as a function of the external mag-
netic field h, considering three different temperature values T =
{0.01, 0.05, 0.1}. The fixed parameters Jab = −1.4, J1 = −1, and
q = 3 are assumed. (b) Magnetization mab as a function of the ex-
ternal magnetic field h, with the same set of fixed parameters as in
(a). Magnetic susceptibilities (c) χc and (d) χab are plotted under the
same conditions as in (a) and (b).

at h = 0, the correlation length ξ illustrates a maximum at
h = 0. This anomalous behavior will be further discussed
later.

Figure 8(a) depicts the magnetization of nodal spin, as-
suming the same parameters as in Fig. 7. It reveals that the
magnetization, denoted by mc, alters its behavior notably at
h ≈ ±0.8. However, there are no traces of a phase transition at
h = ±1.4, even though the magnetization exhibits symmetry
under the exchange of the magnetic-field sign. Additionally,
Fig. 8(b) reports the magnetic susceptibility χc of nodal spin,
as a function of the magnetic field, with temperatures given
in the legend. Note that the magnetic susceptibility increases
rapidly for lower temperatures and remains substantial at h =
±1. It also displays a significant alteration in the curve around
h ≈ ±0.8 and a change in curvature at about h ≈ ±1.4. In
contrast, Fig. 8(c) illustrates the dimer magnetization, de-
noted by mab, as a function of the external magnetic field h.
Here we observe the zero-temperature phase transition impact
at h = ±1.4 and ±0.8, despite the magnetization no longer
maintaining symmetry under the exchange of the magnetic
field. Similarly, Fig. 8(d) features the magnetic susceptibil-
ity χab, using the same parameters presented in Fig. 8(a).

Comparable to observations in Fig. 8(c), we detect a signif-
icant change of curvature around h ≈ ±0.8, while a local
maximum of magnetic susceptibility emerges at h ≈ ±1.4.
As previously identified in the correlation length ξ , there is
an anomalous behavior observed at h = 0. The magnetiza-
tion mc exhibits a peculiar value of 1

3 at null magnetic field,
while similarly mab yields 2

3 at h = 0, and obviously the
total magnetization becomes 1. This anomalous behavior is
also manifested in the magnetic susceptibilities χc and χab,
which exhibit a maximum value at h = 0 when the magnetic
field is varied. Furthermore, in Fig. 8(e) we report the total
magnetization mt = mc + mab. Interestingly, based on our ob-
servations, there is no evidence of any anomalous behavior;
instead, a long plateau is evident. For this analysis, we assume
the same set of parameters as those used for the previous
partial magnetizations. Figure 8(f) shows the total magnetic
susceptibility χt = χc + χab + 2χabc, where χabc = − ∂2 f

∂hc∂hab

(not depicted). Again, we rely on the parameters established
for the partial magnetic susceptibilities. It is noteworthy that
this analysis does not reveal significant insights around the
anomalous regions. Additionally, the total magnetic suscep-
tibility presents a markedly smaller magnitude compared to
the partial magnetic susceptibilities displayed in Figs. 8(b)
and 8(d). This reduced magnitude arises because the magnetic
susceptibility χabc counterbalances the positive contributions
from χc and χab, due to its comparable magnitude. As an
alternative approach, one can determine χt for the current case
by assuming hc = hab and taking the second derivative of the
negative free energy.

B. Pseudocritical temperature around the FR1-FR2 phase
boundary

We will now investigate the properties of the Potts model
on a diamond structure, which displays anomalous behavior
near the FR1-FR2 phase boundary influenced by temperature
variations. This region displays a pseudocritical transition,
akin to a first- or second-order phase transition. Notably, the
anomalous properties observed in the low-temperature regime
are primarily independent of the particular value of q. For
q > 3, the behavior of physical quantities is rather similar.
Therefore, we will consider q = 5 solely for illustrative pur-
poses, without losing any relevant properties. Examining this
transition is crucial for comprehending the physical properties
of the Potts model and predicting its behavior under diverse
conditions.

