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Electrical conductivity of crack-template-based transparent conductive films:
A computational point of view
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Crack-template-based transparent conductive films (TCFs) are promising kinds of junction-free, metallic
network electrodes that can be used, e.g., for transparent electromagnetic interference shielding. Using image
processing of published photos of TCFs, we have analyzed the topological and geometrical properties of such
crack templates. Additionally, we analyzed the topological and geometrical properties of some computer-
generated networks. We computed the electrical conductance of such networks against the number density of
their cracks. Comparison of these computations with predictions of the two analytical approaches revealed the
proportionality of the electrical conductance to the square root of the number density of the cracks was found,
this being consistent with the theoretical predictions.
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I. INTRODUCTION

When transparent conductive films (TCFs) are used for
electromagnetic interference (EMI) shielding in the optical
imaging domain, uniform illumination is crucial for ensuring
the imaging quality while the light beam penetrates the metal
mesh. The stray light energy from high-order diffractions by
the random mesh is significantly less than that from regu-
larly structured meshes (square, honeycomb), which indicates
the good optical performance of such random meshes [1–6].
In contrast to meshes with periodically aligned metal lines,
random metal networks produce neither moiré nor starburst
patterns; this property is crucial for their application in dis-
plays [7–11].

To characterize nanowire-based and templated transparent
conductive films, the metal filling factor fF, i.e., ratio of the
metal-covered area to the total area of the film, is used. The
metal fill factor defined in this way and the transmittance T
are connected as follows:

T = 1 − fF (1)

(see, Lee e.g. [12]). However, for real-world systems, this
relationship is only approximately valid (see Table I).

Ghosh et al. [30] and Jiang et al. [4] used the relation

T = (1 − fF)2, (2)

which assumes an unusual definition of the filling factor, viz.,
for a regular square grid,

fF = w

G + w
, (3)

where w is the linewidth, while G is the grid spacing defined
as the shortest distance between two parallel conductive lines
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(not their pitch!) [30]. Hence,

T =
(

G

G + w

)2

. (4)

This relation has also been used for regular grids of other
structures and for irregular meshes [4]. For a regular square
metallic grid Schneider et al. [31] estimated the transmittance
as follows:

T = 1 − fF =
(

p − w

p

)2

, (5)

where p is the pitch. Since p = G + w (see Fig. 1), the trans-
parencies (4) and (5) are identical.

For a regular, square grid, the sheet resistance depends on
the fill factor as follows:

R� = ξ
ρ

t fF
, (6)

where ρ is the electrical resistivity of the material, t is the
thickness of the lines, and ξ is the correction factor [30,31].
Accounting for (5) and (6),

T = 1 − ξ
ρ

tR�
. (7)

By contrast Muzzillo et al. [32], assuming the grids had an
idealized square shape, used a quadratic dependence of the
transparency on the inverse sheet resistance (i.e., the sheet
conductance)

T =
(

1 − Bρ

tR�

)2

, (8)

where B is the fitting constant.
For irregular metal meshes based on cracked templates

Voronin et al. [25] defined the fill factor as follows:

fF = 1 −
(

g − w

g

)2

, (9)
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TABLE I. A summary of experimental data on crack-template-based transparent conductive films.

Source Metal Substrate R�,�/� T (%) fF (%) w (µm) t (nm) Pitch (µm)

Rao and Kulkarni [13] Au quartz 5.4 87 20 2 60 20
Rao and Kulkarni [13] Au quartz 3.1 87 20 2 220 20
Han et al. [[14] Ag glass 4.2 82 8.4 2 60 45
Han et al. [14] Ag PETa 10 88 8.4 1 60 65
Han et al. [2] Ag quartz 91 − 0.5–2 200 30–80
Rao et al. [15] Ag glass 10 86 20 2 55 20–60
Pei et al. [16] Ag glass 6.8 86 14 2 50 20–80
Peng et al. [17] Ag PET 3.7–39.6 88.0–99.4 0.21–10.25 0.5–5 10–150 40–470
Voronin et al. [18] Ag PET 21.4 91.6 − 14 ± 0.5 70 78.7 ± 25.2
Voronin et al. [18] Ag PET 12.3 90.1 − 14 ± 0.5 140 78.7 ± 25.2
Voronin et al. [18] Ag PET 8.1 87.4 14 ± 0.5 210 78.7 ± 25.2
Voronin et al. [19] Ag PET 1.3 77.3 <20 2.4–18.8 300 40.1–97.5
Voronin et al. [19] Ag PET 4.1 85.7 <20 2.4–18.8 300 40.1–97.5
Voronin et al. [20] Ag PET 11.2 90.2 10.2 3.3 ± 0.8 200 63 ± 22
Voronin et al. [20] Ag PET 6.8 83.6 15.5 5.4 ± 1.4 200 67 ± 25
Voronin et al. [21] Ag PET 11 89.8 9.8 4.7 109 50
Voronin et al. [22] Ag PET 1.59 89.1 2.9–17 1.2–6.2 600–2500 59.76–94.23
Kang et al. [23] Ag PET 1.01–5.7 88–91.8 − 0.85–1.53 350–750 15.0–22.96
Cheuk et al. [24] Ag glass 7.8–32.0 82 9.04–36.8 6.6–21.6 100 55–137b

