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We investigate block diagonal and hierarchical nested stochastic multivariate Gaussian models by studying
their sample cross-correlation matrix on high dimensions. By performing numerical simulations, we compare
a filtered sample cross-correlation with the population cross-correlation matrices by using several rotationally
invariant estimators (RIEs) and hierarchical clustering estimators (HCEs) under several loss functions. We show
that at large but finite sample size, sample cross-correlations filtered by RIE estimators are often outperformed by
HCE estimators for several of the loss functions. We also show that for block models and for hierarchically nested
block models, the best determination of the filtered sample cross-correlation is achieved by introducing two-step
estimators combining state-of-the-art nonlinear shrinkage models with hierarchical clustering estimators.
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I. INTRODUCTION

In recent years, many research areas have dealt with mul-
tivariate time series. Examples are physics, neuroscience,
finance, climatology, genomics, etc. In all these research
areas, investigators perform n measurements of a system char-
acterized by p variables, obtaining an observation matrix Y of
dimension p × n. After standardizing the p series of n records,
one can compute the p × p sample cross-correlation matrix E.
Sample cross-correlation matrices computed from a finite set
of multivariate data generally differ from the population cross-
correlation matrix C associated with the model generating
multivariate data. Since the seminal work of Marčenko and
Pastur [1], many studies have considered the spectral proper-
ties of sample cross-correlation matrices and have used these
theoretical results to set up a null model useful to discriminate
information that can be extracted from data, i.e., information
not compatible with a null model, and information hard to
be distinguished from noise, i.e., a null model, in empirical
data [2].

Comparing sample and population cross-correlation re-
quires choosing a loss function, i.e., a function specifying a
penalty for an incorrect estimate from the underlying statisti-
cal model. In the literature, several loss functions have been
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proposed, and the choice of a specific one must be related to
the specific problem considered. The most used loss functions
are Frobenius loss, Stein loss, and Kullback-Leibler (KL)
divergence.

In Refs. [3,4], the authors analytically demonstrated that
the expected KL divergence of a sample correlation matrix
concerning the population matrix does not depend on the ref-
erence model. The authors used the KL divergence to measure
how informative the filtered correlation matrices are when
applying spectral and hierarchical clustering techniques sepa-
rately. The studies performed simulations against factor model
structures [5] and empirical studies with financial time series
listed on U.S. equity markets. As spectral techniques, the au-
thors used two variations of methods known in the literature as
the clipping technique. The clipping (also known as filtering
or denoising in the econophysics community) technique was
initially proposed in Refs. [6,7] and later cataloged in the
family of rotationally invariant estimators (RIEs) by Ref. [2].
In particular, the clipping technique is associated with the
spiked covariance matrix model [8].

RIE models for estimating the covariance matrix have been
known in the mathematical statistics community since Stein
[9] proposed them under the name rotation-equivariant esti-
mators. His idea was to keep the eigenvectors of the sample
covariance matrix while shrinking its eigenvalues. They were
proposed in the classical paradigm when the number of obser-
vations is much greater than the number of variables. Ledoit
and Wolf have been promoting these methods on the high-
dimensional stage. In Ref. [10], they proposed an optimal
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linear shrinkage using random matrix theory (RMT) concepts.
Later, in Ref. [11], the first nonlinear shrinkage model based
on RMT and asymptotic theory was proposed. Their numeri-
cal implementation is given in Ref. [12]. On the other hand,
Bun et al. [2] suggested a different numerical approach that
is easier to implement. Both are approximations of the same
model. Finally, Ledoit and Wolf gave a kernel-based solution
that is essentially analytical and drastically improves the com-
putation time by two orders of magnitude [13]. This solution
is valid for general correlation structures but does not consider
autocorrelations. Burda and Jarosz tackled the autocorrelation
structure in a recent work [14] by using concepts of RMT and
free probability.

The previous formulations led to considering nonlinear
shrinkage formulas to estimate the population eigenvalues
from the empirical ones and reconstructing the correlation ma-
trices using the empirical eigenvectors. As such, they belong
to the RIE family of estimators. These nonlinear shrinkage
formulas are optimal with the Frobenius loss function. The
problem of applying different loss functions is of current inter-
est, as stated, for example, in Refs. [2,15], where the authors
proposed quantifying the information kept by the optimal RIE
compared to several estimators and metrics.

Several empirical covariance matrices present a spectrum
compatible with the so-called spiked covariance matrix model
[8,15], i.e., covariance matrices with an eigenvalue spectrum
characterized by a few number of large isolated eigenvalues
distinct from bulk eigenvalues. So-called hierarchically nested
factor models, i.e., factor models with nested factors affecting
distinct subgroups of elements of the systems present a spiked
eigenvalue spectrum [16,17]. One of the main results of spiked
covariance models is the presence of top eigenvector inconsis-
tency [15], i.e., the observation that the angle between sample
eigenvectors and the corresponding population eigenvectors
have nonzero limits. This implies that the optimal choice of
the nonlinear shrinkage function of eigenvalues might de-
pend significantly on the specific loss function chosen. Top
eigenvector inconsistency also suggests that filtering by RIEs
using sample eigenvectors might miss some aspects of the
population matrix. Another limitation of RIE methods con-
cerns sample eigenvectors associated to small eigenvalues.
They usually comprise components covering the entire set
of elements, therefore presenting an eigenvector orientation
quite distinct from localized eigenvectors associated with a
correlated dynamics of a small group of elements.

