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Mutual information of spin systems from autoregressive neural networks
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We describe a direct method to estimate the bipartite mutual information of a classical spin system based on
Monte Carlo sampling enhanced by autoregressive neural networks. It enables us to study arbitrary geometries
of subsystems, and it can be generalized to classical field theories. We demonstrate it on the Ising model for
four partitionings, including a multiply connected even-odd division. We show that the area law is satisfied
for temperatures away from the critical temperature: the constant term is universal, whereas the proportionality
coefficient is different for the even-odd partitioning.
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I. INTRODUCTION

The discovery of topological order in quantum many-body
systems [1] initiated a very fruitful exchange of ideas between
experts in the fields of solid-state physics and information
theory. Many new theoretical tools developed to quantitatively
describe the flow of information or the amount of information
shared by different parts of the total system have been em-
ployed in studies of physical systems [2]. Among these tools,
quantum entanglement entropy or mutual information and
their various alternatives were found to be particularly useful
[3–10]. With their help, it came to be understood that some
new phases of matter have the same set of symmetries but
differ in long-range correlations quantified by bipartite, tripar-
tite, or higher information-theoretic measures such as mutual
information [11,12]. Looking at this in the opposite way, it
is expected that calculating mutual information can provide
hints about the topological phase of the system, playing a
role similar to order parameters in the usual Landau picture
of phase transitions (see, for example, [13,14]). Indeed, such
quantities are not only useful for theoretical understanding,
but they are also measurable observables in experiments. For
example, in Ref. [15] the mutual information measured in a
quantum spin chain demonstrated the area law [16] governing
the scaling of mutual information with the volume of the
bipartite partition. The law [17] claims that the mutual infor-
mation or entanglement entropy in the thermodynamic limit
scales with the boundary area separating the two parts of the
system, instead of the volume, as for the other extensive prop-
erties. The increased interest comes from the fact that black
hole entropy was shown a long time ago [18,19] to follow a
similar law: black hole entropy depends only on its surface
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and not on the interior. Surprisingly, this connection was
recently made explicit with the realization that a certain quan-
tum spin model in zero spatial dimensions, called the SYK
model [20], is related to a black hole via the gravity/gauge
duality [21]. From this perspective, quantum entanglement
entropy or quantum mutual information, which can be defined
and calculated on both sides of this relationship, became even
more attractive from a theoretical point of view. Therefore,
there is a strong pressure to develop computational tools able
to estimate such quantities, which in itself is, however, very
difficult in the general case.

Although an important part of condensed-matter physics
[16,22–25] entails studying entanglement entropy and quan-
tum mutual information in quantum spin systems, in classical
spin systems the Shannon and Rényi entropies were already
found to follow the area law [26]. With the interface boundary
sizes up to 64 spins, the coefficients of the area law were
precisely determined, and their universality was verified using
different lattice shapes. After that, the mutual information of
two halves of the classical Ising model on an infinitely long
cylinder was calculated using the transfer-matrix approach
[27]. Both quantities were discussed with more precision
in [28] using a different method, called the bond propaga-
tion algorithm. Similarities between quantum entanglement
entropy and classical mutual information were studied in
Ref. [29].

Recent developments in machine-learning algorithms have
created new opportunities to study information theory ob-
servables. Quantum entanglement entropy can be calculated
using an approximation of the ground state provided by neural
networks. For example, in Refs. [30,31], autoregressive archi-
tectures were used to calculate variational Rényi entropies for
one- and two-dimensional (1D and 2D) Ising and Heisenberg
models. In Ref. [32], mutual information of classical spin
systems was calculated using the method called machine-
learning iterative calculation of entropy (MICE). It is based
on the idea from Ref. [33] of exploiting the Donsker-Varadhan
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representation of Kullback-Leibler (KL) divergence. We dis-
cuss the MICE method further in Appendix F.

In this work, we propose a method to directly estimate
classical bipartite mutual information. It is based on the in-
corporation of machine-learning techniques into Monte Carlo
simulation algorithms. From a theoretical point of view, the
algorithm we use belongs to the class of metropolized inde-
pendent sampling [34] algorithms. Therefore, our calculations
are stochastic and provably exact within their statistical uncer-
tainties, assuming that all the modes of the target distribution
are probed (no mode collapse). The main advantage of the
method is its flexibility, i.e., it can be applied as follows:
(i) to any geometry of the partitioning, (ii) to any statistical
system with a finite number of degrees of freedom, and (iii)
in an arbitrary number of space dimensions, provided that
the target probability can be effectively trained (e.g., with no
mode collapse).

