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Upper bound for entropy production in Markov processes
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The second law of thermodynamics states that entropy production cannot be negative. Recent developments
concerning uncertainty relations in stochastic thermodynamics, such as thermodynamic uncertainty relations and
speed limits, have yielded refined second laws that provide lower bounds of entropy production by incorporating
information from current statistics or distributions. In contrast, in this study we bound the entropy production
from above by terms comprising the dynamical activity and maximum transition-rate ratio. We derive two upper
bounds: One applies to steady-state conditions, whereas the other applies to arbitrary time-dependent conditions.
We verify these bounds through numerical simulation and identify several potential applications.
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I. INTRODUCTION

The second law of thermodynamics is considered one of
the most fundamental and universal principles in physics and
the cornerstone of many scientific disciplines. It states that in
any physical process, the entropy production of the system
either increases or remains unchanged but never decreases.
The second law of thermodynamics was recently refined
in stochastic thermodynamics through uncertainty relations,
which have garnered attention in stochastic thermodynamics.
One commonly cited example is the thermodynamic uncer-
tainty relation (TUR) [1–20]. The TUR states that achieving
greater accuracy in thermodynamic systems comes at the cost
of increased thermodynamic expenditures, such as entropy
production or dynamical activity. Furthermore, the TUR gives
a bound for current fluctuations by the entropy production (or
the dynamical activity). From a different perspective, the TUR
provides lower bounds of the entropy production, which are
refinements of the second law of thermodynamics. Specifi-
cally, the TUR states that

� � 2E[J]2

Var[J]
� 0, (1)

where � is the entropy production, J is the thermodynamic
current (see Sec. III for a detailed definition), and E[·] and
Var[J] denote the expectation value and variance, respectively.
Equation (1) provides a tighter bound to the conventional sec-
ond law by using additional information regarding the current.
Another related uncertainty relation in stochastic thermody-
namics is the classical speed limit (CSL) [21–27]. The CSL is
a classical generalization of the quantum speed limit [28–30],
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which places a limit on the speed of state change. An instance
of the CSL is given by

� � kW (P(τ ), P(0)), (2)

where P(0) and P(τ ) are the initial and final densities, re-
spectively, W (·, ·) is the Wasserstein distance between the
probability densities at t = 0 and t = τ , and k is a constant
that does not depend on state. As with Eq. (1), the CLS gives
a lower bound of the entropy production and thus can be
identified as an improved second law.

As demonstrated above, while the lower bound of entropy
production has received considerable attention in uncertainty
relations, its upper bound has been less explored. The lower
bound of the entropy production is of practical significance in
thermodynamic inference because this method estimates en-
tropy production based on trajectory measurements [31–33].
However, the precision of these estimations remains relatively
low for realistic cases. Reference [34], for example, estimated
the entropy production based on a biological model; however,
the numbers are often off by two or three digits. Therefore,
if the upper bound is available, its inclusion can lead to more
accurate estimates of the entropy production. Moreover, once
the upper bound of the entropy production can be derived,
several inequalities, such as Eqs. (1) and (2), have an alter-
native upper bound other than the entropy production. The
upper bound for the average entropy production was studied
in Ref. [35], which is based on extrema of the entropy produc-
tion [36]. Reference [37] derived an upper bound of quantum
entropy production with the entropy flux rate. Reference [38]
derived a reversed TUR which gives an upper bound to the
entropy production by the work exerted on a bead.

In the present study, using results from Ref. [39], we
show that entropy production can be bounded from above
by the terms comprising the dynamical activity [cf. Eq. (5)]
and the maximum ratio between any pair of transition rates
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FIG. 1. (a) Example of Markov processes considered in this
study. The Rnm(t ) denote the transition rates from Bm to Bn at time
t . If the transition from Bm to Bn is possible, then the transition in the
opposite direction should also be possible, which is a requirement for
defining entropy production. (b) Markov process with a ring topology
that achieves the equality condition of Eq. (8). Here α > 0 and β > 0
represent the transition rates for the clockwise and counterclockwise
directions, respectively.