Voronin et al. [25] Cu PET, glass 2.43 91.2 7.85 7.05 ± 1.77 443.14 ± 19.75 177.5 ± 72.9
Voronin et al. [25] Cu PET, glass 0.53 73.8 19.5 7.87 ± 1.09 723.03 ± 50.15 76.5 ± 35.5
Walia et al. [10] Cu PET 0.79 90 12.5 − 300 −
Walia et al. [26] Cu PET 0.83–1000 77.6–95 7.5–25 4.5–10 20–1000 15–35
Liu et al. [27] Cu PET 3.4–13.4 76.5–93 − 1.5 120 −
Mondal et al. [28] Al glass 6 91.5 9 10 400 100
Govind et al. [29] Al PET 6.42–55 85–95 − 3–20 140–200 −
aPolyethylene terephthalate.
bComputed as square root of the cell area.

where g is the average cell size, while w is the average crack
width. Hence, the transmittance is equal to

T =
(

g − w

g

)2

. (10)

Using geometrical considerations, Kumar and Kulkarni
[33] evaluated the sheet resistances of random metallic net-
works as

R� = πρ

2wt
√

nE
, (11)

where ρ is the resistivity of the material, w and t are the width
and the thickness of the rectangular wire, respectively, and nE

is the number of wire segments per unit area. According to
Kumar and Kulkarni [33], in a sample Lx × Ly, the number of
cracks intersecting an equipotential line is

Nx = √
nELy, (12a)

Ny = √
nELx, (12b)

when the potential difference U0 is applied along the x
or y axis, respectively. The current distribution has also
been calculated in conducting crack-template-based metallic
networks [34].

A similar approach has been applied to anisotropic systems
[35]. In this case, the sheet resistance can be written as

R� = 2ρ

wtnE〈l〉(1 ± s)
, (13)

where l is the length of the crack segment, hereinafter 〈·〉
denotes an average value,

s = 2〈cos2 θ〉 − 1 (14)

is the orientational order parameter [36], and θ is the angle
between a wire and the x axis. For isotropic systems (s = 0),
Eqs. (11) and (13) differ since they are based on different
assumptions regarding the number of wires intersecting a line.
According to Tarasevich et al. [35], the number of cracks
intersecting an equipotential line is

Nx = 2〈l〉nELy

π
, (15a)

Ny = 2〈l〉nELx

π
. (15b)

The average length of the crack segments is expected to be
dependent on the number density of the cracks as

〈l〉 = βn−1/2
E . (16)

This relation can be easily checked (not proved!) using, e.g., a
regular square mesh. The factor β depends on the shape factor
(circularity) of the cells

C = 4πA

P2
, (17)

where A is the cell area and P is the cell perimeter.
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The crack density is defined as the total crack length Lc

divided by the area of the reference surface A [37]:

ρc = Lc

A
. (18)

In general terms, omitting technical details, the manufac-
ture of crack-template-based TCFs consists of the following
steps. A treated substrate (glass, quartz, PET, etc.) is covered
(using, e.g., the Meyer rod method or by spin coating) width
a thin film of a polymer or colloid (e.g., egg white). This thin
film cracks due to desiccation, producing a crack template. A
metal (Au, Ag, Cu, Al, etc.) is sputtered onto the template.
Then, the template may be removed (e.g., dissolved). The
metal mesh on the substrate is used as a seed for the galvanic
deposition of the same or another metal. Although the actual
technology may differ significantly, this description offers a
basic idea of the manufacture of crack-template-based TCFs.
Detailed descriptions of the manufacturing of each particular
sample can be found in the appropriate references presented
in Table I.