II. METHOD

A. Mutual information for spin systems

We consider a classical system of spins that we divide into
two arbitrary parts A, B. In this case, the Shannon mutual
information is defined as

I =
∑
a,b

p(a, b) log
p(a, b)

p(a)p(b)
, (1)

where a particular configuration s of the full model has parts
a and b, and where the Boltzmann probability distribution of
states, depending on inverse temperature β, is given by (we
omit the explicit dependence of Z on β)

p(a, b) = 1

Z
e−βE (a,b), Z =

∑
a,b

e−βE (a,b), (2)

and

p(a) =
∑

b

p(a, b), p(b) =
∑

a

p(a, b) (3)

are probability distributions of subsystems. We shall use the
same symbol p for all probability distributions defined on
different state spaces, distinguishing them by the arguments.
In the above expressions, the summation was performed over
all configurations of subsystems A or B. Inserting Eqs. (2) and
(3) into Eq. (1), we obtain

I = log Z −
∑
a,b

p(a, b)[βE (a, b) + log Z (a) + log Z (b)],

(4)

where Z (a) = ∑
b e−βE (a,b) and Z (b) = ∑

a e−βE (a,b). Please
note that in typical Monte Carlo approaches, the partition
functions Z , Z (a), and Z (b) are not available.

B. Neural importance sampling for MI

Below we argue that I can be obtained from a Monte
Carlo simulation enhanced with autoregressive neural net-
works (ANNs). It was recently shown that ANNs can be used
to approximate the Boltzmann probability distribution p(a, b)
for spin systems, and they provide a means to sample from this

approximate distribution [35–38]. Let us call this approximate
distribution qθ (a, b), where θ stands here for the parameters
of the neural network that are to be tuned so that qθ is as close
to p as possible under an appropriate measure, typically the
backward Kullback-Leibler divergence

DKL(qθ |p) =
∑
a,b

qθ (a, b)log

(
qθ (a, b)

p(a, b)

)
. (5)

The formula Eq. (4) can be rewritten in terms of averages
with respect to the distribution qθ ,

I = log Z − 1

Z
β〈ŵ(a, b)E (a, b)〉qθ (a,b)

+ 1

Z
〈ŵ(a, b) log Z (a)〉qθ (a,b)

+ 1

Z
〈ŵ(a, b) log Z (b)〉qθ (a,b), (6)

where the importance ratios are defined as

ŵ(a, b) = e−βE (a,b)

qθ (a, b)
. (7)

The crucial feature of ANN-enhanced Monte Carlo is that
contrary to standard Monte Carlo, we can estimate directly the
partition functions Z , Z (a), and Z (b) (see Appendix A for de-
tails). In this way, we have expressed the mutual information
I only through averages with respect to the distribution qθ . It
can now be estimated by sampling from this distribution. The
procedure of sampling configurations from the approximate
probability distribution provided by neural networks together
with reweighting observables with importance ratios was pro-
posed in Ref. [39] and named neural importance sampling
(NIS). This paper reports on an application of this technique
to information theory observables.

Autoregressive neural networks rely on the product rule,
i.e., factorization of qθ into the product of conditional proba-
bilities

qθ (a, b) =
L2∏

i=1

qθ (si|s1, s2, . . . , si−1). (8)

Due to the fact that the labeling of spins in Eq. (8) is arbitrary,
we can choose it in such a way that we first enumerate all spins
from part A, a = (s1, s2, . . . , snA ), and only afterward all spins
from part B, b = (snA+1, snA+2, . . . , snA+nB ). We then obtain

qθ (s) ≡ qθ (a, b) = qθ (a)qθ (b|a), (9)

with

qθ (a) =
nA∏

i=1

qθ (si|s1, s2, . . . , si−1) (10)

and

qθ (b|a) =
nB∏

i=1

qθ

(
snA+i|snA+1, snA+2, . . . , snA+i−1, a

)
. (11)

These features of ANN support the fact that we can readily
estimate log Z (a) and log Z (b) required by Eq. (6) directly.
In this respect, the ANN approach differs from normalizing
flows used to approximate continuous probability distributions
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FIG. 1. Four considered partitioning geometries. Periodic
boundary conditions are applied. The small blocks in the chessboard
partitioning represent single spins.

and employed recently in the context of lattice field theory
[40–47]. There, the probability is calculated for the whole
field configuration at once, and the conditional probability
qθ (b|a) as well the marginal distribution qθ (a) are not so
easily available.

III. RESULTS

We leave the technical details of the evaluation of the terms
in Eq. (6) to Appendix A and now provide an example of
its application. We demonstrate it on the Ising model on a
periodic L×L lattice, with ferromagnetic, nearest-neighbor
interactions, defined by the Hamiltonian

E (a, b) = −
∑
〈i, j〉

sis j, (12)

where si ∈ {1,−1}. We consider the following divisions and
respective mutual information observables:

(i) “Strip” geometry—the system is divided into equal rect-
angular subsystems.

(ii) “Square” geometry—subsystem A is the square of size
1
2 L× 1

2 L.
(iii) “Quarter” geometry—A is rectangular of size 1

4 L×L.
We show them schematically in the three sketches on the

left in Fig. 1. We note that all of them have the same length
of the border between the subsystems, i.e., 2L (as we used
periodic boundary conditions), although may they differ in
their volumes. In the discussion below, we refer to those three
partitionings as “block” partitionings. In addition, we also
consider the following division:

(iv) “Chessboard” partitioning, where the system is divided
using even-odd labeling of spins.

In this case, the boundary between spins is L2, i.e., every
spin of the system is at the boundary between parts A and B.
Note that in the chessboard partitioning, the subsystems are
not simply connected, as is usually considered in the literature.

