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Symmetries are known to dictate important physical properties and can be used as a design principle in
particular in wave physics, including wave structures and the resulting propagation dynamics. Local symmetries,
in the sense of a symmetry that holds only in a finite domain of space, can be either the result of a self-
organization process or a structural ingredient into a synthetically prepared physical system. Applying local
symmetry operations to extend a given finite chain we show that the resulting one-dimensional lattice consists
of a transient followed by a subsequent periodic behavior. Due to the fact that, by construction, the implanted
local symmetries strongly overlap the resulting lattice possesses a dense skeleton of such symmetries. We proof
this behavior on the basis of a class of local symmetry operations allowing us to conclude upon the “asymptotic”
properties such as the final period, decomposition of the unit cell and the length and appearance of the transient.
As an example case, we explore the corresponding tight-binding Hamiltonians. Their energy eigenvalue spectra
and eigenstates are analyzed in some detail, showing in particular the strong variability of the localization
properties of the eigenstates due to the presence of a plethora of local symmetries.

DOLI: 10.1103/PhysRevE.108.044141

I. INTRODUCTION

Symmetries play a prominent role in many branches of
physics. They represent a cornerstone both for the analysis
and design of physical systems. Knowing the underlying sym-
metries of a setup under investigation allows us to predict
certain symmetry-related properties without solving explicitly
the corresponding equations of motion. The group theoreti-
cal description and classification of symmetries [1,2], be it
discrete or continuous ones, provides us with, e.g., the par-
ity of eigenstates or their rotational quantum numbers and
multiplet structure and resultingly the selection rules for their
electromagnetic transitions in atoms, molecules, or bulk sys-
tems [3-5]. The typical and widely accepted situation assumes
that a certain spatial symmetry holds for all of the space
covered by the physical system under investigation, in short,
it represents a global symmetry. The rotational symmetry of
atoms, the point group symmetries of molecules, and the
translation group symmetries of crystals all belong to this
case. This is, however, by far not the most general structural
behavior and many more complex but still geometrically ap-
pealing physical systems do not possess any global symmetry.
One prominent example are quasicrystals [6—8] which gener-
ically do not possess any global symmetry but are governed
by a plethora of local symmetries arranged in a quasiperiodic
manner [9,10]. Here the notion of a local symmetry refers to
the situation where a symmetry holds only on a limited sub-
domain of the domain of definition of a system. Quasicrystals
represent one class of systems on the rich transition route from
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periodicity to disorder and are nowadays of major importance
in material science and technology [11,12].

More recently the concept of local symmetries has been
further developed and applied to reveal a number of physical
properties and phenomena. Breaking, e.g., the symmetry of a
crystalline translation group and retaining only a local sym-
metry has been shown to lead to constants of motion which
represent nonlocal currents that generalize the Bloch theorem
for periodic crystals [13]. Multiple local symmetries can be
combined to provide setups that are characterized by so-called
nongapped or gapped local symmetries, where the gap refers
to the space between the appearance of local symmetries,
or systems with complete local symmetries for which local
symmetries cover the setup completely. Applications to wave
systems of acoustic [14] or electromagnetic [15] origin have
shown that perfectly transmitting resonances can be designed
based on sum rules of the nonlocal currents [16] which can
also be used to detect local order via the analysis of the wave
field. Indeed, the nonlocal currents fulfill generalized continu-
ity equations in the framework of both the discrete [17] and
the continuous theory [18]. A corresponding computational
approach to efficiently handle locally symmetric wave sys-
tems has been developed in Ref. [19]. Remarkably in Ref. [20]
it has been shown that the presence of local reflection symme-
tries in a one-dimensional finite and disordered chain severely
impacts wave localization and transport. Due to the local
symmetries correlations are imprinted into the wave field and
specifically the corresponding transfer can be significantly en-
hanced if the occurring local symmetries overlap with respect
to their domains.

In the present work we follow a different pathway and
explore a class of chains that are neither globally symmetric
nor disordered and also not locally symmetric in the above
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sense of a concatenation of subchains with global symmetries.
Our strategy is to generate a chain based on an initial seed
that consists of a finite number of elements by the consecutive
application of local symmetry operations, namely reflections,
according to a given rule. This way a chain is designed that
exhibits and is completely covered by a sequence of over-
lapping domains with local symmetries. We demonstrate the
plethora of possible evolutionary sequences achievable by the
repeated application of local symmetry operations. In general,
and starting from the seed sequence, the chain evolves (in
space) until it finally, following a finite transient, becomes
periodic. We provide a general proof of this behavior which
is of constructive character and allows us to predict the tran-
sient to periodicity depending on the applied local symmetry
transformation. It also yields all relevant quantities such as
the final period and the length of the transient. A plethora of
transients and resulting periodic behavior can be established
this way. In a second step we translate the obtained scheme
and chains at hand of specific examples to a tight-binding
(TB) Hamiltonian which we subsequently diagonalize. The
resulting energy eigenspectrum and eigenstates are then an-
alyzed in some detail. We observe a rich spectral behavior
which changes signficantly for varying local symmetry trans-
formations. Strong localization and delocalization behavior
determined by the presence of local symmetries are detected
in the eigenstate properties and are interspersed into series of
eigenstates with a smooth energy dependence of their spread.