Basic information regarding the formation and modeling
of desiccation crack patterns can be found in Goehring et al.
[38]. Zeng et al. [39] proposed a coupled electrothermal model
to describe the physical properties of crack-template-based
transparent conductive films. The geometry of the random
metallic network was generated by applying a Voronoi di-
agram. In particular, the current density and heating power
have been computed using COMSOL [40] proposed a geometric
modeling approach for crack-template-based networks. The
authors mimicked real-world crack patterns using a Voronoi
tessellation. Within model I, wires of varying width were
assigned to the edges of the polygonal cells of the Voronoi
tessellation. The resulting geometry in model I is hyperuni-
form. Within model II, wires of equal width were assigned
to the edge of each Voronoi polygon. The authors computed
the optical transmittance and the sheet resistance of these
networks. In fact, both these models use an assumption that
the width of the cracks was distributed independently and
they ignored the hierarchy of the cracks. However, the widths
of any adjacent segments of the same crack are not inde-
pendent; besides, primary cracks are wider than secondary
ones. Nevertheless, when the mean electrical properties are
of interest, the fine structure of any particular crack pattern
might effectively be negligible. This issue needs to be addi-
tionally studied, at least. Esteki et al. [41] mimicked seamless
metallic nanowire networks using a Voronoi tessellation. A
computational study of the thermoelectro-optical properties
of these networks and their geometrical features was per-
formed using in-house computational implementations and a
coupled electrothermal model built in COMSOL MULTIPHYSICS

software.
Although an extensive comparison of real-world crack

patterns and mosaics (Gilbert and Voronoi tessellations) has
recently been performed [42], we have applied a simpler anal-
ysis to find some common features of the crack patterns used
in TCE production.

The goal of this work is an investigation of the topological,
geometrical, and electrical properties of TCFs obtained using
crack templates, as well as of artificial computer-generated

FIG. 1. Main sizes used in definitions of the filling factor and of
transparency. Here, p is the pitch, w is the linewidth, G is the grid
spacing.

networks that are intended to mimic the properties of interest
of these real-world TCFs.

The rest of the paper is constructed as follows.
Section II describes technical details of the image processing
and simulation, together with the analytical approach, but
also presents some preliminary results. Section III presents
our main findings. Section IV summarizes the main results.
Some mathematical details are presented in Appendixes A, B,
and C.

II. METHODS

A. Sampling

We studied 10 real crack-template-based networks and
two kinds of computer-generated networks. We refer to
the real-world networks as sample 1 and sample 2, and
these correspond to the samples [43] described in Ref. [21],
while sample 3 corresponds to Voronin et al. [18], cropped
Fig. 2(a); sample 4, which corresponds to Xian et al. [44],
cropped Fig. 2(a)], while samples 5, 6, and 7 correspond to
Gao et al. [45], Fig. 2, cropped subfigures (a), (b), and (c),
correspondingly]; samples 8, 9, and 10 correspond to Pei et al.
[16], Fig. 2, cropped subfigures (a), (b), and (c), respectively.

Table I shows that there is a significant spread in materials
and parameters used; in the available literature, the values of
sheet resistances are not always related to specific values of
geometric parameters, while in cases where photographs of
the samples are given, their specific electrical and geometric
characteristics are often missing. For these reasons, we are
unable directly to compare the results of our computations
with available experimental data. Instead, for analysis, we
have used the reduced electrical conductance.

We refer to the computer-generated networks as Voronoi
and VoronoiHU. Figures 2(b) and 2(c) demonstrate examples
of such computer-generated networks. These networks were
produced by applying the Voronoi tessellation in MATLAB. In
the first case, the points were randomly distributed within a
square domain. In the second case, disks were deposited in
the square domain using random sequential adsorption. The
centers of these disks were used as random hyperuniformly
distributed points in order to perform a Voronoi tessella-
tion. Note that the VoronoiHU networks resemble printed
random meshes [1,3,6] rather than crack-template-based
networks.
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FIG. 2. Examples of the crack patterns. (a) Sample 1, a real-world crack pattern (courtesy of Voronin) along with a corresponding network
obtained using STRUCTURALGT [45]. (b) A computer-generated network produced using Voronoi tessellation based on randomly distributed
points. (c) A computer-generated network produced using Voronoi tessellation based on random hyperuniformly distributed points.

B. Image processing

To process the images of crack patterns, we used STRUC-
TURALGT, a Python package for automated graph theory
analysis of structural network images [46]. STRUCTURALGT

was modified to match our particular requirements. Fig-
ure 2(a) demonstrates an example of a crack pattern along
with its corresponding network. This network, which mimics
the crack pattern, was generated using STRUCTURALGT [46].
The sample size is 1.65 × 1.2365 mm. The network of this
particular crack pattern contains 899 nodes and 1249 edges.
The average degree is degV ≈ 2.78. Nodes with degV = 1
correspond to dead ends as well as to the intersections of
edges with the domain boundaries, while ones with degV = 2
correspond to bent cracks. The overall length of edges, which
are incident on nodes with degV = 1, is about 7.4% of the
total length of edges. Analysis of the crack widths was omitted
due to the modest resolution of the images, which would have
led to insufficient accuracy.