We investigate a wide range of system sizes, reaching L =
66 for β > 0.3 and L = 130 for β � 0.3.1 We combine results
obtained by the variational autoregressive network (VAN) ap-
proach of Ref. [35] and our recently proposed modification
called the hierarchical autoregressive network (HAN) algo-
rithm [37]. Both approaches are applied to several divisions,

1The reason behind this choice is that for larger β, training of
the neural networks is less efficient, and for these temperatures we
did not reach a sufficient quality of training. This could be done in
principle using additional tricks, such as, e.g., pretraining, which we
used for simulations of the Potts model [38].

TABLE I. The system sizes L which were considered for a
given partitioning type. Note that HAN requires a total system size
L = 2n + 2, where n would be the number of levels in the hierarchy.

Partitioning VAN HAN

Strip
8,12,16, 10,18,34,
20,24,28 66,130 (for β � 0.3)

Square 10,18,34,
66,130 (for β � 0.3)

Quarter
8,12,16,
20,24,28

Chessboard
8,12,16,20,
24,28,32

as summarized in Table I. We describe the details of the VAN
and HAN architectures and the quality of their training in
Appendix B. In Appendix C we discuss the details of mutual
information calculation for the chessboard partitioning. Simu-
lations are performed at 13 values of the inverse temperature:
from 0.1 to 0.4 with a step 0.05, 0.44, and from 0.5 to 0.9
with a step 0.1. For each β we collect the statistics of at least
106 configurations, and we estimate the statistical uncertain-
ties using the jackknife resampling method. In all cases, the
relative total uncertainty of I combining the systematic and
statistical uncertainties is of the order of 1‰, or smaller—see
Appendix A [in particular, the discussion around Eq. (A12)].

A. Area law

In Fig. 2 we show I as a function of L for the three block
partitionings and for three representative inverse tempera-
tures, β: 0.1 (high-temperature regime), 0.44 [very close to
critical temperature, βc = 1/2 ln(1 + √

2) ≈ 0.440 69], and
0.9 (low-temperature regime). We clearly observe a linear
dependence on the system size with a strongly β-dependent
slope and intercept. Similar behavior can be observed for the

 0

 2

 4
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10 30 50 70 90 110 130

I(
β)

L

strip
square
quarter
β=0.10
β=0.44
β=0.90

FIG. 2. General dependence of I on L for various geometries and
three representative inverse temperatures: β = 0.10 in the disordered
phase, β = 0.44 close to the phase transition, and β = 0.90 in the
ordered phase. Lines correspond to attempted fits using the area law
Ansatz.
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FIG. 3. General dependence of I on L2 for the chessboard parti-
tioning at three inverse temperatures: β = 0.10, 0.44, and 0.90. Lines
correspond to attempted fits using the area law Ansatz. Statistical
uncertainties are shown but are much smaller than the symbol size.

chessboard partitioning when one plots I as a function of L2;
see Fig. 3. The emerging picture, supporting the conjectured
area law, is that I can be written in a compact form as

Igeom(β, L) = αgeom(β )B(L) + rgeom(β ), (13)

where the variable B(L) corresponds to the length of the
boundary between the two parts A and B: B(L) = L2 for the
chessboard partitioning and B(L) = 2L for other partitionings
considered in this work. Equation (13) has two parameters, α

and r, which, as we denoted, depend on β and can differ for
different partitioning geometries.

We expect that Eq. (13) is valid as long as finite volume
effects in I are small. In general, they may depend on three
length scales present in the system: the size of the whole
system L, the size of the smallest subsystem, and the corre-
lation length ξ determined by the temperature of the system.
Finite volume effects should vanish when ξ is smaller than
the rest of the scales, and they may depend on the geometry
of the partitioning. A closer look at the data indeed reveals
additional contributions to mutual information which spoil the
area law (13). To see this, we plot in Fig. 4 the

√
χ2/DOF

of the fits, which were performed assuming relation Eq. (13).
Three regions of inverse temperatures can be easily defined.
At small β the Ansatz Eq. (13) describes all system sizes
since

√
χ2/DOF ≈ 1, suggesting that finite volume effects are

smaller than the statistical uncertainties. A similar situation
occurs for large β, where again the fit involved all available
system sizes. On the contrary, in the region close to the phase
transition, where the correlation length ξ is the largest, the
fits have clearly bad quality,

√
χ2/DOF � 1. This picture

is further confirmed by the fact that the quality of the fit
improves when we discard smaller system sizes, L < Lmin, as
shown for the strip partitioning in the inset.

The values of
√

χ2/DOF close to βc ≈ 0.44 are particu-
larly large for the chessboard partitioning. However, since the
errors of the individual points are much smaller than for the
rest of the partitionings [due to the simplified calculation of
Z (a); see Appendix C], we refrain from drawing conclusions

 0.1

 1

 10

 100

 1000

 0  0.2  0.4  0.6  0.8  1

√ 
(χ

2 /D
O

F
)

β

strip
square
quarter

chessboard

0
5

10
15

8 12 16 20

√ 
(χ

2 /D
O

F
)

Lmin

strip geometry β=0.44

FIG. 4. Quality of fits involving all available data points and
assuming the area law functional form of the mutual information for
the four geometries shown in Fig. 1:

√
χ 2/DOF plotted as a function

of the inverse temperature. In the inset, we show how the fit improves
as we restrict the system sizes included in the fit to be bigger than or
equal to Lmin.

about the size of the finite-size effects in this partitioning
compared to block partitionings.