We proceed as follows. In Sec. II we first introduce
our concept of local symmetry operations and dynamics to
generate chains with many overlapping domains of local sym-
metries. We do so by using some representative examples.
This allows us already to showcase the existence of a transient
and the resulting periodic behavior which vary substantially
with varying transformations. A general constructive proof by
full induction of the overall behavior of the chains generated
by the local symmetry dynamics is provided in the Appendix.
In Sec. III we map the previously obtained chains onto a TB
Hamiltonian and discuss the resulting energy spectra as well
as the so-called eigenstate maps. In Sec. IV we provide our
conclusions and an outlook.

II. LOCAL SYMMETRY DYNAMICS-GENERATED
CHAINS

This section is dedicated to the introduction of our con-
cept of local symmetry dynamics based on the consecutive
application of local symmetry operations in one spatial di-
mension. After explaining the basics we provide a specific
example to gain some intuition with respect to the evolution
of the underlying symbolic code including the transient and
the final periodic behavior. As a next step we will provide
a constructive proof for the general case which allows us to
extract the relevant properties and behavior for an arbitrary
case.

A. Symbolic code and local symmetry operations:
Basic concept and examples

Discrete reflection and translation symmetries are ubig-
uitous in atomic, molecular and crystalline systems,

respectively. Quasicrystals with their aperiodic order host
these symmetries only in a local sense, i.e., only in certain
subdomains of the quasiperiodic chain a, for example, re-
flection symmetry can be found. While there is many such
domains in an aperiodic systems with long-range order [9],
they are typically disconnected in the sense that they are not
generated one from the other. Our starting-point is therefore
the idea of creating chains with a large number of local
symmetries on overlapping domains based on the repeated
application of local symmetry operations. These chains will
neither be globally symmetric, i.e., neither reflection symmet-
ric nor periodic, but will exhibit (see below) an evolution of
their local symmetries in the course of the multiple application
of the local symmetry operations. We call this evolution and
approach in the following local symmetry dynamics (LSD).
Since this is a general conceptual approach independent of a
specific physical platform we will develop it on the level of a
symbolic code. Later on (see Sec. III) a concrete realization in
the form of a TB Hamiltonian will be investigated.

The key ingredients read as follows. We start from a seed
sequence which represents the initial segment of our final
symbolic code. Based on this finite seed we apply at the end of
it a local reflection operation of n symbols or elements occur-
ring to the left of the position of the corresponding reflection
“axis.” Subsequently, we apply another local reflection op-
eration of m symbols at the end of the previously obtained
chain. We then repeat this procedure again and again which is
encapsulated in the n : m LSD rule. By construction this guar-
antees that the local symmetries present in the generated chain
are strongly overlapping. To get an impression of how such a
chain develops and to gain some intuition about the evolution
of the corresponding local symmetries we will inspect the case
of a series of specific examples, namelyn =7,m=1,...,6
in the following.

Table 1 shows the evolution of the symbolic code for
the above-mentioned cases based on the seed sequence
ABCDEFG. [, indicates the position of the local reflection
axis meaning that k£ chain elements to the left of it are re-
flected to the right. We observe that in all cases the LSD
leads from an initial seed via a transient to a final periodic
periodic behavior of the chain. Pictorially speaking the seed
undergoes a metamorphosis thereby gradually increasing the
degree of the symmetry contained in the chain until it finally
becomes periodic. Obviously, the number of different symbols
is decreasing along the chain in the course of the evolution
to periodicity (see below and the Appendix for quantitative
statements along these lines). In this vein the LSD leads to a
well-defined loss of information from the seed to the asymp-
totic behavior of the chain.

Let us discuss the different cases in some more detail.
For the cases 7:1, 7:2, and 7:3 the transient consists of only
8, 9, and 10 symbols, respectively; i.e., it is very short. The
final unit cell of the periodic sequence is comparatively long
amounting to 16, 18, and 20 elements. These unit cells exhibit
a plethora of “internal” local symmetries being local reflec-
tions and translations. This situation changes when moving
on to the cases 7:4, 7:5, and 7:6. Here the transients become
substantially longer amounting to 19, 32, and 73 elements,
respectively. The final unit cells contain 22, 24, and a single
elements. While for the case 7:4 only the A, B, and C elements
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TABLE 1. The seed of the chain and the local symmetry-generated transients as well as periodic final behavior for specific examples based
on the local symmetry dynamics rules 7:1 to 7:6. The abbreviation |, stands for a reflection operation at the indicated position which reflects
k elements of the symbolic code to the left of this position. The underlined sequences represent for each LSD rule the unit cell of the final

periodic behavior of the chain.