[cf. Eq. (6)]. We derive two upper bounds, one that applies
to steady-state conditions and another that applies to arbitrary
time-dependent driven conditions. The latter bound appears
to hold for general Markov processes with time-dependent
transition rates, starting from any probability distribution. By
considering a long-time limit with time-independent transition
rates, it can been shown that the latter bound reduces to the
former steady-state bound. We verify the obtained bounds
using a numerical simulation. Moreover, we present possible
applications of the obtained bounds.

II. METHOD AND RESULTS

Consider a classical Markov process comprising N states
{B1, B2, . . . , BN }. Let Rnm(t ) be the transition rate from Bm to
Bn at time t and let Pm(t ) be the probability of being Bm at
time t . The dynamics is supposed to obey the master equation

d

dt
Pn(t ) =

∑
m

Rnm(t )Pm(t ), (3)

where we define the diagonal elements as Rnn(t ) ≡
−∑

m( �=n) Rmn(t ). We assume that if Rnm(t ) > 0 for any in-
dices m and n satisfying m �= n, then Rmn(t ) > 0 [Fig. 1(a)].
Then, assuming local detailed balance, we can define the
entropy production rate σ (t ) and dynamical activity rate a(t )
at time t :

σ (t ) ≡
∑
n<m

[Pm(t )Rnm(t ) − Pn(t )Rmn(t )] ln
Pm(t )Rnm(t )

Pn(t )Rmn(t )
, (4)

a(t ) ≡
∑
n<m

[Pm(t )Rnm(t ) + Pn(t )Rmn(t )]. (5)

Here the dynamical activity rate a(t ) quantifies the average
number of jumps at time t . Moreover, we define the ratio
R, which quantifies the maximum ratio between any pair of
transition rates Rnm(t ):

R ≡ max
n �=m,t

Rmn(t )

Rnm(t )
� 1. (6)

Note that, when Rnm = Rmn = 0, we define R = 1. When the
system is time independent, Eq. (6) reduces to

R = max
n �=m

Rmn

Rnm
� 1. (7)

A. Steady-state case

We first consider a time-independent Markov process (i.e.,
Rnm is time independent) and assume that the system is in
the steady state with Pss

m the steady-state distribution, where
σ (t ) = σ and a(t ) = a. Under steady-state conditions, we
obtain the following upper bound on the entropy production
rate:

σ � a(ln R)
R − 1

R + 1
. (8)

Equation (8) is the first main result of this study and its proof
is provided in Appendix A. Equation (8) provides an upper
bound on the entropy production σ in terms of the dynamical
activity a and the ratio R [Eq. (7)]. Let us consider the equality
case of Eq. (8). Equation (8) becomes an equality when the
entropy production and dynamical activity rates are given by

a = c(α + β ), σ = c(β − α) ln
β

α
(9)

for the transition rates α > 0 and β > 0 and constant c > 0.
Consider a Markov process with a ring topology, where the
transition rates in the clockwise and counterclockwise direc-
tions are denoted by α and β, respectively [Fig. 1(b)]. Such
a Markov process has been extensively studied in stochastic
clock models [40]. The entropy production and dynamical
activity of the ring system are given by Eq. (9) and hence
Eq. (8) is saturated in the system.

Equation (8) is meaningful from a practical point of view.
Equation (8) shows that the ratio σ/a can be bounded from
above by R alone. Since the measurement of R is relatively
easy, Eq. (8) can be used to infer the ratio σ/a from measure-
ments of stochastic trajectories.