B. Discussion of α(β) and r(β) coefficients

For β far from the critical inverse temperature, we can
reliably describe our data with the area law Ansatz Eq. (13).
This allows us to extract the coefficients α and r for the four
different partitionings and compare them. We show the results
in Fig. 5. In the main figures, we show the dependence on
β, whereas in the insets we show the difference between the
“strip” and “square” partitionings (the differences between
other partitionings look similar). We have shown only the
values that were obtained from fits with

√
χ2/DOF � 1 so

as to be sure that the postulated dependence Eq. (13) is in-
deed reflected in the data. This means β � 0.35 and β � 0.5
for block partitionings, and β � 0.25 and β � 0.5 for chess-
board. The uncertainties of data points in Fig. 5 contain (i) the
propagation of statistical uncertainties of ÎN,M (β, L) through
the extrapolation fits (M → ∞ and the dependence on L), and
(ii) the systematic uncertainty of the fits estimated by taking
the maximal difference of the outcomes when using different
fit Ansätze or fit intervals. Both types of uncertainties were
added in quadrature to obtain the final error bars shown in
Fig. 5.

In the left panel, we show the coefficient α as a function
of β. The qualitative behavior of α(β ) seems to be univer-
sal: it goes to 0 at β = 0 and β → ∞ and rises around the
critical temperature. The data clearly show that the chess-
board partitioning yields different values from the three other
possibilities, which seem to be compatible with each other.
The differences shown in the inset are indeed compatible with
zero within their uncertainties. Therefore, we conclude that in
this range of β the partitioning does not influence the mutual
information (when block partitionings are considered). In the
right panel, we show the value of r. In that case, all four
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FIG. 5. Coefficients α and r for four geometries shown in Fig. 1 as a function of the inverse temperature β. The inset shows the
difference between α and r from strip and square geometries. Both geometries yield results compatible within their statistical and systematical
uncertainties.

partitionings give the same result: 0 for β < βc and ln 2 for
β > βc.2

Comparing our results to those from Ref. [28], where the
bond propagation and transfer matrix methods were used
to calculate mutual information for cylinderlike geometry in
the limit of infinite length of the cylinder, we may make
several observations. First, we note that our r(β ) follows
the behavior r(β < βc) = 0 and r(β > βc) = ln 2 obtained
in Ref. [28] in the limit of infinite cylinder’s circumfer-
ence. The deviations from this behavior, which we observe
close to βc, should be attributed to the finite-size effects.
Finite volume effects are also responsible for the fact that
we cannot reproduce the value of r(βc) at the critical point,
Ref. [28]: r(β = βc) = 0.254 392 5(5). With regard to the α

coefficient, in Ref. [28] only the critical value was calculated,
α(β = βc) = 0.376 926 26(7). The low-β leading behavior of
α was obtained in Ref. [32] using the partitioning, which we
called “strip”: α(β ) ≈ 1

2β2 for β → 0, and our results follow
this behavior exactly.

IV. SUMMARY

In this work, we have provided a numerical demonstration
that the Shannon bipartite mutual information (MI) can be
readily obtained from the neural importance sampling (NIS)
algorithm for the classical Ising model on a square lattice.
Our approach allows for studies of different partitionings, and
we provided comparisons of the mutual information estimated
for four geometries. We successfully exploited the hierar-
chical algorithm (HAN) to reach larger system sizes than
achievable using standard variational autoregressive networks
(VANs). The crucial property of our approach is that it pro-
vides unbiased results (unlike the MICE [32] approach, which
is variational) assuming all modes of the target probability
distribution can be probed.

2For β → ∞, the space of states reduces to the two states—one
with all spins up and the second with all spins down—both having
the same probability 1/2. Plugging such probability distribution into
Eq. (1), one obtains I (β = ∞) = ln 2.

It is important to note that the condition that the probability
distribution modeled by the neural network contains all the
modes of the target distribution is of central importance for the
NIS approach (and, more generally, for all MCMC methods).
Obviously, when mode collapse is present and some part of
the target distribution support is not sampled, the reweighting
procedure cannot compensate for the missing contributions
to the partition function, which may lead to systematic bias.
It is known that generative neural networks are sensitive to
the mode collapse [35,48–50]. In the case of the Ising model
considered here, where analytical results for the partition
function are known, the possibility of mode collapse can be
very much excluded by checking that the NIS and exact result
agree.

We discussed the validity and universality of the area law
for different partitionings. We found that at low and high
temperatures the area law is satisfied, whereas such an Ansatz
does not describe our data in the vicinity of the phase transi-
tion, supposedly due to inherent finite volume effects.