1. Entropy

Figure 9(a) shows the plot of entropy S as a function
of temperature T/Tp, where Tp is the pseudocritical
temperature, with Jab = −0.75, J1 = −0.38, and
q = 5 fixed parameters. We consider several magnetic
fields, i.e., h = {0.8, 0.9, 1.0, 1.3, 1.4, 1.45}, and their
corresponding pseudocritical temperatures are Tp =
{ 0.010 065 153 487 1, 0.014 347 308 824 4, 0.014 426 811
788 3, 0.014 426 897 057 9, 0.014 398 249 768 6, 0.013 983
016 139 5}, respectively. For magnetic fields in the range
of 1 � h � 1.3, we observe a robust change of curvature at
Tp, which resembles a typical first-order phase transition.
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(a)

(b)

(c)

FIG. 9. (a) Entropy S, (b) specific heat C, and (c) correlation
length ξ as functions of temperature T/Tp, in units of the
pseudocritical temperature Tp assuming fixed parameters
Jab = −0.75, J1 = −0.38, and q = 5 for several values
of the magnetic field h = {0.8, 0.9, 1.0, 1.3, 1.4, 1.45} and
corresponding pseudocritical temperatures Tp = {0.010
065 153 487 1, 0.014 347 308 824 4, 0.014 426 811 788 3, 0.014 426
897 057 9, 0.014 398 249 768 6, 0.013 983 016 139 5}, respectively.

However, there is no sudden jump in entropy at Tp, and when
we magnify the entropy plot around Tp, we can see that the
curve is a continuous smooth function. On the other hand, for
other magnetic-field values, the sudden change of curves is
clearly a smooth function (not shown). It is worth mentioning
that for T < Tp, the system mostly resembles the FR1 phase
with residual entropy S = ln(q − 1) = ln(4), while for
T > Tp the system behaves somewhat similarly to the FR2

phase, with residual entropy S ≈ ln[2(q − 1)] = ln(8). This
effect is more evident for magnetic fields in the range of
1 � h � 1.3.

2. Specific heat

In Fig. 9(b) we plot specific heat C as a function of tem-
perature T/Tp, in units of pseudocritical temperature Tp. We
consider the same set of parameters as in Fig. 9(a) and each
colored curve corresponds to the legend in Fig. 9(a). The
anomalous behavior manifests clearly for magnetic fields in
the range of 1 � h � 1.3, where we observe a very intense
sharp peak around Tp or T/Tp = 1, which looks like a second-
order phase transition. However, there is no divergence at Tp.
For other values of magnetic field, this peak becomes broader
and less intense. This sharp peak around Tp evidently signals
the limit between the FR1 phase and FR2 phase, as discussed
earlier. Therefore, the plots in Fig. 9 provide valuable insights
into the magnetic-field-induced phase transition in the system.

3. Correlation length

In Fig. 9(c) we plot the correlation length ξ as a function of
temperature T/Tp (in units of the pseudocritical temperature
Tp). For simplicity and consistency with the previous figures,
we consider the same set of parameters as in Fig. 9(a). Again,
we observe the anomalous behavior of the correlation length
around Tp, confirming the evidence of a pseudotransition at Tp.
The correlation length peak is more intense when we consider
an external magnetic field in the range of 1 � h � 1.3. This
peak originates when the second largest eigenvalue becomes
as important as the largest eigenvalue, although it should never
attain the magnitude of the largest eigenvalue. For other values
of magnetic field, the peak becomes less intense. These re-
sults further support the evidence of a magnetic-field-induced
phase transition in the system, as seen in the previous plots
of specific heat and entropy. The behavior of the correlation
length also provides valuable insights into the nature of this
transition.

The power-law behavior of the correlation length may be
analytically derived using the formula proposed in Ref. [32].
This can be achieved by manipulating the relation ξ =
1/ln( λ1

λ2
). Utilizing the effective Boltzmann factors from (6)

and (7), we can express the correlation length as

ξ (τ ) = cξ |τ |−1 + O(τ 2), (32)

where

cξ = 1

w̃1Tp

∣∣∣∣∂[w1(β ) − w−1(β )]

∂β

∣∣∣∣
β=βp

(33)

and τ = (Tp − T )/Tp with w̃1 = w1(βp).
It is worth mentioning that the power-law behavior is only

valid for the ascending and descending parts of the sharp peak,
but it is not valid around the top or far from the ascending
and descending regions. Specifically, for our case, the range
of validity is −0.5 � τ < 0 and 0 < τ � 0.9.