Seed ABCDEFG
7:1 |, G FEDCBA |, A |; AABCDEF |, F |; F FEDCBA....
7:2 |, GE EDCBA |, AB |, BAABCDE |, ED |; DE EDCBA |, AB |; BAABCDE.....
7:3 |, GFE DCBA |5 ABC |; CBAABCD |5 DCB |; BCD DCBA |5 ABC |; CBAABCD....
7:4 |, GFEDCBA |, ABCD |; D CBAABC |, CBAA |; AABCCBA |; ABCC |, C CBAABC....
7:5 |, GFEDCBA |s ABCDE |, EDCBAAB |s BAABC |; C BAABBA |s ABBAA |; AABBAAB
|s BAABB |; B BAABBA....
7:6 |, GFEDCBA |¢ ABCDEF |; FEDCBAA | AABCDE |; EDCBAAA |s AAABCD |; DCBAAAA

ls AAAABC |; CBAAAAA | AAAAAB |; B AAAAAA...

are asymptotically present it is only A which occurs finally for
the case 7:6. With increasing value of m the number of local
symmetries increases for the unit cell of the asymptotically
emerging periodic behavior. Having gained an intuition of the
“phenomenology” that occurs in case of our specific example,
the question arises how representative this behavior is, and
whether one can derive and understand the above-mentioned
properties in the general case n:m quantitatively. To this end,
we provide a proof by explicit construction and full induc-
tion in the Appendix. Starting from a general seed this proof
provides us with the complete transient behavior for the n : m
rule for arbitrary values of n and m and with the corresponding
final periodic behavior and unit cell.

Based on the results of the Appendix we can now answer,
among others, the following questions. What is the length of
the symbolic code, i.e., the number of symbols, until period-
icity sets in? Summing up the lengths of the sequences in the
transient this amounts to 2(n + mp 4+ m) where p is the last
branching point index (note that the onset of periodicity is
here counted from the corresponding branching points on). If
m is of the order of n and consequently p is of the order of
m, then the length of the transient is of the order n>. Another
question concerns the length of the emerging period, i.e., the
size of the unit cell. This turns out to simply be 2(n + m) in
agreement with the above observations. Finally we note that
the unit cell of the periodic behavior consists of n — m differ-
ent symbols out of originally n symbols in the seed. It should
be noted that within a series of LSD rules n:1, ..., n:(n — 1)
not every consecutive branch in the tree constituted above in
the framework of our proof will be realized.

III. TIGHT-BINDING HAMILTONIAN: SPECTRAL
ANALYSIS AND EIGENSTATE MAPS

To explore the properties of the LSD-generated chains
derived in Sec. II we use in the following a mapping onto a
corresponding TB Hamiltonian. For a discrete chain of length
N with sites {i[i = 1, ..., N} we assume that there is only a
single value for the off-diagonal couplings C of the nearest
neighbors (i, j) and the onsite energies D; follow the LSD
chains. This means each symbol of the symbolic code cor-
responds to a unique value D; (see below for more details)
of this onsite energy on site i. We therefore assume that the

Hamiltonian takes on the following appearance:
N
H =" Dili){il + Y _ Cli){jl. )
i=1 i)

In the following subsections we will analyze in some detail
the eigenenergy spectrum and the properties of the eigenstates
for different LSD chains. Before we enter into a discussion
of the corresponding results some remarks are in order con-
cerning the properties of other well-known examples of TB
systems. This will allow us to contextualize the results on our
LSD chains.

The simplest case of a TB chain refers to the monomer
chain AAA... For both open and periodic boundary conditions
a single band occurs for the spectrum of the energy eigen-
values. This case can be solved analytically and for periodic
boundary conditions (BC) twofold degeneracies are encoun-
tered whereas open BCs lead to nondegenerate energy levels.
For both cases the eigenstates are delocalized (bulk) states. A
chain of dimers ABABAB... results in two bands separated by
an energy gap and the periodic case can be solved analytically
(see Refs. [21-24] for a corresponding analysis all over).
More complicated unit cells and open boundary conditions
lead to multiple bands and in particular to the presence of gap
energy eigenstates which are localized at the edges of the finite
chain and whose number is of the order of the size (number of
elements) of the unit cell, depending on how the unit cell is cut
off [25,26]. Individual impurities add to this spectrum eigen-
states which are exponentially localized [27,28]. The situation
becomes richer in terms of symmetries in the case of qua-
sicrystals with their long-range aperiodic order [6-8]. Indeed,
the iterative action of a given substitution rule underlying
aperiodic lattices lead to a plethora of, e.g., local reflection
symmetries or, more precisely, they lead to a quasiperiodic
recurrence of reflection symmetries [9] which manifests it-
self in the corresponding return map. Depending on the
spatial complexity of the aperiodic system under considera-
tion, the energy eigenvalues cluster into so-called quasibands
and the corresponding eigenstates are neither delocalized
allover the bulk nor exponentially localized, but dubbed “crit-
ical.” Of particular relevance to the following investigation of
TB Hamiltonians based on LSD chains is the local symme-
try theory of resonator structures in binary aperiodic chains
developed in Ref. [10]. For weak intersite coupling it has
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been shown that the eigenstate profile is largely determined
by so-called local resonator modes, i.e., eigenmodes confined
to locally symmetric domains of the chain. Eigenstates within
a given quasiband share the same local resonator modes. Cor-
responding edge states are then typically localized on locally
symmetric domains at the edges of the finite chain.