V. OUTLOOK

Our proposal can be applied to many other spin systems
with short- and long-ranged interactions, such as various
classes of spin glass. However, the main difficulty one encoun-
ters when dealing with spin-glass systems is the efficiency
of training these complicated Boltzmann distributions, and in
particular, the avoidance of mode collapse issues. As such,
the applicability of our method depends on the progress in
the neural network sampler’s efficiency. Also, the long-ranged
interactions prohibit the application of the HAN algorithm,
limiting, at the moment, the available system sizes to
L ∼ 30.

We believe that by exploiting the Feynman path integral
quantization prescription, one may use the approach based
on autoregressive networks to estimate also the entangle-
ment entropy in quantum spin systems. In such a picture, a
D-dimensional quantum system is described by a D + 1 sta-
tistical system, where the machine-learning enhanced Monte
Carlo is applicable. In particular, thanks to the replica method
[51], one can directly express the Rényi entropies in terms
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of partition functions [52] readily obtainable in the NIS. In
this approach, systems in any space-time dimension can be
studied, with the obvious limitation that performance is lim-
ited by the total number of sites in the system, hence reducing
the available volumes in higher dimensions. Still, due to its
straightforwardness, it should be seen as a valuable alternative
to studying information-theoretic properties of one-, two-, or
three-dimensional quantum systems. In particular, the method
based on path integral quantization can be considered as com-
plementary to variational approaches based on autoregressive
networks such as Refs. [30,31] where the approximation of the
ground-state wave function is constructed. First, with an er-
godic sampling it provides unbiased results (see the discussion
in Appendix F); second, it gives access to the entanglement
entropy for thermal states [3,53].

One should also observe that our proposal in principle can
work unaltered for systems with continuous degrees of free-
dom. Neural generative networks have already been discussed
in the context of φ4 classical field theory [41] as well as U(1),
SU(N ) [54], and the Schwinger model gauge theories [55]. In
all these cases, one would introduce a conditional normalizing
flow or another proposal that would give access to conditional
probabilities (see, for example, Ref. [56]). For instance, a hier-
archical construction similar to the HAN algorithm employing
normalizing flows could be used to simulate the φ4 classical
field theory. In this way, conditional probabilities would be
naturally introduced and could be used to calculate the mutual
information for some specific partitioning. The combination
of the proposed method of measuring information-theoretic
quantities with the recent advancements [46] in machine-
learning enhanced algorithms for simulating four-dimensional
lattice quantum chromodynamics (LQCD) can open new ways
of investigating this phenomenologically important theory, for
instance by studying quantum correlations and entanglement
of the QCD vacuum.
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APPENDIX A: DETAILS OF THE METHOD

To calculate the mutual information according to the defi-
nition Eq. (6), we need to estimate the averages 〈· · · 〉qθ

, which

we do using the Monte Carlo approach,

〈O〉qθ
≈ 1

N

N∑
i=1

O(si ), si ∼ qθ , (A1)

where the configurations si are drawn from the distribution qθ .
In particular, the partition function can be approximated as

Z =
∑
a,b

qθ (a, b)
e−βE (a,b)

qθ (a, b)
≡ 〈ŵ(a, b)〉qθ (a,b)

≈ 1

N

N∑
i=1

ŵ(ai, bi ) ≡ ẐN , (ai, bi ) ∼ qθ . (A2)

In a similar way,

Z (a) =
∑

b

qθ (b|a)
e−βE (a,b)

qθ (b|a)
≡ 〈ŵ(b|a)〉qθ (b|a), (A3)

where we introduced ŵ(b|a) = e−βE (a,bi )/qθ (b|a), and
〈· · · 〉qθ (b|a) is an average over the conditional probability. This
can be approximated as

Z (a) ≈ ẐM (a) = 1

M

M∑
i=1

e−βE (a,bi )

qθ (bi|a)
, bi ∼ qθ (b|a), (A4)

where we have denoted by M the number of configurations
used to estimate that average. In general, M is independent of
N ; for practical reasons, we always take M < N . To calculate
Z (b) we need qθ (a|b), which is not readily available. There-
fore, we define a new distribution q̃θ obtained by feeding a
permutation of spins that swaps a and b into qθ . For VAN this
is obtained by reversing the order of spins,

q̃θ

(
s1, s2, . . . , snA+nB

) ≡ qθ

(
snA+nB , snA+nB−1, . . . , s1). (A5)

We can use q̃θ together with factorization Eq. (8) to obtain
q̃θ (a|b) and Z (b),

Z (b) ≈ ẐM (b) = 1

M

M∑
i=1

e−βE (ai,b)

q̃θ (ai|b)
, ai ∼ q̃θ (a|b). (A6)

Please note that in general q̃θ (s) �= qθ (s), but for a well-
trained network these two distributions should be close.
Furthermore, the approximation Eq. (A6) is valid for any q̃θ .