4. Magnetization

In Fig. 10(a) we plot the magnetization mc as a function
of temperature T/Tp, in units of pseudocritical temperature
Tp. We consider the same fixed parameter set as in Fig. 9
for comparison purposes. It is evident that for T < Tp, the
magnetization mc is almost negligible, indicating that almost
none of the spin components are in the first component
of spin. Suddenly, the magnetization increases rapidly and
reaches a saturated value at T/Tp ≈ 4, indicating that the
spins are almost fully ordered. For higher temperatures, the
spins gradually become randomly oriented. This behavior is
more pronounced for the magnetic-field range of 1 � h � 1.3,
while for other values of magnetic field, the magnetization
mc shows a smooth curve with an enhanced magnetization
slightly above Tp. Similarly, in Fig. 10(b) we present the
magnetization mab as a function of temperature in units of Tp.
In this case, the magnetization mab is well behaved and most
of the particle’s spin components are configured in the FR1

phase. For 1 � T/Tp � 4, the spin of the system is roughly
configured in the FR2 phase and then increases slightly. How-
ever, this peak disappears when the magnetic field satisfies the
condition of h � 1 and h � 1.3. As the temperature increases
further, the magnetization decreases asymptotically.
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(a)

(c) (d)

(b)

FIG. 10. (a) and (b) Magnetization and (c) and (d) magnetic
susceptibility as functions of temperature T/Tp, in units of pseud-
ocritical temperature Tp, assuming the values considered in Fig. 9.
(a) Corresponds to the magnetization of nodal spins mc and (c) shows
the corresponding magnetic field.

5. Magnetic susceptibility

In Fig. 10(c) we present the nodal spin magnetic suscep-
tibility χc as a function of temperature T/Tp, where we use
the same set of parameters as in Figs. 10(a) and 10(b) for ease
of comparison. In the range of magnetic field 1 � h � 1.3,
the χc peak is very sharp around T/Tp = 1, and a second
broader peak appears at higher temperatures, which vanishes
when the peak at Tp decreases. For other intervals of mag-
netic field, the magnetic susceptibility exhibits less intense
and broader peaks around T/Tp ≈ 1, and when the peak be-
comes less pronounced, the second peak disappears as well.
Similarly, in Fig. 10(d) we report the magnetic susceptibility
χab as a function of temperature T/Tp. For magnetic fields
1 � h � 1.3, the intense sharp peak delimits the boundary
between quasiphases qFR1 and qFR2, accompanied by a sec-
ond broader peak at higher temperatures. However, for other
intervals of magnetic field, the intense sharp peak decreases
and gradually disappears and at the same time the second
broad peak vanishes as well.

To summarize our results, it is important to note that while
the transfer matrix of most models exhibiting pseudotran-
sitions is typically reduced to a 2 × 2 matrix as shown in
Ref. [32], our transfer matrix can in principle be significantly
larger, depending on the values of q. This contrasts with what
was previously discussed in [32]. However, both the largest
and the second-largest eigenvalues share the same structure as
those of a typical 2 × 2 transfer matrix. In the thermodynamic
limit, all other eigenvalues become irrelevant. Therefore, it is
worth mentioning that pseudotransitions adhere to the same
universality properties outlined in Ref. [32].

V. CONCLUSION

Here we explored the q-state Potts model on a diamond
chain in order to study the zero-temperature phase transitions

and thermodynamic properties. The q-state Potts model on a
diamond chain exhibits intriguing behavior, due to discrete
states assembled on a diamond chain structure, which exhibits
several unusual features such as various possible alignments
of magnetic moments.

The three-state Potts model on a diamond chain
presents peculiar characteristics, around the zero-temperature
FM1-FM2 phase transition and FR5 and FR5 + FR6, such
as the absence of residual entropy at the phase boundary.
Thermodynamic quantities such as entropy, internal energy,
and specific heat remain unaffected by this phase transition,
even at significantly low temperatures, while magnetic prop-
erties such as correlation length, magnetization, and magnetic
susceptibility offer evidence of a zero-temperature phase tran-
sition at finite temperatures when the magnetic field is varied.
These findings highlight the intricate nature of the q-state
Potts model on a diamond chain and contribute to our under-
standing of complex systems in diverse scientific disciplines.

Furthermore, we conducted an analysis of the q-state Potts
model, primarily independent of the specific value of q, but
for illustrative purposes we chose q = 5. Our exploration
centered around the phase boundaries FR1 and FR2, where
certain anomalous properties become more pronounced in
low-temperature regions. This is due to residual entropy,
which reveals unusual frustrated regions at zero-temperature
phase transitions. Phase boundaries featuring nontrivial phase
transitions demonstrate anomalous thermodynamic proper-
ties, including a sharp entropy alteration as a function of
temperature, resembling a first-order jump of entropy without
an actual discontinuity. Similarly, second-order derivatives of
the free energy, such as specific heat and magnetic susceptibil-
ity, present distinct peaks akin to those found in second-order
phase transition divergences, but without any singularities.
The correlation length also exhibits analogous behavior at the
pseudocritical temperature, marked by a sharp and robust peak
that could be easily misinterpreted as true divergence. It is
worth noting that, although the ground-state phase diagram
shows several frustrated phases and many boundaries, only
for the state near the FR1-FR2 boundary is there a pseudotran-
sition at a finite temperature. This is a good demonstration
of the predictive power of the criterion for pseudotransitions
formulated earlier [12,13].