In the following subsections we will analyze the energy
eigenvalue spectrum and the corresponding eigenstates via an
eigenstate map for different LSD-generated chains, in analogy
to the cases considered in Sec. I A. It is important to note
that our focus will be on the evolutionary aspects of the chain
including the seed, the transient and the onset of the final
periodic steady state. This chain possesses by construction
no global symmetries but a plethora of overlapping local
symmetries. We will see that the localization properties of the
eigenstates are determined and can be controlled by the local
symmetry domains.

To be specific we choose the seed {A,B,C, D, E, F, G}
in Table I and the values of the coefficients D;,i =1, ...,7
in Eq.(1) correspond to {1,2,3,4,5,6,7}, respectively,
whereas the off-diagonal coupling is equal to one. This im-
prints an intrinsic energy scale into the TB system with a
significant, but not too large, contrast M. Choosing the
values for D;,i = 1, ..., 7 substantially different and having
the contrast being of order one, covers the most general case
of localization versus delocalization properties of the resulting
eigenstates (see discussions below). Later on (see Sec. IIID)
we will consider also chains with correspondingly smaller
contrast, i.e., for stronger off-diagonal couplings. For illus-
trative reasons our chains consist of the transient including
the seed as well as three unit cells of the emerging periodic
behavior.

A. 7:1 LSD chain

For this case the transient following the seed consists only
of eight chain elements and is followed by a periodic behavior
of period 16 with the unit cell FEDCBAAAABCDEFFF (see
Table I). Figure 1(a) shows the spectrum of the energy eigen-
values for the 7:1 LSD chain. Clusters of eigenvalues show a
plateaulike behavior separated by gaps. There is a few states
localized in these energy gaps. This behavior is reminiscent of
what could be expected from a finite periodic chain with open
boundary conditions.

Let us now analyze the underlying eigenstates and their
localization behavior in some detail. The gray scale eigen-
state map shown in Fig. 1(b) provides a complete overview
of the magnitude of the amplitudes on all sites of the
chain for all eigenstates obtained via diagonalization of the
Hamiltonian (1). The energetically lowest states 0-2 are pre-
dominantly localized on the three locally symmetric AAAA
sequences centered around the sites 14/15,30/31,46/47 in
the chain which correspond to the lowest onsite energies.
With increasing degree of excitation these eigenstates become
increasingly delocalized but still centered around the corre-
sponding AAAA sequences (see, e.g., states 3—6, 8—13, etc.)

Interdispersed into this rather homogeneous sequence of
spatially broadening eigenstates are left-localized (see states
7,13,20) edge states. In the middle of the spectrum the AAAA
centered states start to overlap. For higher energies this

8 (a)
,’ﬁ
61 el
> e
) »
O 4] e
v
w ered
2 Pan
o

0 10 20 30 40 50 60
Energy eigenvalue label

L]
| |
- |
50 | =] 1 11 -._50 0.7
-
H . 0.6
U 40| = =140
D H I W
© L 0.5
— -
% 30 {mm= mm — F30 04
2
4 L 0.3
%20 =m - = 20
L - L 0.2
101 F10
-(b) EE - ] 0.1
04 . - W |
0 10 20 30 40 50 — 0.0

Site index

FIG. 1. (a) Spectrum of the energy eigenvalues for a TB chain
emerging from a seed ABCDEFG and subsequent application of the
7:1 LSD up to a total of 56 sites, which includes three unit cells of the
final periodic behavior. The line is drawn to guide the eye. (b) The
corresponding gray scale eigenstate map showing the magnitude of
the amplitudes on all sites of the chain for all eigenstates whose
labeling O, ...,60 is according to an increasing eigenenergy. We use
open BCs and the onsite energies corresponding to {A,B,C,D,E,F,G}
are {1,2,3,4,5,6,7}, respectively, whereas the off-diagonal coupling
is equal to one.

process is inverted and spatially shifted. Now, the eigenstates
are centered around the high energy locally symmetric FFFF
sequences (sites 22/23, 38/39, 54/55) of the chain and while
they are originally rather delocalized they become with in-
creasing degree of excitation more and more focused on the
FFFF sequence only. It should be noted that some of these
FFFF-centered eigenstates are localized on two and others
on a single of these high energy FFFF subdomains. This
feature depends on the cutoff of the sequence, i.e., for another
cutoff a localization of some of the states on all three and
others on only two can be observed. Interdispersed into this
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inverted sequence are states 30,33,37,40,44,47,51,55 living on
the original seed ABCDEFG and its counterpart which is the
first locally reflected sequence GFEDCBA. With increasing
degree of excitation this sequence of states becomes increas-
ingly focused around the high energy center GG.

Let us conclude already at this early point of the discussion
of our TB analysis with some observations that will equally
hold for the following TB setups. The LSD-generated chain
exhibits a diversity of different localization properties of their
eigenstates which are triggered by two main ingredients. First
and foremost the localization is structurally organized by the
presence of local symmetries and due to the hierarchy of
such symmetries in the chain generated by the LSD rules
there is a hierarchy of localization behavior encountered in
the eigenstate profiles with increasing energies (see Ref. [10]
for a justification and analysis of this property based on de-
generate perturbation theory and a corresponding application
to quasiperiodic binary chains). This behavior is supported
and/or directed by the particular choice of our onsite energies
which provides an energetical order for the occupation of
the locally symmetric sequences due to the increasing values
within the sequence A, ...,G.