C. Computational details

The networks under consideration (both the real-world
samples and computer-generated networks) were treated as
random resistor networks (RRNs), where each network edge
corresponded to a resistor, while each node corresponded to
a junction between resistors. The resistance of an ith resistor
can be written as

Ri = ρ
li
Ai

, (19)

where li is the crack length, while Ai = witi is the area of the
cross section of the metal that fills the crack. We supposed
that all such metal wires have the same width and thickness.
The impact of variable width of a conductor on the electrical
resistance is considered in Appendix A.

We attached a pair of superconducting buses to the two
opposite boundaries of the systems in such a way that the
potential difference U0 was applied either along axis x or
along axis y. Applying Ohm’s law to each resistor and
Kirchhoff’s point rule to each junction, a system of linear
equations (SLEs) was obtained. The matrix of this SLE is

sparse. Such an SLE can be solved numerically to find the
potentials and currents in the RRN under consideration. We
used the EIGEN library [47] to solve the SLEs. In particular,
our computations evidenced that the potential drop along the
samples is close to linear (Fig. 3). When the current in each
resistor is known, the total electric current can be calculated.
Since the applied potential difference U0 is known, the total
resistance and the conductance of the RRN can be found
using Ohm’s law. We use subscripts x and y to distinguish
the resistances and conductances along axis x or along axis
y. Then, the sheet resistance and conductance could be found
since

R� = Rx
Ly

Lx
= Ry

Lx

Ly
. (20)

D. Theoretical description

A geometrical consideration has been used to evaluate the
electrical conductivity of crack-template-based TCFs [33]. In
fact, this consideration is a kind of mean-field approach since
a single wire (crack segment) is considered to be placed in a

FIG. 3. Example of a potential distribution along a sample.
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FIG. 4. Dependency of the mean length of crack segments on the
number density of the cracks.

homogeneous electric field produced by all the other wires. In
our study, we used a very similar idea and treated as crack-
template-based TCFs as random networks.

Since homogeneous cracking structures without clusters
and blind cracks (dead ends) can be produced [18,21], we
suppose that

(1) the template consists of a single cluster, i.e., there is
only one connected component in the corresponding network;

(2) there are no dead ends, i.e., degV > 1 for any node in
the corresponding network;

(3) the crack template is isotropic, i.e., all crack orienta-
tions are equiprobable.

These assumptions will be validated in Sec. III using a
computer simulation.

The sheet resistance is

R� = 2ρ

nE〈l〉wt
. (21)

A detailed derivation of formula (21) can be found in Ap-
pendix B. Although this approach is similar to that described
in Ref. [33], the formula for the sheet resistance (21) dif-
fers from (11) obtained by Kumar and Kulkarni [33]. This
difference is due to the number of edges intersecting any
equipotential, viz., to find this number, we used a rigorous
probabilistic derivation, while Kumar and Kulkarni [33] uti-
lized an estimate (Ly

√
nE). It would be very tempting to

simplify formula (21) by finding the exact value of the factor
β in the relationship between the average length of a crack
segment and the concentration of cracks (16). Unfortunately,
only estimates are possible (see Appendix C). However, Fig. 4
evidenced that (16) holds for the networks under considera-
tion.

Note, the dependence of the sheet conductance on the fill
fraction is linear, viz.,

G� = σ t fF

2
, (22)

FIG. 5. Degree distribution in the 10 real-world samples.

since fF = nEw〈l〉. Accounting for (1), nEw〈l〉 = 1 − T ,
hence,

T = 1 − 2ρ

tR�
. (23)

This relation resembles that obtained for a square mesh (7).
The total mass of the metal deposited in the cracks is

m = nE〈l〉wtρmLxLy, (24)

where ρm is the metal density.

III. RESULTS

Figure 5 demonstrates the degree distribution in these
10 particular samples. In the box and whisker charts, here
and below, the mean values are shown using markers, the
“box” presents the median, 25 and 75 percentiles, while the
“whiskers” indicate the minimal and maximal values. These

FIG. 6. Distribution of crack orientations in the particular real-
world samples and in computer-generated networks produced using
Voronoi tessellation.
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FIG. 7. Distribution of angles between adjacent cracks in the
real-world samples and in the computer-generated networks pro-
duced using Voronoi tessellation.

distributions evidenced that T- and Y-shaped (degV = 3)
crack junctions dominate. degV = 1 corresponds to both the
internal nodes (dead ends) and to nodes on the boundaries (the
intersections of cracks with image boundaries). A proportion
of dead ends is 0.15–0.3, while that of X-shaped (degV = 4)
junctions is about 0.1. Here, we use the same notation to
classify junctions as Gray et al. [48]. The proportions of nodes
corresponding to degV = 2 and to degV = 5 are negligible.
We suppose that vertices owning both degV = 2 and degV >

4 are artifacts rather than a reality since the modest resolution
of the images leads to only moderate accuracy of the image
processing. By contrast, in networks produced using Voronoi
tessellation, nodes with degV = 1 correspond solely to the in-
tersections of edges with the domain boundaries. All internal
nodes match degV = 3. In general, in such artificial networks,
the distribution of node degrees resembles that in real-world
crack patterns.