The pseudocritical transitions observed at the phase bound-
aries offer valuable insights into the interplay between
temperature and magnetic field in inducing phase transitions.
These findings contribute to a deeper understanding of statis-
tical physics and phase transitions and have implications in
various scientific disciplines. Further investigations into this
model can open up new avenues for exploring the dynamics
of complex systems and phase transitions, enriching the field
of condensed matter physics.
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APPENDIX A: DECORATION TRANSFORMATION
FOR THE q-STATE POTTS MODEL

The decoration transformation [33–36] has been widely
used in Ising models and Ising-Heisenberg models. In this
Appendix we apply the decoration transformation mapping
to transform the q-state Potts model on a diamond chain to
an effective one-dimensional Potts-Zimm-Bragg model, as
considered in Ref. [31].

To study the thermodynamics of the Hamiltonian (1), we
need to obtain the partition function using transfer matrix
techniques. The elements of the transfer matrix are commonly
known as Boltzmann factors,

w
(
σ c

1 , σ c
2

) = e(βh1/2(δσc
1 ,1+δσc

2 ,1 )

×
q∑

σ a,σ b=1

(
eβJabδσa ,σb+βh2(δσa ,1+δ

σb,1 )

× e
βJ1(δσc

1 ,σa +δ
σc

1 ,σb+δσa ,σc
2
+δ

σb,σc
2

))
. (A1)

The summation in (A1) can be expressed as

q∑
σ a,σ b

· · · =
(

q∑
σ a=1

eβ[J1(δσc
1 ,σa +δσa ,σc

2
)+h2δσa ,1]

)2

+ (y − 1)
q∑

σ a=1

e2β[J1(δσc
1 ,σa +δσa ,σc

2
)+h2δσa ,1]

, (A2)

where we are using the notation

e
βJabδσa

i ,σb
i = 1 + (y − 1)δσ a

i ,σ b
i
, (A3)

with y = eβJab . Thus the Boltzmann factor (A1) can be simpli-
fied after some algebraic manipulation

w
(
σ c

1 , σ c
2

) = ν0 + ν1δσ c
1 ,σ c

2
+ ν2δσ c

1 ,1δ1,σ c
2
+ ν3

(
δσ c

1 ,1 + δ1,σ c
2

)
(A4)

by using the notation expressed by the simple expressions

ν0 = t2, (A5)

ν1 = d2 − t2, (A6)

ν2 = d1 − d2 − 2(t1 − t2), (A7)

ν3 = t1 − t2, (A8)

where we have denoted the Boltzmann factors by w(1, 1) =
d1, w(μ,μ) = d2, w(1, μ) = t1, and w(μ,μ′) = t2, with μ

and μ′ taking values {2, 3, . . . , q}. On the other hand, based
on the Hamiltonian considered in Ref. [31], let us write the
effective one-dimensional Potts-Zimm-Bragg model, whose
Hamiltonian has the form

H = −
N∑

i=1

(
K0 + Kδσ c

i ,σ c
i+1

+ K1δσ c
i ,1δ1,σ c

i+1
+ hδσ c

i ,1
)
, (A9)

where K0, K , K1, and h must be considered as the effective
parameters. Therefore, the corresponding Boltzmann factors
of the effective model becomes

w
(
σ c

1 , σ c
2

) = eβ[K0+Kδσc
1 ,σc

2
+K1δσc

1 ,1δ1,σc
2
+(h/2)(δσc

1 ,1+δ1,σc
2

)]
. (A10)

Using the decoration transformation, we can impose
the condition w(σ c

1 , σ c
2 ) = w(σ c

1 , σ c
2 ). This results in four

nonequivalent algebraic equations that allow us to determine
the four unknown effective parameters of the Hamiltonian
(A9) by solving the system of equations, which results in

K0 = 1

β
ln[w(μ,μ′)] = 1

β
ln(t2), (A11)

K = 1

β
ln

(
w(μ,μ)

w(μ,μ′)

)
= 1

β
ln

(
d2

t2

)
, (A12)

K1 = 1

β
ln

(
w(1, μ)

w(μ,μ′)

)
= 1

β
ln

(
t1
t2

)
, (A13)

h = 2

β
ln

(
w(1, 1)

w(μ,μ′)

)
= 2

β
ln

(
d1

t2

)
. (A14)

This transformation maps the diamond chain Potts model
(1) on an effective one-dimensional Potts-Zimm-Bragg
model [31].