B. 7:3 and 7:5 LSD chains

The LSD chain following the 7:3 rule possesses a transient
of ten chain elements before it becomes periodic with period
20 and with the unit cell DCBAABCCBAABCDDCBBCD
(see Table I). This unit cell contains now only the symbols
A, ...,D,i.e., the high onsite energies according to E, F, G have
been removed in the course of the LSD operations. Figure 2(a)
shows the spectrum of the energy eigenvalues for the 7:3 LSD
chain. Compared to the 7:1 chain of the previous subsection
the plateaulike clustering of the energy eigenvalues is atten-
uated in the central part of the energy eigenvalue spectrum
at the cost of an almost linear envelope behavior. For the
regimes of low and high energies this plateau behavior is
still pronounced. Remarkably, at very high energies a signif-
icant enhancement of the spacing among the eigenvalues and
consequently of the slope of the spectral eigenvalue curve is
observed.

Figure 2(b) shows the eigenstate map for the 7:3 case
which defers quite significantly from the corresponding one
of the 7:1 case, also from the 7:2 case not shown here. For
the lowest energies the eigenstates 0-5 are predominantly
localized on the local reflection symmetric BAAB subparts
of the chain which are centered around the site pairs 13/14
and 19/20 and repeated after 20 further sites according to
the length of the unit cell. The localization centered on the
first two pairs 13/14 and 19/20 in the chain possess a slightly
higher energy as compared to the following ones due to their
tail extending onto the high onsite energies of some of the seed
sites. State 6 is a left edge localized state similar to state 24
and 37. States 7 and 8 are localized on the local reflection sym-
metric CBBC part of the chain involving sites with a higher
onsite energy and state 9 is centered on the same sequence but
possesses a higher energy due to its position at the right edge.
With further increasing degree of excitation the BAAB cen-
tered states further delocalize and spread. From state 19 on an
energetically broad band of delocalized states appears which
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FIG. 2. (a) Spectrum of the energy eigenvalues for a TB chain
emerging from a seed ABCDEFG and subsequent application of the
7:3 LSD up to a total of 70 sites, which includes three unit cells of the
final periodic behavior. The line is drawn to guide the eye. (b) The
corresponding gray scale eigenstate map showing the magnitude of
the amplitudes on all sites of the chain for all eigenstates whose
labeling 0, ...,69 is according to an increasing eigenenergy. We use
open BCs and the onsite energies corresponding to {A,B,C,D,E,FG}
are {1,2,3,4,5,6,7}, respectively, whereas the off-diagonal coupling
is equal to one.

resides in particular on the subsequences CBAABCCBAABC
possessing also a high degree of local symmetry. States 19 to
23 and 25 to 36 as well as 39 to 45 are completely delocalized
on the sequence of the three involved unit cells. For even
higher energies eigenstate localization sets in again with a mix
of centering around the BCCB, CBBC, and CDDC parts of
the chain. On top of this behavior the occupation of the sites
of the original seed and its first reflection A, ... G,G,... A
in terms of localized eigenstates appears for the high energy
states 48, 49 as well as 59, 60 and finally a series of states
66—69 increasingly narrow down their amplitudes around the
center sites GG.
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FIG. 3. (a) Spectrum of the energy eigenvalues for a TB chain
emerging from a seed ABCDEFG and subsequent application of the
7:5 LSD up to a total of 104 sites, which includes three unit cells of
the final periodic behavior. The line is drawn to guide the eye. (b) The
corresponding gray scale eigenstate map showing the magnitude of
the amplitudes on all sites of the chain for all eigenstates whose
labeling 0, ...,103 is according to an increasing eigenenergy. We use
open BCs and the onsite energies corresponding to {A,B,C,D,E,F,G}
are {1,2,3,4,5,6,7}, respectively, whereas the off-diagonal coupling
is equal to one.

We now analyze the 7:5 LSD chain which possesses a
transient of 32 sites before it becomes periodic with period
24 with the unit ccll BAABBAABBAAAABBAABBAABBB
(see Table I) consisting of two different possibilities for the
onsite energies. Figure 3(a) shows the spectrum of the energy
eigenvalues for the 7:5 LSD chain. The trend realized in the
above discussion of the 7:3 chain continues further, i.e., we
have an energetically central part of the spectrum for which
an approximately linear envelope behavior can be observed.
This linear behavior can be understood by averaging over
the onsite energies appearing for the delocalized eigenstates
in the center of the spectrum and crudely approximating our
chain by a monoatomic one with these averaged tight-binding

values. At low energies the plateaulike clustering still persists.
For higher energies we observe an extended plateau before a
steep rise of the energies occurs due to an, in part, enhanced
energy spacing.

Figure 3(b) shows the eigenstate map for the 7:5 case.
Due to the presence of only two onsite energies and the
occurrence of multiple locally symmetric sequences such as
BAAB, BAAAAB, as well as ABBBBA subsequences there
is a larger portion of delocalized eigenstates observable that
however do not populate the original seed sites. Remarkable
are also the progression of localized states centered around the
sites 13/14 and for high energies centered around the GG and
the DEED sequence which increasingly narrow down to their
central sites with increasing energy.