Figure 6 demonstrates the distributions of crack orienta-
tions in the same real-world samples along with artificial
computer-generated networks. These distributions evidenced
that the cracks are approximately equiprobably oriented,
i.e., the value of the order parameter (14) is close to 0.

However, the statistical variations are significant. Equiprob-
able distribution of crack orientations was also found for
networks obtained using Voronoi tessellation. The values
of the order parameter are presented in Table II. However,
“brickwork” patterns with two mutually perpendicular sets of
parallel cracks can also be produced [49]. In that case, the
orientations of the cracks have to obey a bimodal distribution.

Figure 7 demonstrates the distributions of angles between
adjacent cracks in the same samples. These distributions ev-
idenced that, in the real-world samples, cracks tend to join
at right angles (T-shaped junctions). The maximum of the
distribution is located near the angle 90◦ (π/2 rad) (two right
angles in each T-shaped junction); a less pronounced max-
imum located near 180◦ (π rad) corresponds to the straight
angles in these T-shaped junctions. Such behavior is quite to
be expected [50–52]. By contrast, networks obtained using
Voronoi tessellation demonstrate unimodal distribution with
the maximum near 120◦ (2 rad), i.e., here, Y-shaped junc-
tions dominate (Fig. 7). Note that, in the crack-template-based
networks, the cracks are curved, while, in the corresponding
networks produced using STRUCTURALGT, the corresponding
edges are straight. Consequently, the resulting distribution of
angles between adjacent cracks is more diffuse in the vicinity
of 90◦ (π/2 rad) than it should be.

Figure 8 demonstrates the distributions of normalized
crack length in the same samples. Here, 〈l〉 denotes the mean
crack length. Comparison of the distributions evidenced that,
in the real-world and in the computer-generated networks,
the length distributions are similar and resemble a log-normal
distribution.

This preliminary analysis evidenced that Voronoi tessel-
lation produces networks, the topology of which is close to
the real crack-template-based networks while their geometries
differ.

Tables II and III evidenced that the approach by [33]
significantly (1.5–2 times) overestimates the number of in-
tersections of cracks with an equipotential line both for
the real-world networks and for the computer-generated net-
works. Although the approach by Tarasevich et al. [35] is
better (the overestimation is about 10% in the case of the real-
world samples, while, in the case of the computer-generated
networks, the prediction falls within the statistical error), the
source of this overestimate needs to be identified.

TABLE II. Number of intersections in real-world samples.

Simulation Eq. (12) Eq. (15)

Smp s x y x y x y

1 −0.01 ± 0.03 13.08 ± 0.12 19.35 ± 0.32 21.4886 31.6446 14.0815 20.7367
2 −0.047 ± 0.021 19.35 ± 0.12 28.16 ± 0.15 29.9026 39.8962 21.4941 28.6775
3 0.007 ± 0.017 25.81 ± 0.18 35.18 ± 0.20 37.5066 49.9112 28.2236 37.5579
4 0.012 ± 0.017 35.42 ± 0.17 35.78 ± 0.19 50.8029 50.9026 38.8360 38.9122
5 −0.079 ± 0.023 16.88 ± 0.14 28.40 ± 0.21 25.4009 37.0853 18.7475 27.3714
6 −0.010 ± 0.022 17.02 ± 0.12 29.21 ± 0.19 25.6971 42.2226 18.6698 30.6761
7 −0.018 ± 0.030 13.38 ± 0.09 18.56 ± 0.13 20.5013 29.5103 13.9044 20.0145
8 0.072 ± 0.018 25.49 ± 0.15 32.90 ± 0.24 33.3887 49.5977 25.6134 38.0478
9 0.046 ± 0.018 25.17 ± 0.16 34.30 ± 0.24 33.1937 51.2447 25.9509 40.0632
10 0.006 ± 0.024 16.63 ± 0.14 23.98 ± 0.26 26.1745 38.4344 17.8347 26.1883
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FIG. 8. Comparison of distribution of crack lengths in real-
world samples and in computer-generated networks produced using
Voronoi tessellation.

Figure 4 suggests that, for random networks, 〈l〉 ≈ n−1/2
E

since the factor β is close to unity. In this case, (B4) trans-
forms in

G� = wtσ
√

nE

2
, (25)

that differs from (11) by a factor of π/4.
Figure 9 plots the reduced electrical conductance of the

samples against the square root of the number density of the

TABLE III. Number of intersections in computer-generated
samples.