APPENDIX B: APPLICATION OF MARKOV
CHAIN THEORY

It is possible to construct a mapping of our one-
dimensional model to some Markov chain if we take as the
entries of a transition matrix Pαγ the conditional probabili-
ties P(γ |α) of the state γ = |ξi+1

ηi+1ζi+1〉 in the (i + 1)th cell,
given that the ith cell is in the state α = |ξi

ηi
ζi〉. Conditional

probabilities are determined from the Bayes formula P(αγ ) =
P(α)P(γ |α), where in turn

P(α) = 〈�i,α〉, (B1)

P(αγ ) = 〈�i,α�i+1,γ 〉, (B2)

with �i,α a projector on the α state for the ith cell. Using the
transfer matrix V , built on the states α, we find

〈�i,α〉 = lim
N→∞

Tr(V i−1�i,αV N−i+1)

Tr(V N )

= lim
N→∞

∑
k〈α|λk〉λN

k 〈λk|α〉∑
k λN

k

= 〈α|λ1〉〈λ1|α〉,

(B3)

〈�i,α�i+1,γ 〉 = Vαγ

λ1
〈γ |λ1〉〈λ1|α〉. (B4)

Here λ1 is the maximum eigenvalue of the transfer matrix
V . For a positive matrix, the coefficients vα = 〈α|λ1〉 can be
chosen to be positive, according to Perron’s theorem [37].
Assuming that

Pαγ = P(γ |α) = 〈�i,α�i+1,γ 〉
〈�i,α〉 , (B5)

we obtain

Pαγ = Vαγ vγ

λ1 vα

. (B6)

The stochastic properties of the matrix Pαγ are checked di-
rectly: ∑

γ

Pαγ = 1

λ1 vα

∑
γ

Vαγ vγ = 1. (B7)
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Equation (B6) for constructing a transition matrix is known
in the theory of non-negative matrices [37], but the expression
(B5) reveals its physical content for our model. This allows
us to use the results of a very advanced field of mathematics,
the theory of Markov chains. The state of the system is deter-
mined by the stationary probability vector w of the Markov
chain, which can be found from the equations∑

α

wαPαγ = wγ ,
∑

α

wα = 1. (B8)

Using (B3), we can check that wα = P(α), and if the transfer
matrix V is chosen to be symmetric, then wα = v2

α . For the
magnetizations, we obtain the expressions

mc = wmc, mab = wmab, (B9)

where the αth component of the vector m equals the corre-
sponding magnetization for the state α.

The calculation of the transition matrix P involves finding
the maximum eigenvalue λ1 of the transfer matrix V , the
dimension of which for our model is q3. However, the di-
mension of the matrices can be reduced using the lumpability
method for reducing the size of the state space of Markov
chain [38]. We divide the original set of m states into M
groups and find the lumped transition matrix. Formally, this
can be done using matrices LAα and Rγ G (α, γ = 1, . . . , m and
A, G = 1, . . . , M),

PAG =
∑
αγ

LAαPαγ Rγ G, (B10)

where Rγ G = 1 if the state γ belongs to the group with the
number G and Rγ G = 0 otherwise; LAα = 1/dim(A) if the
state α belongs to the group with the number A consisting of
dim(A) elements and LAα = 0 otherwise.

In our problem, it is natural to divide m = q3 states into
phases (19)–(23). Also, to complete the set of states, it is
necessary to supplement this list with two phases FR′ and
FR′′, the states for which have the form

|FR′〉 =
∏

i

∣∣[1

μ

]
μ

〉
i, |FR′′〉 =

∏
i

∣∣μi

μi
1
〉
i. (B11)

The energy and entropy at zero temperature have the values

ε0 = −(2J1 + h), S0 = ln 2 for FR′, (B12)

ε0 = −(Jab + h), S0 = ln(q − 1) for FR′′. (B13)

The states FR′ and FR′′ are not represented in the phase
diagrams of the ground state in Figs. 3 and 4 by their own
domains, but appear as impurities in mixed states at the phase
boundaries. Thus, for any q > 3 the matrix PAG will have
dimension M = 11, and M = 10 for q = 3.