For the remaining terms, we use the standard way to calcu-
late the average, i.e., the mean energy is

1

Z
〈ŵ(a, b)E (a, b)〉qθ (a,b)

≈ 1

NẐN

N∑
i=1

ŵ(ai, bi )E (ai, bi ), (ai, bi ) ∼ qθ . (A7)

In that case, the statistical uncertainty of the result is governed
by the square root of the number of samples generated, N . The
mean logarithm of Z (a) is estimated as

1

Z
〈ŵ(a, b) log Z (a)〉qθ (a,b)

≈ 1

NẐN

N∑
i=1

ŵ(ai, bi ) log ẐM (ai ), (ai, bi ) ∼ qθ (A8)

and analogously for log Z (b).
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The procedure of calculating Eq. (A8) is the following:
(i) we draw N configurations of the entire system using the
probability distribution qθ encoded by the neural network;
(ii) we estimate the full partition function ẐN according to
(A2); (iii) for each of the N configurations, we freeze the sub-
system a and generate additional M − 1 configurations with
the random part b using the conditional probability qθ (b|a);
(iv) for each of the N configurations, we calculate ẐM (a) using
Eq. (A4) using the M configurations with the same frozen
part a; and (v) we calculate the average over N configurations
of the logarithm of ẐM (a) according to Eq. (A8). Steps (iii)–
(v) can be analogously applied to calculate 〈w log Z (b)〉qθ

.
Adding up the terms according to Eq. (6), we obtain the

estimator of the mutual information ÎN,M , which yields the
exact value in the following infinite-statistics limit:

I = lim
N→∞

lim
M→∞

ÎN,M . (A9)

At finite N and M our estimator ÎN,M is biased due to the non-
linearity of the log function. As was shown in the Appendix of
Ref. [41], log ẐN has a bias due to the finite value of N , which
is given by

B[log ẐN ] = − 1

2N

〈ŵ(a, b)2〉qθ (a,b) − 〈ŵ(a, b)〉2
qθ (a,b)

〈ŵ(a, b)〉2
qθ (a,b)

+ O

(
1

N2

)
, (A10)

where the numerator is equal to the variance of Z . This is
a systematic bias of the observable and would be zero for
a perfectly trained network, i.e., when qθ = p ⇔ ŵ(a, b) =
const. For N sufficiently large, this bias can be neglected as it
decreases with 1/N and is usually smaller than the statistical
noise, which decreases only as ∼1/

√
N . In practical terms,

with our statistics of N ≈ 106 we are always working in this
regime. Also, log ẐM (a) is affected by a similar bias for a finite
value of M. Repeating the calculation for that observable, one
can obtain, in analogy to Eq. (A10),

B[log ẐM (a)] = − 1

2M

〈ŵ(b|a)2〉qθ (b|a) − 〈ŵ(b|a)〉2
qθ (b|a)

〈ŵ(b|a)〉2
qθ (b|a)

+ O

(
1

M2

)
. (A11)

In the practical implementation, it is difficult to afford M ∼
N ∼ 106 so typically M ∼ 102 � N . Therefore, neglecting
B[log ẐN ], the final systematic bias of ÎN,M is given by

B[ÎN,M] = 1

2ZM

〈
ŵ(a, b)

×
( 〈ŵ(b|a)2〉qθ (b|a) − 〈ŵ(b|a)〉2

qθ (b|a)

〈ŵ(b|a)〉2
qθ (b|a)

+a ↔b

)〉
qθ

+ O

(
1

M2

)
. (A12)

We expect that a positive bias may affect I , which decreases
as ∼1/M for large enough M. In our calculation, we take
M = 64, 128, 256 and in some cases M = 512 and 1024, and
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FIG. 6. Dependence on M at L = 18 for strip partitioning for
three representative values of β = 0.1, 0.44, and 0.9. Two extrap-
olations are shown: constant and linear. Their difference is taken as
a systematic uncertainty. The inset shows the same data shifted by a
constant amount to show the details.

we perform an extrapolation to M = ∞. We attach a sys-
tematic uncertainty in that step by comparing the result of a
constant extrapolation to the data at the two largest values of
M with the linear a + b2/M extrapolation to the data at the
three largest values of M. In fact, in most cases we observe
that ÎN,M is equal within statistical errors for all values of M.
We provide representative examples of such extrapolations in
Fig. 6.

APPENDIX B: NEURAL NETWORK ARCHITECTURES

In this work, we use two algorithms employing autore-
gressive neural networks: variational autoregressive networks
(VANs) [35] and their modification, called hierarchical
autoregressive networks (HANs) [37]. Both architectures pro-
vide access to the conditional probabilities Eq. (8). The
training of the neural networks consists in generating Nbatch

spin configurations {s1, . . . , sNbatch} from the probability dis-
tribution qθ currently encoded in the neural weights and
calculating the variational estimate of the free energy:

Fq = 1

β

Nbatch∑
k=1

qθ (sk )[βH (sk ) + log qθ (sk )], (B1)

which, up to an additive constant, corresponds to the back-
ward Kullback-Leibler divergence between qθ and p. With
this loss function, the weights θ are updated according to
the gradient back-propagation algorithm with an ADAM opti-
mizer [57].