Simulation

Smp x y Eq. (12) Eq. (15)

Voronoi

1 39.59 ± 0.66 39.47 ± 0.67 54.2679 39.5815
2 39.44 ± 0.64 40.63 ± 0.57 54.3047 39.9485
3 40.03 ± 0.79 39.75 ± 0.62 54.3967 39.7988
4 38.81 ± 0.68 39.69 ± 0.65 54.3323 39.4767
5 38.78 ± 0.68 39.16 ± 0.87 54.4243 39.5114
6 39.66 ± 0.80 40.13 ± 0.75 54.4151 39.5292
7 40.06 ± 0.81 40.34 ± 0.72 54.3691 39.8669
8 39.94 ± 0.72 40.03 ± 0.68 54.3415 39.6991
9 39.19 ± 0.47 39.84 ± 0.73 54.3599 39.6767
10 38.69 ± 0.78 40.06 ± 0.65 54.3783 39.6188

VoronoiHU

1 31.50 ± 0.44 31.75 ± 0.40 44.5870 31.3162
2 31.41 ± 0.45 31.28 ± 0.38 44.3959 31.2962
3 31.00 ± 0.44 31.75 ± 0.48 44.7661 31.4797
4 31.53 ± 0.45 31.03 ± 0.44 45.0222 31.6740
5 31.03 ± 0.37 30.19 ± 0.46 44.5197 31.3243
6 31.19 ± 0.35 32.03 ± 0.40 44.8665 31.6408
7 31.60 ± 0.50 32.09 ± 0.43 44.9110 31.5567
8 31.66 ± 0.41 31.31 ± 0.49 44.7661 31.5408
9 31.34 ± 0.51 32.06 ± 0.45 44.6542 31.3690
10 31.81 ± 0.39 31.00 ± 0.47 44.8553 31.5963

FIG. 9. Reduced conductance vs square root of the number den-
sity of cracks. JAP2016 corresponds to prediction (26), JAP2019
corresponds to prediction (B4). Dashed lines correspond to least
squares fits. Numbers near the markers indicate the number of the
sample.

cracks. The numbers near the markers indicate the numbers of
the real-world samples. Since there was a difference in sheet
resistance of the same sample computed using resistances in
two directions, the averaged sheet resistance is presented for
each sample. This difference arose due to the limited precision
of the image processing caused by the quality of the photos.
JAP2016 (markers and solid line) corresponds to prediction

G�
wtσ

= 2

π

√
nE, (26)

which is easily derived from (11). JAP2019 corresponds to
the prediction (B4). Both predictions are close, although over-
estimate the electrical conductance. This deviation may arise
due to differences between any particular sample and the
imaginary averaged sample. For instance, for any real sample,
the angular distribution can be far from the uniform distribu-
tion (Fig. 6). Besides, the potential drop along a sample is
only almost linear rather than strictly linear (Fig. 3). In other
words, a mean-field approach is based on an assumption that a
sample is highly homogeneous and isotropic. This assumption
is hardly exact for real-world samples, however, it is expected
to be much better for our computer-generated samples, espe-
cially for hyperuniform ones.

Figure 10 plots the reduced electrical conductance of the
computer-generated networks against the square root of the
number density of the cracks. It is noticeable that, for hyper-
uniform samples, prediction (B4) is excellent. This suggests
that heterogeneity of any particular sample may be a rea-
sonable cause for both (11) and (B4) to overestimate the
electrical conductance. Nevertheless, homogeneity of samples
(e.g., transparent heaters) is a natural requirement. Thus, the
prediction (B4) can be considered as a theoretical limit of the
on the maximum electrical conductance that a highly uniform
random network can reach.
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FIG. 10. Reduced conductance vs square root of the number
density of cracks. JAP2016 corresponds to prediction (26), JAP2019
corresponds to prediction (B4). Dashed lines correspond to least
squares fits.

IV. CONCLUSION

We performed image processing and analysis of 10 photos
of crack-template-based TCFs. The analysis evidenced that
(i) the angle distribution is almost equiprobable; however,
the statistical errors are significant, i.e., the properties of a
particular sample may differ significantly from the average
values (Fig. 6); (ii) secondary cracks tends to be perpendicular
to the primary ones, i.e., T-shaped connections of cracks are
dominant; as a result, the typical angles between adjacent
cracks are about 90◦ and 180◦ (Fig. 7); (iii) the length distri-
bution of crack segments resembles a log-normal distribution
(Fig. 8); (iv) the average length of crack segments is inversely
proportional to the square root of the number density of the
cracks (Fig. 4).