The equilibrium state of the system will correspond to a
stationary probability vector for the lumped Markov chain,∑

A

wAPAG = wG,
∑

A

wA = 1, (B14)

and the expressions for magnetizations will not formally
change. The lumpability (B10) can also be applied to the
transfer matrix V , if we are only interested in its maximum
eigenvalue. Indeed, the matrix V is non-negative, so according

FIG. 11. Illustration of the interface between the ith and (i + 1)th
cells of the diamond chain.

to the Perron-Frobenius theorem [37]

λ1 = max
(v�0)

min
1�α�m

∑
β Vαγ vγ

vα

. (B15)

Since the matrix R sums the matrix elements for states from
the group and the matrix L removes duplicate rows, the value
of λ1 in Eq. (B15) will not change after the lumpability.

This computational scheme is greatly simplified for the
ground state. We will count the energy of the system from
the energy of the ground state E0 = Nε0. If T = 0, then for
all states with energy higher than ε0 we get Vαγ = 0. A pair of

states α = |ξα
ηα

ζα〉 and γ = |ξγ

ηγ
ζγ 〉 with energy equal to ε0 will

be called allowable if the state of the interface |ξγ

ηγ
ζα〉 also has

energy ε0 (see Fig. 11). For the allowable pair of states, we
get Vαγ = 1; otherwise Vαγ = 0. For the lumped matrix, the
nonzero matrix elements VAG will be equal to the number of
allowable pairs for any state α from the group A and all states
from the group G. As a result, the dimension of a block with
nonzero matrix elements will in most cases be less than M.

It can also be shown that for the ground state the entropy
per cell can be calculated as

S0 = ln λ1, (B16)

where λ1 is the maximum eigenvalue of the matrix Vαγ (or
VAG) at T = 0. For a cyclic closed sequence, the probability
of the state (α1 · · ·αNα1) has the following form [39]:

P(α1 · · · αNα1) = P(α1|α2)P(α1|α2) · · · P(αN |α1)

=
∏
αγ

P(α|γ )NP(αγ ) = pN
0 . (B17)

In the ground state, the equation S0 = − ln p0 is valid [40].
Consider the limit of ln p0 at zero temperature. We have

ln p0 =
∑

α

P(αα) ln P(α|α)

+
∑
α<γ

P(αγ ) ln[P(α|γ )P(γ |α)]. (B18)

Using Eqs. (B5) and (B6), we obtain

P(α|α) = Vαα

λ1
, P(α|γ )P(γ |α) = VαγVγα

λ2
1

. (B19)

Equation (B17) takes the form

ln p0 =
∑
αγ

P(αγ ) ln Vαγ − ln λ1. (B20)
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For allowable pairs P(αγ ) �= 0 and Vαγ → 1 at T → 0; hence
P(αγ ) ln Vαγ → 0. For the other pairs Vαγ → 0, and hence
P(αγ ) ln Vαγ ∝ Vαγ ln Vαγ → 0 at T → 0. As a result, S →
ln λ1 at T → 0.

Example 1. Consider the ground state at the boundary
between phases FR1 and FR4. The energies of these phases
εFR1 = −(Jab + 2h) and εFR4 = −Jab become equal to ε0 =
−Jab if h = 0. The FR′′ phase has the same energy. These
phase states for the ith cell have the form

|FR1〉i = ∣∣1

1μi
〉
, (B21)

|FR4〉i = ∣∣νi

νi
μi

〉
, (B22)

|FR′′〉i = ∣∣μi

μi
1
〉
, (B23)

so that

mc =
⎛
⎝0

0
1

⎞
⎠, mab =

⎛
⎝2

0
0

⎞
⎠. (B24)

The nonzero block of the matrix VAB has the following form:

V =
⎛
⎝q − 1 (q − 2)2 q − 2

q − 1 (q − 2)2 q − 2
0 (q − 1)(q − 2) q − 1

⎞
⎠. (B25)

Here we take into account that the interface state for FR′′-FR1

pairs has the form FM1, with energy higher than ε0, and for
FR1-FR′′ pairs, for example, an invalid state FM2 may also
occur. Finding the maximum eigenvalue of λ1 = (q − 1)2, we
get

S0 = 2 ln(q − 1), v = C

⎛
⎝1

1
1

⎞
⎠ (B26)

and calculate the transition matrix

P = 1

q − 1

⎛
⎜⎝1 (q−2)2

q−1
q−2
q−1

1 (q−2)2

q−1
q−2
q−1

0 q − 2 1

⎞
⎟⎠ for PAG = VAG

λ1

vG

vA
.