C. 7:6 LSD chain

The 7:6 LSD chain possesses a transient of 73 sites before
it becomes periodic with period 1 with the unit cell A (see
Table I) consisting of only a single possibility for the onsite
energies. Figure 4(a) shows the spectrum of the energy eigen-
values for the 7:6 LSD chain. Compared to the previous cases
an approximately linear envelope behavior is now present also
for the low energies and for high energies a smooth nonlinear
upward behavior is observed.

The resulting eigenstate map in Fig. 4(b) shows several
series of localized eigenstates in a progressive manner in
the low to intermediate energy regime. This is a remarkable
localization behavior and happens at the cost of few delo-
calized states as compared to the previously discussed cases
7 :x,x=1,3,5. The origin of these unexpected localization
features are again the locally reflection symmetric sequences
occuring in the chain, but now they come along with a certain
transient scaling behavior. This means that along the chain
(see Table I) we encounter now the subsequences B(A),B,
B(A)4B, B(A)sB, B(A)gB, and B(A);oB centered around the
sites 13/14, 26/27, 39/40, 52/53, and 65/66, respectively.
Here (A), stands for an n-fold repeated symbol A. Natu-
rally, the width of these localized eigenstates increases with
increasing number of sites involved in the above-mentioned
sequences B(A),B. In the high energy regime another several
series of localized eigenstates appear which are now centered
and localized on the sequences FGGF, EFFE, DEED, CDDC,
and BCCB with decreasing energy. Their widths are compa-
rable as can be observed in Fig. 4(b).

D. LSD chains with stronger off-diagonal couplings

Let us finally explore the case of an enhanced off-diagonal
coupling strength C = 5. Figure 5 shows the eigenstate map
for the TB chain for such a strong coupling for the cases of an
(a) 7:1 and (b) 7:6 LSD rule. Compared to the case of a weaker
coupling discussed in the previous subsections we observe
now an energetically broad band for intermediate energies for
which the eigenstates are delocalized over the complete chain,
including the initial seed of the chain. For some comparatively
narrow regions of high and low energies series of localized
eigenstates appear whose amplitudes are centered around the
locally symmetric subparts of the chains, as discussed above.
The broadening (for low energies), respectively, narrowing
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FIG. 4. (a) Spectrum of the energy eigenvalues for a TB chain
emerging from a seed ABCDEFG and subsequent application of the
7:6 LSD up to a total of 76 sites, which includes three unit cells of the
final periodic behavior. The line is drawn to guide the eye. (b) The
corresponding gray scale eigenstate map showing the magnitude of
the amplitudes on all sites of the chain for all eigenstates whose
labeling 0, ...,75 is according to an increasing eigenenergy. We use
open BCs and the onsite energies corresponding to {A,B,C,D,E,FG}
are {1,2,3,4,5,6,7}, respectively, whereas the off-diagonal coupling
is equal to one.

(for high energies) of the localization of the eigenstates with
increasing degree of excitation can also be observed here. In
Fig. 5(b) there is a series of domain localized eigenstates 0—4
that possess a small but finite overlap and therefore covers,
apart from the initial seed, the complete chain. Similarly there
is a series of slightly overlapping eigenstates in the high en-
ergy regime that cover the complete chain.

IV. CONCLUSIONS AND OUTLOOK

The present work addresses a class of systems, specifi-
cally one-dimensional chains, which fall into the gap between
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FIG. 5. (a) Gray scale eigenstate map for a TB chain with strong
coupling C =5 emerging from a seed ABCDEFG and subsequent
application of the (a) 7:1 LSD up to a total of 56 sites, which includes
three unit cells of the final periodic behavior. (b) The same as in
panel (a) but for the 7:6 LSD chain up to 76 sites. We use open
BCs and the onsite energies corresponding to {A,B,C,D.E,F,G} are
{1,2,3,4,5,6,7}, respectively.

highly ordered periodic crystals as well as quasicrystals with
aperiodic long-range order and disordered chains. On an
abstract level, they are constituted from a symbolic seed
sequence by the repeated application of local reflection op-
erations following certain rules. We have been here focusing
on the class of rules n:m which state that the local reflection
operations involve n and m symbols in an alternating periodic
manner. A study of a few example cases showed us that the
repeated application of the local reflection operation provides
us, starting from the seed, with a remarkable evolutionary
behavior in the form of a transient finally providing a periodic
steady state. Our focus in this work is on this evolutionary
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1n|,nl|mlm|,ml, Inm % m < %n ~>{ [mnmn2m1|,n2mlnm, nml|,1m|,m1, Inm|,nmn2ml|,n2mlnm,nml.....