B. Time-dependent driven case

We have so far obtained the upper bound for entropy pro-
duction for the steady-state case. Next we derive the upper
bound for entropy production in a time-dependent driven pro-
cess. Suppose that the process begins at t = 0 and ends at
t = τ (τ > 0). Let �(τ ) and A(τ ) be the entropy production
and dynamical activity, respectively, within the interval [0, τ ]:

�(τ ) ≡
∫ τ

0
dt σ (t ), (10)

A(τ ) ≡
∫ τ

0
dt a(t ). (11)

Here �(τ ) quantifies the entropy production generated during
the interval [0, τ ] and A(τ ) denotes the average number of
jump events during [0, τ ]. Then we obtain upper bounds on
the entropy production as follows:

�(τ ) � A(τ )(ln R)
R − 1

R + 1
+

(
1 + 2R ln R

R2 − 1

)
ln N. (12)

Equation (12) is the second result of this study, which holds
for an arbitrary Markov process starting from an arbitrary
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state. Equation (12) shows that the upper bound of the entropy
production is determined solely by A(τ ), R, and N . Note that
(12) trivially holds for �(τ ) � [1 + (ln R)/(R + 1)] ln N . A
proof for Eq. (12) is provided in Appendix B. The bound
of Eq. (12) tightens when �(τ ) � ln N . Under this condi-
tion, Eq. (12) converges to the same inequality as derived
for the steady-state case [Eq. (8)]. Therefore, in addition to
�(τ ) � ln N , the conditions given by Eq. (9) are required for
a saturation of the bound of Eq. (12).

C. Numerical simulation

Before providing applications, we verify the upper bounds
[Eqs. (8) and (12)] via numerical simulation. In this respect,
we randomly generate Markov processes (time-independent
transition rates Rnm) and calculate the entropy production rate
σ and its upper bounds. For details of the simulation param-
eters, see the caption of Fig. 2. Figure 2(a) illustrates Eq. (8),
which is the upper bound for the steady-state condition by
showing the entropy production rate σ (τ ) as a function of the
right-hand side of Eq. (8), where the points represent random
realizations and the solid line represents the saturating case.
When Eq. (8) is satisfied, all points should be located above
the solid line. As can be seen, all the points are above the line,
indicating that Eq. (8) holds for the simulation. We also check
whether Eq. (8) holds for out-of-steady-state dynamics. In
Fig. 2(b) we select random initial probability distributions and
calculate the same quantities as in Fig. 2(a). We see that some
points are below the solid line, implying that the steady-state
bound [Eq. (8)] is not satisfied for the out-of-steady-state case.

Next we verify the bound for the out-of-steady-state con-
dition [Eq. (12)]. Figure 2(c) visualizes Eq. (12), where �(τ )
is plotted as a function of the right-hand side of Eq. (12). In
Fig. 2(c) the points denote random realizations and the solid
lines represent the saturating cases of Eq. (12). Clearly, all
points are located above the solid lines, numerically verifying
the obtained bounds. Since Eq. (12) is trivially valid when
�(τ ) � [1 + (ln R)/(R + 1)] ln N , its tightness is weaker than
the steady-state case [Eq. (8)], which can be confirmed by
comparing Figs. 2(a) and 2(c).

III. EXAMPLES

In the first two examples, we show the new upper bounds
for the precision of the generic current and the probability of
entropy production.

A. Precision of generic current

We consider a system that is controlled by an
arbitrary protocol λ(vt ) with speed parameter v and
let Rnm(t ) = Rnm(λ(vt )) for all m and n. Let ωτ =
{n0, (n1, t1), . . . , (nK , tK )} be a stochastic trajectory of
the system during the time interval [0, τ ], where the system
is initially in state n0 and a transition from state ni−1 to state
ni occurs at time ti for each 1 � i � K . For each trajectory,
we consider the generic current J = Jd (ωτ ) ≡ ∑K