(B27)

Finding the stationary distribution of the lumped Markov
chain

w = 1

q

⎛
⎝ 1

q − 2
1

⎞
⎠ for PT w = w, (B28)

we calculate the magnetizations

mc = wmc = 1

q
, mab = wmab = 2

q
. (B29)

Note that without taking into account the FR′′ states, the
nonzero magnetization mc at the FR1-FR4 phase boundary
looks mysterious, since for these phases themselves mc = 0.
Similarly, the FR′ states contribute in a state of the FR2-FR3

phase boundary, where the energies of these three states are
equal.

Example 2. For the ground state at the boundary between
phases FR2 and FR6, the energies of these phases εFR2 =
−2(J1 + h) and εFR6 = −h become equal to ε0 = 2J1 if h =
−2J1. The phase FR5 has the same energy. These phase states
for the ith cell have the form

|FR2〉i = ∣∣[1

μi

]
1
〉
, (B30)

|FR6〉i = ∣∣[1

νi

]
μi

〉
, (B31)

|FR5〉i = ∣∣μi

νi
1
〉

(B32)

and

mc =
⎛
⎝1

0
1

⎞
⎠, mab =

⎛
⎝1

1
0

⎞
⎠. (B33)

The lumped transfer matrix

V =

⎛
⎜⎝2(q − 1) 2(q − 1)(q − 2) (q − 1)(q − 2)

2(q − 2) 2(q − 2)2 0
2(q − 1) 2(q − 1)(q − 2) (q − 1)(q − 2)

⎞
⎟⎠
(B34)

has a maximum eigenvalue

λ1 = 1
2 [3q2 − 9q + 8 + φ1(q)], (B35)

where

φ1(q) =
√

q4 + 2q3 − 15q2 + 16q. (B36)

We write the corresponding eigenvector

v = C

⎛
⎜⎝ 1

(q−2)(q2−3q+4+φ1(q))
(q−1)(3q2−9q+8+φ1(q))

1

⎞
⎟⎠ (B37)

and find the transition matrix

P =

⎛
⎜⎜⎝

2(q−1)
λ1

2(q−2)2(λ1−q2+3q−2)
λ2

1

(q−2)(q−1)
λ1

2(q−1)
λ1−q2+3q−2

2(q−2)2

λ1
0

2(q−1)
λ1

2(q−2)2(λ1−q2+3q−2)
λ2

1

(q−2)(q−1)
λ1

⎞
⎟⎟⎠.

(B38)

The stationary probabilities can be reduced to the form

w = 1

2φ1(q)

⎛
⎝ 4(q − 1)

φ1(q) + q2 − 7q + 8
φ1(q) − q2 + 3q − 4

⎞
⎠, (B39)

which allows us to find the magnetizations

mc = φ1(q) − q2 + 7q − 8

2φ1(q)
, (B40)

mab = φ1(q) + q2 − 3q + 4

2φ1(q)
. (B41)

In this way, it is possible to obtain all the values given in
Table I.
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A special situation occurs at q = 3, when the ground-state
energy has the value ε0 = −h. This value has the energy of
the FR5 and FR6 phases. At q > 3, the entropy of the FR6

phase is greater than that of the FR5 phase, so when T > 0,
the free energy for the FR6 phase is less than that for the
FR5 phase, and in the limit T → 0 the main state is the FR6

phase. If q = 3, the entropy of the FR5 and FR6 phases is
equal to S0 = ln 2. The nature of the ground state in this case
can be investigated using the Markov chain method proposed
above.

At a sufficiently low temperature, the state of the system is
formed by phases whose energies are closest to the energy of
the ground state. In the parameter range of h > 0, J1 < −h/2,
and Jab < −h [see Fig. 4(a)], it is natural to take into account
in addition to FR5 and FR6 phases also neighboring phases
FR1 and FR2. The transfer matrix with entries VAB, where
A, B = FR1, FR2, FR5, FR6, has the form

V = 2z

⎛
⎜⎜⎜⎝

yz
√

xyz(1 + x) x
√

yz
√

yz(1 + x)

x5/2√yz 2x2z
√

xz 2x3/2√z

x2√yz 2x3/2√z 1 2x√
yz

√
xz(1 + x) x 1 + x

⎞
⎟⎟⎟⎠.