We analyzed computer-generated networks obtained using
kinds of Voronoi tessellation. In the first case, the generators
(points) were randomly distributed within a square domain. In
the second case, disks were deposited in the square domain us-
ing random sequential adsorption. The centers of these disks
were used as random hyperuniformly distributed points to per-
form the Voronoi tessellation. The analysis evidenced that, for
both kinds of network, (i) the angle distribution is equiproba-
ble (Fig. 6); (ii) Y-shaped connections of cracks dominate; as
a result, the typical angles between adjacent cracks are about
120◦ (Fig. 7); (iii) the length distribution of the crack segments
resembles a log-normal distribution (Fig. 8); (iv) the average
length of the crack segments is inversely proportional to the
square root of the number density of the cracks (Fig. 4).

Our computations suggest that (i) the potential drop along
the samples is almost linear (Fig. 3); (ii) the theoretically
predicted [33,35] proportionality of the electrical conductance
to the square root of the number density of cracks is correct
(Fig. 9); however, both approaches overestimate the electrical
conductance. We suppose there are two main reasons for this
overestimation. Both approaches are based largely on the as-
sumptions that (i) the voltage drop is strictly linear and (ii)

the angle distribution is strictly equiprobable. In fact, both of
these requirements are met only approximately. Moreover, the
approach by Kumar and Kulkarni [33] significantly overesti-
mates the number of cracks intersecting an equipotential line
(see Tables II and III).

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: ELECTRICAL CONDUCTANCE
OF VARIABLE WIDTH WIRE

Let there be a junction-free random conductive network
produced using a crack pattern. Consider one conductive seg-
ment between two nearest points of intersection of the cracks.
We will assume that this segment is straight and has a length
l . Let us direct axis x along this conductive segment. We will
consider the thickness of the conductor to be a constant t ,
while the width of the conductor is variable w(x).

Let the resistivity of the material filling the cracks be equal
to ρ. Then the resistance of the segment under consideration
is equal to

R = ρ

t

∫ l

0

dx

w(x)
. (A1)

Consider the simplest situation, when the width of the con-
ductor changes linearly from w1 to w2 (w1 < w2) (Fig. 11):

w(x) = w1 + w2 − w1

l
x. (A2)

Hence,

R = ρl

t

∫ l

0

dx

w1l + (w2 − w1)x
= ρl

t (w2 − w1)
ln

w2

w1
. (A3)

The electrical conductance of this segment is equal to

G = σ t

l

w2 − w1

ln w2 − ln w1
, (A4)

FIG. 11. Sizes of a conductive segment.
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where σ is the electrical conductivity of the material, while
the second factor is the logarithmic mean. Introducing a
notation w2 = 〈w〉 + 	, w1 = 〈w〉 − 	, we get

w2 − w1

ln w2 − ln w1
= 2	

ln 〈w〉+	

〈w〉−	

. (A5)

When 	 � 〈w〉,

ln
〈w〉 + 	

〈w〉 − 	
≈ 2

	

〈w〉 , (A6)

hence,

w2 − w1

ln w2 − ln w1
≈ 〈w〉. (A7)

Thus,

G ≈ σ t〈w〉
l

, R ≈ ρl

t〈w〉 . (A8)

APPENDIX B: ELECTRICAL CONDUCTANCE OF A
CRACK-TEMPLATE-BASED RANDOM NETWORK

Here, we reproduce with minor changes derivations pre-
sented in Tarasevich et al. [35]. These changes are intended to
adapt the consideration of a random resistor network produced
by randomly placed nanowires to the case of crack-template-
based networks. Consider a network of size Lx × Ly. When
the total number of edges (cracks) is NE, the number density
of edges is

nE = NE

LxLy
. (B1)

Let l be the length of a particular edge, i.e., the length of the
crack between the two nearest crossing points (nodes). The
resistance of this edge is described by (19).

Let a potential difference U0 be applied to the opposite
boundaries of the film along the x direction. Since, in devices
such as transparent heaters, solar cells, touch screens, etc.,
any typical face size (a smallest region of the film bounded
by cracks) is much less than the linear film size, a potential
drop along the sample is almost linear (Fig. 3). The potential
difference between the ends of an ith crack, oriented at angle
α with respect to the external electrostatic field, is

U0l cos α

Lx
.

Hence, the electric current in this filled crack is

i(α) = U0l cos α

LxR
= U0wt cos α

Lxρ
. (B2)

Consider a line, which is perpendicular to the external
electrostatic field. A crack, that is oriented with respect to this
field at angle α, intersects this line, if its origin is located at a
distance not exceeding l cos α from the line. The number of
appropriate edges (crack segments) is nElLy cos α, while the
overall electrical current in all such filled cracks is

U0nElwtLy cos2 α

ρLx
.