i=1 dnini−1

for antisymmetric coefficient dmn = −dnm and we define the
precision of the generic current as p(J ) ≡ (∇E[J])2/Var[J].
Here ∇ ≡ τ∂τ − v∂v is a differential operator, and E[·]
and Var[·] denote the ensemble average and variance
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FIG. 2. Numerical simulation of the upper bounds of entropy
production. (a) Right-hand side of Eq. (8) as a function of σ under the
steady-state condition. Random realizations are plotted by points and
the solid line denotes the equality case. (b) Right-hand side of Eq. (8)
as a function of σ under non-steady-state conditions. Since Eq. (8)
assumes the steady-state condition, the bound is not expected to hold
under non-steady-state conditions. The points and the solid line have
the same meanings as those of (a). (c) Right-hand side of Eq. (12)
as a function �(τ ) under non-steady-state conditions. The number
of states is randomly sampled from {3, 4, 5} and the transition rate
Rnm is randomly determined. In (a) the initial probability is Pss

m . In
(b) and (c) the initial probability Pm(0) is randomly sampled and the
time duration τ is sampled from [0.1, 5].

of the current, respectively. Using the thermodynamic
and kinetic uncertainty relation in Ref. [39], we
obtain

p(J )

A(τ )
� �(τ )2

4A(τ )2 f
(

�(τ )
2A(τ )

)2 , (13)

where f (x) is the inverse function of x tanh x. Combining
g(x) = x/ f (x), where g : [0,∞) → [0, 1) is the inverse
function of x tanh−1 x in Ref. [41], we obtain

p(J )

A(τ )
� g

(
�(τ )

2A(τ )

)2

. (14)

044139-3



TOMOHIRO NISHIYAMA AND YOSHIHIKO HASEGAWA PHYSICAL REVIEW E 108, 044139 (2023)

Since g increases monotonically, by combining Eqs. (8) and
(12), it follows that

p(J )

A(τ )
� g

[
ln R

2

(
R − 1

R + 1

)
+ C

2A(τ )

]2

, (15)

where the constant C on the right-hand side is equal to zero
for the steady-state case and C = (1 + 2R ln R/(R2 − 1)) ln N
for the time-dependent driven case. Since |g(x)| < 1 for all
non-negative x, this inequality is tighter than the kinetic uncer-
tainty relation p(J )/A(τ ) � 1 in [5]. For the steady-state case,
note that the right-hand side of Eq. (15) depends only on R,
which is determined by the system. When dmn = 1 for n < m,
since E[J] = cτ (β − α) and Var[J] = cτ (α + β ) hold in the
case presented in Fig. 1(b), Eq. (15) becomes the equality.

B. Probability of entropy production

We derive an upper bound for the probability that the
entropy production is greater than or equal to a given value
s � 0. We also derive an upper bound for the probability
that the entropy production is less than or equal to s. We
assume that the strong detailed fluctuation theorem holds,
P(�)/P(−�) = e� , where P(�) is the probability of entropy
production �. To satisfy this condition, the system must meet
two requirements [42]. First, the initial and final probability
distributions must agree. Second, the external protocol must
be time symmetric. Since φ(�) ≡ �[1 − exp(−�)] is nonde-
creasing and non-negative for � � 0, we obtain

φ(s)P(� � s) �
∫ ∞

s
d�φ(�)P(�)

�
∫ ∞

0
d�φ(�)P(�)

=
∫ ∞

−∞
d��P(�) = �(τ ), (16)

where we use P(−�) = exp(−�)P(�). By combining this
relation with the upper bounds [Eqs. (8) and (12)], we obtain

P(� � s) �
A(τ )(ln R)

(
R−1
R+1

) + C

s[1 − exp(−s)]
, (17)

where the definition of C is the same as in the example in
Sec. III A. From Eq. (17) we obtain

P(� � −s) =
∫ ∞

s
d� exp(−�)P(�)

� exp(−s)P(� � s)

�
A(τ )(ln R)

(
R−1
R+1

) + C

s(exp(s) − 1)
. (18)

C. Arrow of time inference

As an example of the entropy-production upper bound, we
consider the inference of the arrow of time from trajectory
measurements [43,44]. Suppose that two movies are shown.
The first is a forward movie depicting a system that undergoes
a process in which the external protocol λ changes from A to
B. The other is a backward movie that displays the reverse pro-
cess, where λ goes from B to A, and is being played backward.