(B42)

Here x = eβJ1 , y = eβJab , z = eβh, and it is taken into account
that q = 3. Explicit expressions for the maximum eigenvalue
λ1 and its eigenvector v have a rather cumbersome form;
however, for the parameters under consideration and β � 1,
their approximate expressions can be used:

λ1 = 2z(1 + u), v = C

⎛
⎜⎜⎜⎝

√
yz

2x3/2√z/u
2x/u

1

⎞
⎟⎟⎟⎠, (B43)

where

u = 1
2 (yz +

√
y2z2 + 8x2z). (B44)

Using these expressions in Eq. (B6) and leaving only the
leading terms for β � 1 in the entries of the matrix V , we
obtain the transition matrix

P = 1

1 + u

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

yz
2x2z

u

2x2

u
1

1
2 uxyz 2x2z 1 u
1
2 uxyz 2x2z 1 u

yz
2x2z

u

2x2

u
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B45)

In the parameter domain under consideration, the stochastic
properties of this matrix remain quite accurate at β � 1. The
qualitative difference of Markov chains generated by P at
low temperature depends on the asymptotic behavior of the
parameter u:

u −−→
β�1

⎧⎪⎨
⎪⎩

yz, 2Jab + h > 2J1

2yz = 2x
√

z, 2Jab + h = 2J1

x
√

2z, 2Jab + h < 2J1.

(B46)

FIG. 12. Transition graphs of Markov chains at q = 3, h > 0,
2J1 < −h, Jab < −h, and low temperature for (a) 2Jab + h > 2J1 and
(b) 2Jab + h < 2J1.

Consider the case of 2Jab + h > 2J1. Under this condition,
the following inequalities will be true: x2 � x2z � yz and
uxyz � yz. For clarity, we leave in the matrix P only entries
of order 1 and the first order of smallness and replace matrix
elements of higher orders of smallness with zeros. As a result,
the transition matrix takes the form

P =

⎛
⎜⎜⎝

a1 0 0 1 − a1

0 0 1 − a1 a1

0 0 1 − a1 a1

a1 0 0 1 − a1

⎞
⎟⎟⎠, a1 = yz. (B47)

The transition graph of this Markov chain is shown in
Fig. 12(a). The state FR2 in this case is transient and is omitted
for simplicity. Thin and thick lines correspond to the transition
probabilities a1 and 1 − a1. The stationary state contains an
exponentially small admixture of the FR1 phase and in the
limit of T → 0 becomes a pure FR6 phase:

w =

⎛
⎜⎜⎝

a1

0
0

1 − a1

⎞
⎟⎟⎠ −−→

T →0

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠. (B48)

If 2Jab + h > 2J1, when u ≈ x
√

2z, the estimates hold
uxyz � yz � u, x2 � u, and 2x2z/u ≈ u. Replacing expo-
nentially small entries with zeros, we get the transition matrix

P =

⎛
⎜⎜⎝

0 a2 0 1 − a2

0 0 1 − a2 a2

0 0 1 − a2 a2

0 a2 0 1 − a2

⎞
⎟⎟⎠, a2 = x

√
2z. (B49)

The corresponding graph without the transient state FR1 is
shown in Fig. 12(b). Thin and thick lines correspond to
the transition probabilities a2 and 1 − a2, respectively. The
stationary state in this case contains an exponentially small
admixture of the FR2 phase and at T → 0 transforms into
a mixture of independent phases FR5 and FR6 having equal
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fractions:

w = 1
2

⎛
⎜⎜⎝

0
a2

1 − a2

1

⎞
⎟⎟⎠ −−→

T →0

1
2

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠. (B50)

It is this state that is designated as FR5 + FR6 in
Fig. 4(a).

On the boundary 2Jab + h = 2J1, similar considerations
give a transition matrix

P =

⎛
⎜⎜⎝

a3 a3 0 1 − 2a3

0 0 1 − 2a3 a3

0 0 1 − 2a3 a3

a3 a3 0 1 − 2a3

⎞
⎟⎟⎠, a3 = x

√
z = yz.

(B51)

The stationary state in this case transforms at T → 0 into a
mixture of independent phases FR5 and FR6 with a ratio of
fractions of 1

2 :

w = 1
3

⎛
⎜⎜⎝

2a3

2a3

1 − 2a3

2 − 2a3

⎞
⎟⎟⎠ −−→

T →0

1
3

⎛
⎜⎜⎝

0
0
1
2

⎞
⎟⎟⎠. (B52)

At h < 0, similar results for the composition of the phases
of the ground state, shown in Fig. 4(b), can be obtained by tak-
ing into account the mixing of the FR5 and FR6 phase states
of neighboring phases FR3 and FR4. A special composition of
the ground state also occurs at h = 0 in the region of phases
FR6 and FR5 + FR6 in Figs. 4(d) and 4(f). The stationary state
at T = 0 on the line h = 0 is a mixture of FR5 and FR6 with
a ratio of fractions of 1

2 .
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