The total electric current is

I = 1

π

∫ lmax

lmin

∫ π/2

−π/2

U0nEwtLy

ρLx
f (l )l cos2 α dα dl

= U0nE〈l〉wtLy

2ρLx
. (B3)

Since all crack orientations are equiprobable and α ∈
[−π/2, π/2], the probability density function (PDF) of the
angle orientations is π−1. f (l ) is the PDF, which describes
the distribution of the cracks’ length with the distribution’s
support l ∈ [lmin, lmax]. 〈·〉 denotes the mean value. Therefore,
the electrical sheet conductance is

G� = σnE〈l〉wt

2
, (B4)

where σ = ρ−1 is the electrical conductivity of the metal. In
contrast with (26), the sheet conductance depends not only on
the number density of the cracks, but also on the average crack
length. However, accounting for relation (16), the dependency
on the average crack length can be eliminated, and as a result
the sheet conductance is expected to be dependent on the
number density of the cracks as

√
nE.

APPENDIX C: RELATIONSHIP BETWEEN THE AVERAGE
LENGTH OF A CRACK SEGMENT AND THE

CONCENTRATION OF CRACKS

Let a crack network split the sample into F faces (cells).
In the case of computer-generated networks based on the
Voronoi tessellation, this means using F points for its gen-
eration. Let E be the number of edges in this network, and let
〈l〉 be the average length of one edge. When the sample has
dimensions Lx × Ly, the average area of one face is

〈AF〉 = LxLy

F
, (C1)

while the number density of the edges is defined by (B1).
Obviously,

V∑
i=1

degVi = 2E (C2)

or

1

V

V∑
i=1

degVi = 2E

V
, 〈degV 〉 = 2E

V
, V = 2E

〈degV 〉 .

(C3)

According to Euler’s formula for planar graphs (networks)
V − E + F = 2, where V is the number of vertices, while the
number of faces F accounts for the outer, infinitely, large face.
Since the outer face is out of our interest, F = E − V + 1.
Therefore,

F =
(

1 − 2

〈degV 〉
)

E + 1. (C4)

Note that if the number of faces is large (F 	 1), then
E − V ≈ F . Let us move from the number of edges E to their
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number density (B1) and the average face area (C1):

〈AF〉−1 =
(

1 − 2

〈degV 〉
)

nE + 1

LxLy
. (C5)

When E 	 1, which is ensured in the case of crack patterns,

〈AF〉−1 ≈
(

1 − 2

〈degV 〉
)

nE. (C6)

Since, in the case of computer-generated networks based on
the Voronoi tessellation, 〈degV 〉 ≈ 3,

〈AF〉−1 ≈ nE

3
. (C7)

A circle has the smallest perimeter among all figures of the
same area, hence, the perimeter of one face is limited by the
value of the circumference, determined as follows. Since, for
a circle, 〈AF〉 = πr2, then

r =
√

〈AF〉
π

. (C8)

Whereas the circumference is C = 2πr, then

〈C〉 = 2π

√ 〈AF〉
π

= 2
√

〈AF〉π. (C9)

The perimeter of any face is obviously greater than the cir-
cumference of a circle of the same area.

Since each edge belongs to two faces, the total length of
all edges 〈l〉E is greater or equal to F 〈C〉/2, i.e., 〈l〉E �
F

√
π〈AF〉. Using the approximate value of the average face

area (C7),

〈l〉 �
√

π

3nE
≈ 1.023n−1/2

E . (C10)

Hence,

nE〈l〉 �
√

πnE

3
. (C11)

If the domain is divided into identical square cells, then the
number of such cells (faces) is equal to

F = LxLy

〈l〉2
. (C12)

The number of edges equals

E = 2F = 2LxLy

〈l〉2
. (C13)

The number density of edges is equal to

nE = 2

〈l〉2
. (C14)

Hence, the average edge length depends on the number den-
sity of the cracks as follows:

〈l〉 =
√

2

nE
. (C15)

The total edge length is

2〈l〉LxLy

〈l〉2
. (C16)

The area of one face (cell) equals

AF = 〈l〉2. (C17)

If the partitioning of the area is made in the form of a
brickwork pattern, then the degrees of the vertices are 3, and
the angles between the edges are straight, which resembles
the properties of crack networks. The number of faces (cells)
is equal to

F = LxLy

2〈l〉2
. (C18)

The number of edges equals

E = 3F = 3LxLy

2〈l〉2
. (C19)

The number density of the edges is

nE = 3

2〈l〉2
. (C20)

The average edge length depends on the number density of
edges as follows:

〈l〉 =
√

3

2nE
≈ 1.225n−1/2

E . (C21)

Hence,

nE〈l〉 =
√

3nE

2
. (C22)
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