The initial distribution of the backward process is identical to
the final probability of the forward process, as assumed in the
fluctuation theorem. Our task is to guess whether this movie is
the forward or backward movie. It is known that the likelihood
of the forward process given a trajectory ωτ is

P(F |ωτ ) = 1

1 + e−�
. (19)

Equation (19) demonstrates that the direction of time can be
inferred more accurately by a larger entropy production. Us-
ing Eq. (12), we can obtain the upper bound of the likelihood

P(F |ωτ ) �
(
R−A(τ )(R−1)/(R+1)N [−R2−2R ln(R)+1]/(R2−1) + 1

)−1

(20)

for �(τ ) > [1 + (ln R)/(R + 1)] ln N .

IV. CONCLUSION

In this study we derived the upper bounds for entropy
production based on the dynamical activity and the maximum
transition-rate ratio. We established two upper bounds, one
for steady-state conditions and another for arbitrary time-
dependent conditions. Furthermore, we performed numerical
simulations to confirm the validity of these limits. We also
identified several potential applications of the upper bounds.
We expect that these findings will improve our understanding
of nonequilibrium dynamics given that entropy production
and dynamical activity are fundamental to thermodynamics.
Finally, we discussed the application of our upper bound to
real experimental data. To accurately observe the upper bound
of the entropy production derived from experimental data,
we must address several challenges. In real-world scenarios,
observations commonly capture only a portion of a Markov
chain. Consequently, we cannot calculate R, which makes it
impossible to implement the proposed method directly. Re-
solving this issue is a topic for future studies.
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APPENDIX A: DERIVATION OF THE STEADY-STATE
CASE

We provide a derivation of Eq. (8), which holds true un-
der steady-state conditions. The entropy production rate σ

[Eq. (4)] admits the relation

σ =
∑
n<m

(
Pss

m Rnm − Pss
n Rmn

)
ln

Pss
m Rnm

Pss
n Rmn

=
∑
n<m

(
Pss

m Rnm − Pss
n Rmn

)
ln

Rnm

Rmn

�
(

max
m �=n

ln
Rnm

Rmn

) ∑
n<m

∣∣Pss
m Rnm − Pss

n Rmn

∣∣

= ln R
∑
n<m

∣∣Pss
m Rnm − Pss

n Rmn

∣∣, (A1)
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where R is defined in Eq. (6). Using the inequality derived in
Ref. [39], we obtain

σ

f
(

σ
2a

) � 2
∑
n<m

∣∣Pss
m Rnm − Pss

n Rmn

∣∣, (A2)

where f (x) is the inverse function of x tanh x as defined in the
main text. Substituting Eq. (A2) into Eq. (A1), we obtain

ln R

2
� f

(
σ

2a

)
. (A3)

Because x tanh x is a monotonically increasing function, we
obtain Eq. (8).

APPENDIX B: DERIVATION OF THE TIME-DEPENDENT
DRIVEN CASE

Here we provide a derivation of Eq. (12). The following
derivation assumes that

�(τ ) >

(
1 + ln R

R + 1

)
ln N. (B1)

As will be shown, the assumption of Eq. (B1) is automatically
satisfied by the final inequality [Eq. (B13)]. From the defini-
tion of �(τ ), the following relation holds:

�(τ ) =
∫ τ

0
dt

∑
n<m

[Pm(t )Rnm(t ) − Pn(t )Rmn(t )]

× ln
Pm(t )Rnm(t )

Pn(t )Rmn(t )

=
∫ τ

0
dt

∑
n<m

[Pm(t )Rnm(t ) − Pn(t )Rmn(t )] ln
Rnm(t )

Rmn(t )

+ S(τ ) − S(0)

� (ln R)
∫ τ

0
dt

∑
n<m

|Pm(t )Rnm(t ) − Pn(t )Rmn(t )|

+ ln N. (B2)

Here S(t ) is the Shannon entropy at time t , S(t ) ≡
−∑

n Pn(t ) ln Pn(t ). The S(τ ) − S(0) in the second line of
Eq. (B2) can be derived from

S(τ )−S(0) =
∫ τ

0

d

dt
S(t )dt

=
∫ τ

0
dt

∑
n<m

[Pm(t )Rnm(t )−Pn(t )Rmn(t )] ln
Pm(t )

Pn(t )
.