1
m> 5n
nm2n3ml|,2n3mlnm,nml, Inm|,,nml, 12mn|,2mnl, Inm, nml
[mnm1, 12mnl,2mnl, Inm, nml|,, 1nm m < %n In PhT [m ’ In ’ ’
: |m1nm, nm2n3ml|,2n3mlnm,nml, Inm .....
m > %n

|

nm3ndml|,3ndmlnm, nml, lnm, nml|, 1nm,nml, 13m2n
[n3m2n1, Inm, nml, Inm|,,nml, Inm, nm3ndml|,3ndmlnm,nml,
1nm, nml|m,.....

nml,13m2n|,3m2nl, Inm, nml, lnm
[mnml, Inm

) 3
m > qn

nml, 14m3n|,4m3nl, Inm,nml, Inm,nml

Il 11 [n4m3nl, Inm, nm1, Inm, nml|,, 1nm, nml, Inm, nm4n5ml
nm,nml, lnm
m 9 b

[n4nSmlnm,nml, .....

— 5

nmdnbml|,dndbmlnm, nml, Inm, nm1, Inm|,nml, Inm, nm1, 14m3n
n<in

] 4,
m > gn

nmbdnbml|,5n6mlinm,nml, 1nm,nml, Inm,nml|,1nm,nml, Inm,
nml, 15mdn|,5mdnl, Inm, nml, Inm, nm1, Inm|,,,nml, lnm

nml, 15mdn|,5mdnl, Inm,nml, lnm,nml,
1nm|,nml, Inm, nml, Inm

) 5,
% m < gn ~>{

nml, Inm,nmbdnbml, ....

FIG. 6. The initial steps for the proof by induction. The initial seed is contained in the uppermost left rounded box. The flowchart shows
(i) the pathway to periodic behavior along the horizontal branches and (ii) the pathway to higher values of m passing along the vertical
branching sequences. A branching occurs for each case m = %n p=1,2,.... Abbreviations are: ln = {1, ...,n},nl ={n,..., 1}, lnm =

{1,....n—m},nml ={n—m,..., 1}, 1lm={1,... , m},ml ={m, ..

L1 2mn={1, ..., 2m —n)}, 2mnl = {(2m —n, ..., 1} and more

generally nmpn(p + Dml = {(n —m), ..., (pn — (p + D)m + 1)}. |, indicates a local reflection operation of n symbols.

behavior followed by the onset of the steady state. The con-
tent, i.e., appearance of the resulting unit cell largely varies
with the rules n:m. We have provided a general proof of this
behavior thereby understanding the variability of the pathway
to periodicity and its final appearance. As a consequence, and
due to the constructive character of the proof, we could predict
the complete evolution of the chain up to the onset of the
periodic steady state. We obtained thereby the final period, the
final number of independent chain elements and the overall
appearance of the unit cell. This appearance is composed of
an inhomogeneous alternating series of subchains with local
symmetries, and of varying length and recursively defined
content.

As a consequence of the construction principle of the
chain it contains a large number of local reflection and

translation symmetries that strongly overlap and repeat in
different shapes and content. Opposite to, e.g., the substi-
tution rules generating aperiodic long-range ordered chains
our local symmetry dynamics rule leaves intact the chain
of a certain generation while building up the next one.
The strong impact of the presence of these multiple and
nested local symmetries on the properties of such a chain
became very clear in the second part of this investigation.
We mapped the symbolic code onto a tight-binding Hamil-
tonian where the onsite energies follow the chains symbolic
sequence in the form of corresponding numerical values. In
the course of a corresponding spectral analysis, including the
behavior of the energy eigenvalues and the eigenstates, a rich
variability could be observed. Specifically the localization
properties of the eigenstates changed from series of localized
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The p to p+ 1 induction step for the proof by induction:

This is divided into several cases:

p—1 n
P

First case: p even and #n >m >

nml|,, Inm, ..., Inm, nmpn(p + 1)m1|,pn(p + 1)mlnm,nml, ..., nml, Inm|, nml,...,nm1, lpm(p — )n|,pm(p — 1)nl, Inm, ..., Inm, nml|,,
—_—— ——

(p—1) (p—1)

which establishes periodicity.

p_,
Pl n.

Second case: p even and m >

nmlly, Inm, ..., Inm,nm1, 1(p + 1)mpnl|,(p + 1)mpnl, Inm,nm1,...,nm1, Inm|,nml, 1nm, ..., 1nm {
—— ——— ——

(p—1) (p—1)

which completes the induction step for the second case.

Third case: p odd and psill >m > o

(p—1)

1nm, ..., Inm,nmpn(p + L)m1|,pn(p + 1)mlnm, ...
————

(p—1)

(p—1)

o p+1
if m< bt

; ptl
if m > 2"

nm(p + 1)n(p +2)ml
nm1,1(p+2)m(p+ 1)n

(p—1)

1nm|y, nml, ..., Inm, nmpn(p + 1)m1|,pn(p + 1)mlnm,nml, ..., Inm,nmll|y, Inm, ...,nml, 1pm(p — 1)n|,pm(p — )nl, Inm, ...,nml, Inm|,
— —

(p—1) (p—1)

which establishes periodicity.

Fourth case: p odd and m > p’ﬁn.

1nm|m, nml, ..., Inm,nm1,1(p + 1)mpn|,(p + 1)mpnl, Inm,nml, ..., Inm,nml|,Inm,nml, ..., Inm {
—— —— —

(p—1) (p—1)

which completes the induction step for the fourth case.