We use dense (fully connected) neural networks with two
layers. The autoregressive property is enforced by multiplying
half of the weights by 0. The neural network for the VAN
approach is constructed as

Nθ = σ ◦ l2 ◦ ReLu ◦ l1, (B2)
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FIG. 7. Sketch of the partitioning in HAN of an L×L =
10×10 lattice. Border spins are shown in blue and red, and the first
set of interior spins is shown in green. The probabilities of the green
spins depend conditionally on all spins surrounding them (colored
orange for one set of interior spins).

where layer l acts on the input vector x ∈ Rn in the following
way:

yi =
∑
j<i

Wi jx j + bi for y = l (x). (B3)

The autoregressive property of the neural network is guaran-
teed by the fact that the above sum runs only up to i − 1.

The activation functions act pointwise on their arguments.
We use two types of functions: the rectifier ReLu(x) =
max(0, x) and the sigmoid σ (x) = 1/(1 + e−x ). Weights Wi j’s
and biases bi’s are parameters of the neural network and
collectively denoted as θ .

The neural network acts on a spin configuration
{s1, . . . , sL2} as follows: Nθ ({s1, . . . , sL2}) = {ŝ1, . . . , ŝL2},
where each ŝi is interpreted as the conditional probability of
the ith spin to be pointed up given all the previous i − 1 spins
were fixed: qθ (si = +1|si−1, . . . , s1) = ŝi. The autoregressive
condition Eq. (B3) guarantees that the conditional probability
of the ith spin depends only on the previous i − 1 spins.

In the VAN approach, the conditional probabilities of all L2

spins are generated by a single neural network Nθ described
above. It has L2 input neurons and L2 output neurons. To fix all
the L2 spins, one needs to evoke the neural network L2 times:
at the ith invocation one calculates ŝi, which is then used to
draw a value of si. This leads to an unfavorable ∼L6 rise in
the numerical cost of the generation of samples (which is the
main numerical cost of the algorithm). Additionally, the larger
the system is, the more configurations are needed to train the
network to the given quality [measured, for example, by the
effective sample size (ESS) [34]]. This makes the effective
numerical cost grow even faster than ∼L6 [43].

To mitigate the above-mentioned problems, we use a ver-
sion of the HAN algorithm proposed in Ref. [37], which
introduces a specific enumeration of the spins (see Fig. 7): we
first fix the frames (denoted in blue and red) which surround
all the remaining spins, then iteratively we fix the “crosses”
inside the frames (green crosses on the figure) to end up with
single spins. There are several advantages of this division,
which come from the fact that, for nearest-neighbor interac-
tions, the probability of a group of spins depends conditionally
on the values of spins on a closed contour enclosing that set
(a result known also as the Hammersley-Clifford theorem in
the literature [58,59]). First, instead of one network for the
whole system, one can use several smaller networks that fix

the spins at a given level of hierarchy (levels of hierarchy
in our Fig. 7 are denoted by different colors3). The networks
generating the spins in the crosses depend conditionally only
on the surrounding spins (denoted by orange for one cross).
Therefore, those networks are much smaller than the single
network in the VAN approach, hence the numerical cost is
significantly reduced. What is more, at a given level of the
hierarchy, the crosses can be generated in parallel. As was
shown in [37], the numerical cost of HAN is much smaller
than VAN; it scales4 as ∼L3. Smaller networks are also easier
to train, so with the same number of epochs one reaches a
much higher ESS with HAN.

In practice, we are limited to L < 30 in VAN simulations,
whereas with HAN we can reach sizes L = 66 (or even L =
130 for some temperatures). On the other hand, as the crosses
in HAN can only have specific numbers of spins (in order to
close the recurrence), this algorithm can be used for simula-
tions with L = 10, 18, 34, 66, 130, . . ., whereas VAN can be
applied to any L value. Also, VAN is much more elastic con-
cerning the possible divisions into a and b subsystems: with
the proper enumeration of the spins, any division is possible in
VAN. In HAN, with the implementation described here, only
strip and square partitionings are possible. Each division that
requires a specific enumeration of the spins requires also new
training.

In this manuscript, we used both VAN and HAN algo-
rithms: the latter was used to obtain mutual information for
L = 10, 18, 34, 66, 130, with strip and square geometries. All
other values of I were obtained using VAN. To show the
numerical cost of the method, we provide the runtime of
the L = 66 system simulated with the HAN algorithm (one
of the largest simulated): we trained the hierarchy of neural
networks for 220 000 epochs, which took 110 h on a NVIDIA
V100 graphic card to reach the ESS of 0.508. The model
had 2 200 000 parameters. The consecutive measurement of
the mutual information for M = 256 took 20 h. After repeat-
ing such measurements for M = 128 (10 h of running) and
M = 64 (5 h of running), we performed the extrapolation in
M. This allowed us to achieve a total uncertainty of I of 0.15%
at β = 0.44, which is the worst case.

3Note that, in principle, red and blue spins could be treated as
belonging to the same level of the HAN hierarchy. However, here we
explicitly distinguish them because we need to conditionally sample
red spins based on blue spins and calculate the conditional proba-
bilities needed for the mutual information observable. Therefore, red
spins have a separate network from the blue ones.