(B3)

In the last inequality in Eq. (B2), we used the relation 0 �
S � ln N . From Eq. (27) in Ref. [39], the following relation
holds:

�(τ )

f
(

�(τ )
2A(τ )

) � 2
∫ τ

0
dt

∑
n<m

|Pm(t )Rnm(t ) − Pn(t )Rmn(t )|. (B4)

Substituting Eq. (B4) into Eq. (B2), we obtain

�(τ ) − ln N � ln R

2 f
(

�(τ )
2A(τ )

)�(τ ). (B5)

From Eq. (B1), the left-hand side of Eq. (B5) appears to be
positive. Thus, we have

f

(
�(τ )

2A(τ )

)
� ln R

2[�(τ ) − ln N]
�(τ ) = ln R

2
[Y (τ ) + 1]

(B6)

for �(τ ) − ln N > 0, where

Y (τ ) ≡ �(τ )

�(τ ) − ln N
− 1 = ln N

�(τ ) − ln N
> 0. (B7)

By simply considering f −1(x) in Eq. (B6), we obtain

�(τ )

2A(τ )
� ln R

2
[Y (τ ) + 1]

R − R−Y (τ )

R + R−Y (τ )
. (B8)

Since R−Y (τ ) = exp[−Y (τ ) ln R] � 1 − Y (τ ) ln R, Eq. (B8)
can be bounded as

�(τ )

2A(τ )
� ln R

2
[Y (τ ) + 1]

R − R−Y (τ )

R + R−Y (τ )

� ln R

2
[Y (τ ) + 1]

R − 1 + Y (τ ) ln R

R + 1 − Y (τ ) ln R
, (B9)

where we use R + 1 − Y (τ ) ln R > 0 based on the assumption
of Eq. (B1) and R � 1. Substituting �(τ ) = (ln N )[Y (τ ) +
1]/Y (τ ) into Eq. (B9), we obtain

[R + 1 − Y (τ ) ln R] ln N

� A(τ )Y (τ )(ln R)[R − 1 + Y (τ ) ln R]. (B10)

Substituting X (τ ) = 1/Y (τ ) into Eq. (B10), we obtain the
following quadratic equation with respect to X (τ ):

(R + 1)(ln N )X (τ )2 − [A(τ )(R − 1) + ln N](ln R)X (τ )

− A(τ )(ln R)2 ≡ DX (τ )2 − EX (τ ) − F � 0. (B11)

Here D ≡ (R + 1) ln N , E ≡ [A(τ )(R − 1) + ln N] ln R, and
F ≡ A(τ )(ln R)2, and these coefficients are all non-negative.
By solving this equation with respect to X (τ ), we obtain

X (τ ) � E + √
E2 + 4DF

2D
� E

D
+ F

E
, (B12)

where we use
√

1 + x � 1 + x/2 for x � 0 in the final in-
equality. Substituting X (τ ) = �(τ )/ ln N − 1, D, E , and F
into this relation, we obtain Eq. (12) as follows:

�(τ ) � A(τ )(ln R)

(
R − 1

R + 1

)

+
(

1 + ln R

R + 1
+ A(τ )(ln R)

A(τ )(R − 1) + ln N

)
ln N

� A(τ )(ln R)

(
R − 1

R + 1

)
+

(
1 + ln R

R + 1
+ ln R

R − 1

)
ln N.

(B13)

This inequality satisfies the assumptions of Eq. (B1).
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