(p—1) (p—1)

nml, ..., Inm, nmpn(p + 1)m1|,pn(p + 1)mlnm,nml, ..., Inm,nml, ...
—_—— —_——

(p—1) (p—1)

nm(p + 1)n(p +2)ml if m< gi; n
nm1,1(p+2)m(p+ )n if m > Zién

(p—1)

FIG. 7. The p to p + 1 induction step for the proof involving all possible branchings, i.e., cases. Notation is the same as described in the

caption of Fig. 6.

eigenstates whose localization centers are determined by the
locally reflection symmetric subchains to delocalized states
sometimes in a continuous and sometimes in a more abrupt
manner with varying excitation energy. Our analysis clearly
demonstrates that local and in particular overlapping local
symmetries provide a powerful means to control the center-
ing and spreading of eigenstates. Certain locally symmetric
domains act as a nucleus for the increased spreading of local-
ized eigenstates with increasing degree of excitation whereas
others show a corresponding inverted behavior. Depending on
the assigned onsite values to the domains and their couplings
they appear in the low or high energy regime with a band
of delocalized eigenstates separating them. This opens the
pathway of a systematic design of the localization of the
eigenstates individually and with respect to each other by the
sophisticated use of the overlapping local symmetry domains.

While we have been focusing in the present work on a
specific class of local symmetry operations that generate the
chain there is many other possibilities and open questions
to be addressed in the future. Reaching beyond the n:m rule

can be imagined in many different ways. One problem is
the roadmap to periodicity: under what conditions does pe-
riodicity occur and if not, what are the possible asymptotic
behaviours passing the transient phase? Is there new classes
of order that possibly emerge via local symmetry dynamics-
generated chains and what would be their spectral or even
topological properties? These, and related questions, are left
to future investigations.

Finally, let us briefly address the question of an exper-
imental realization of the spectral properties of our local
symmetry-generated chains. An all optical realization of our
tight-binding systems can be achieved in the framework of
(integrated) coupled photonic waveguide lattices [29,30]. The
fabrication and characterization is possible by femtosecond
lasers that controllably change the materials molecular struc-
ture and consequently lead to a spatially varying refraction
index. The coupling is here constituted by evancescent light
fields between neighboring wave guides. Such a photonic
realization would only allow to explore setups with a limited
number of wave guides, i.e., a finite tight-binding lattice.
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APPENDIX: PROOF OF rn:m LOCAL
SYMMETRY DYNAMICS

We provide in this Appendix a constructive proof by in-
duction of the symbolic sequence generated by a general
n:m LSD where we always assume that n > m. To this end
it is advisable and instructive to employ as an encoding of
the elements of the chain not the alphabatical letters used in
the previous Sec. II A but a numerical encoding. Specifically
this means that the initial seed ABCD.... is now replaced
by the symbolic sequence 1,...,n if n seed elements are
present (please note here the double use of n; first as a
symbolic variable and second as a number). This way of
encoding facilitates the local symmetry operations in the
course of the LSD substantially and adds to the transparency
of the below-given proof in Figs. 6 and 7, respectively.
The numbers used here are therefore unique placeholders
for a corresponding symbol. The hereby used notation is
as follows: In={1,...,n}, Inm={1,...,n—m}, lm =
{1,...,m}, 2mn={1,...,(2m —n)}, and more gener-
ally nmpn(p+ 1) ml ={(n—m), ..., (pn — (p+ Dm + 1)}.
|, as mentioned already above, indicates a local reflection
operation on n symbols.

To start the proof by full induction one has to perform
some first steps. We will here for reasons of illustration
of the concept and overall flow of the general case pro-
vide a few more initial steps as absolutely necessary for the
proof. Figure 6 shows a flowchart of the first few steps and
branching sequences. The flowchart consists of horizontal
and vertical flows which emerge at every branching point
m= %n %n, %n, %n. Following the corresponding horizontal
branches for m < %n, 2p, 30, $nleads to periodicity with dif-
ferent characteristic unit cells which can be read off from the
right-hand-side boxes in Fig. 6. In case m larger than a given
ratio one proceeds along the vertical direction of the flowchart
until, finally, the horizontal case has to be chosen, which leads
to periodicity. Already from these initial steps it is evident
that both the transient as well as the final unit cell are com-
posed of 1nm, nmpn(p + 1)ml ={((n —m), ..., (pn — (p +
Dm+1))|pe N}and I(p+ Dmpn ={(1,...,((p+ )m —
pn)} as well as their inverted sequences. The increasing length
of the transient as well as the size of the final unit cell with
increasing ratio °+, m, n € N is evident from these initial steps
already.

In Fig. 7 the p to p+ 1 induction step is performed. The
various cases are explicitly mapped out and the route to peri-
odicity (horizontal branches in Fig. 6) as well as the extension
of the transient (vertical branch in Fig. 7) up to the next
branching point are shown. In this pth step sequences of 1nm
(respectively, nml) appear in a p-fold manner intermingled
with elements of the structure nmpn(p + 1)m1, 1(p + 1)mpn.
This concludes the proof by explicit construction and provides
us with the content of the transient and the final unit cell.
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