4We note that the ∼L6 scaling for the VAN approach is due to
the sampling procedure: the neural network has to be evaluated L2

times to fix all the spins and naively each evaluation requires ∼L4

floating point operation as the network has L2 neurons per layer.
However, this counting assumes that operations using all neural
network weights are done during each evaluation of the network. In a
more efficient implementation of autoregressive networks, one would
perform multiplication with only the weights which are necessary to
fix the given spin. It is easy to check that the scaling of the numerical
cost of the VAN algorithm is then ∼L4 [60]. By the same argument,
the scaling for the HAN algorithm with optimal implementation is
L2. This is because the first neural network in the HAN hierarchy
describes the spins at the border of the lattice, which has size ∼L.
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APPENDIX C: CHESSBOARD FACTORIZATION

The consequence of the Hammersley-Clifford theorem is
that once all four nearest-neighbors n(si ) of the spin si are
fixed, its probability is given by

pchess(si = ±1, n(si )) = [1 + exp (∓ 2βSi )]
−1, (C1)

where Si = ∑
j∈n(si ) s j , and j runs over four nearest neigh-

bors of spin i.
In [36] we proposed to use this property to reduce the

number of spins that need to be generated by the network by
a factor of 2. The idea is to divide the spin configuration into
subsystems according to the chessboard pattern: spins at white
fields are fixed by the network using the usual VAN algorithm
(we call them a). The other half of the system (called b) can
be drawn from probabilities Eq. (C1).

Such factorization makes calculating the mutual infor-
mation using chessboard partitioning particularly simple.
We note that due to symmetry reasons, 〈ŵ log Z (a)〉qθ

=
〈ŵ log Z (b)〉qθ

, hence only the former needs to be calculated.
For this purpose, we write

E (a, b) = −
∑
〈i, j〉

sis j = −
∑
i∈b

siSi(a), (C2)

where we explicitly denoted that Si for i ∈ b depends only on
the subsystem a (since any spin from b has nearest neighbors
only from a). Then

log Z (a) = log
∑

b

eβ
∑

i∈b siSi (a)

= log
∏
i∈b

⎛
⎝ ∑

si={−1,1}
eβsiSi (a)

⎞
⎠

=
∑
i∈b

log [2 cosh βSi(a)], (C3)

which means that log Z (a) can be exactly calculated for any a.
In other words, in the chessboard division, there is no need for
Eq. (A4); the observable log Z (a) can be exactly determined
for any configuration and is not biased. This means that we
need much less statistics to determine mutual information.

APPENDIX D: SYMMETRIES

To obtain good quality training of the autoregressive neural
network, it is crucial to impose global symmetries of the sys-
tem through the symmetrization of the loss function [35–38].
This can be achieved by defining a symmetrized probability
for each generated configuration

q̄θ (s) = 1

S

S∑
i=1

qθ (hi(s)), (D1)

where hi, i = 1, . . . , S are the symmetry operators defined
as transformations of the configuration space which keep the
energy unchanged. This symmetrized probability replaces qθ

in the Kullback-Leibler (KL) loss function:

D̄KL(qθ |p) =
Nbatch∑
k=1

q̄θ (sk ) log

(
q̄θ (sk )

p(sk )

)
, (D2)
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and in the definition of importance ratios Eq. (7). See
Appendix B of Ref. [38] for a more detailed discussion.

In the case of Z (a) or Z (b), the calculation of the condi-
tional probabilities qθ (b|a) and qθ (a|b) is needed. Since the
partitioning itself breaks the symmetry, symmetrization is not
possible. Hence, also at the level of conditional probabilities,
one cannot impose any symmetry and so one is left with the
nonsymmetrized version of qθ .

APPENDIX E: NUMERICAL CALCULATION OF I for L = 6

For very small lattice sizes, the number of states is small
enough to calculate the mutual information directly from
Eq. (4). We were able to perform this calculation for L = 6,
where the number of states is 236. Comparison with the results
using VAN is shown in Fig. 8. We found perfect agreement,
which we show by plotting the difference between the two
methods in the inset.

APPENDIX F: COMPARISON WITH MICE

We now discuss the differences between the NIS and MICE
[32] methods. In the MICE approach, one uses the fact that
mutual information can be treated as the KL divergence [33],
which in turn satisfies the Donsker and Varadhan theorem
[61]: the I is an upper bound of some variable Mθ over the
set of functions parametrized by a neural network. One then
trains the network to maximize Mθ . With such a construction,
the MICE method is variational: it provides an approximation
of I that is in general smaller than the true value. However,
as is typical in variational approaches, without knowing the
exact result one cannot deduce the systematic uncertainty of
the approximation. Applying MICE to the 2D Ising model, the
authors of Ref. [32] obtained global entropy with an accuracy
below 5%. The bias for the MI, for which analytic values are
not known, may be larger.

The NIS approach that we discuss in this manuscript cir-
cumvents the above-mentioned inaccuracy of the variational
approach using a reweighting procedure: due to the fact that
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the VAN/HAN procedures use explicit qθ probabilities, one
can remove the difference between p and qθ by calculating the
weights ŵ(a, b) and ŵ(a|b), as discussed in Appendix A, and
correcting the final outcome. Therefore, our method provides,

in the limit of large statistics, the exact result assuming the er-
godicity condition of the algorithm is satisfied. The combined
statistical and systematic uncertainty of MI obtained with NIS
is less than 0.1%.
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