The above observations have motivated an alternative fil-
tering procedure of spiked correlation matrices based on
hierarchical clustering. In fact, in standardized random mul-
tivariate variables with correlation matrices characterized by
positive correlation coefficients, there is a one-to-one corre-
spondence between the cophenetic matrix of a hierarchical
clustering and a hierarchically nested factor model [5]. A
hierarchical clustering procedure therefore provides a correla-
tion matrix equivalent to a hierarchically nested factor model
[18]. The effectiveness of filtering a correlation matrix by
hierarchical clustering has been documented in several studies
primarily associated with the problem of portfolio optimiza-
tion in finance [19–23].

Although the subject of RIE methods has been analytically
studied extensively [24], some assumptions about eigenvec-

tors might induce relevant limitations in the presence of
complex systems characterized by correlation matrices with
a hierarchically nested structure. Since no analytical results
exist about optimal filtering by hierarchical clustering, we
conduct a series of numerical experiments to evaluate the
performances of different filtering methods based on RIE and
on hierarchical clustering for different loss functions. Our
numerical results suggest that RIE methods and hierarchical
clustering methods give comparable results for systems whose
population matrix is a spiked correlation matrix. We hope our
results can stimulate the development of analytical results for
HC filtering estimators.

Specifically, we numerically analyze block diagonal and
hierarchical nested models on high dimensions and compare
their behavior under several loss functions when applying
RIE and hierarchical clustering estimators. We are also in-
troducing two-step estimators that combine state-of-the-art
nonlinear shrinkage models with hierarchical clustering esti-
mators. These estimators outperform several of the most used
estimators when the model of multivariate series is a block
model or a hierarchically nested block model and when the
statistical properties of records are Gaussian.

The paper is organized as follows. Section II describes the
estimators proposed in this paper. Section III introduces the
loss functions used to evaluate the difference between filtered
sample correlations and population correlations when apply-
ing each estimator. Section IV gives the specifications of the
models studied. Section V shows the main results obtained.
Section VI analyzes and discusses the findings found.

II. ESTIMATORS

For the sake of completeness, this section presents the
estimators of the correlation matrix that we will use in our nu-
merical analyses. These estimators can be grouped into three
classes. The first ones belong to the RIE family, the second
ones are of the hierarchical clustering type, and the third class
combines both, which we denote as two-step estimators. It
is important to emphasize that the first class of estimators is
designed to deal with the estimation uncertainty inherent in
the high-dimensional scenario when the number of variables
is of the same order as the number of observations. The sec-
ond class of estimators deals with the estimation uncertainty
associated with the structure of the correlation blocks between
variables. Therefore, it is focused on better detection of the
financial sectors. Finally, the third class of estimators deals
with both types of noise.

A. Rotationally invariant estimators

The RIE has the property that the sample correlation matrix
E can be rotated by some orthogonal matrix O and its esti-
mation, denoted as �, must be rotated in the same direction.
Therefore, �(E) can be diagonalized on the same basis as E
except for a fixed rotation �. In this way, �(E) has the same
eigenvectors as E and it is possible to write

�(E) =
p∑

i=1

ξiviv
′
i, (1)
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where vi are the eigenvectors of E, and ξi is a function of the
eigenvalues [λ j] j∈{1,p} of E.

The empirical correlation matrix E is a trivial example that
satisfies this condition. Then, a naive estimator is

�naive = E. (2)

A classical RMT filter is proposed in Refs. [6,7] and is
expressed as

ξRMT =
{

λ̄ i f λk < (1 + √
q)2

λk otherwise,
(3)

where λ̄ represents the eigenvalues average below
Marchenko-Pastur law’s upper bound. Then, the estimated
correlation matrix is given by

�RMT =
p∑

i=1

ξRMT
i viv

′
i . (4)

A nonlinear shrinkage formula of the RIE family to esti-
mate the unbiased covariance matrix when C has a general
form given by [11]

ξLP
k = lim

ε→0+

λk

|1 − q + qλkGE (λk − iε)|2 (5)

= λk

|1 + uk|2 (6)

= λk

(αk + 1)2 + β2
k

, (7)

where λk is an eigenvalue of E, GE is the Stieltjes transform
of E, and since we are close to the real axis, the Sokhotski-
Plemelj formula applies,

uk = qTE (λk − i0+) = αk + iβk, (8)

where TE = zGE (z) − 1, αk = q(πλkhE (λk ) − 1), and βk =
qπλkρE (λk ). Here, hE denotes the Hilbert transform of E
and ρE its eigenvalue density. The corresponding estimated
correlation matrix is given by the following expression:

�LP =
p∑

i=1

ξLP
i viv

′
i . (9)

A recent proposal for nonlinear shrinkage expression is due
to Burda and Jarosz [14], who incorporated autocorrelation
into data-generating processes through a matrix A. The au-
thors gave explicit solutions for some specific models of the
vector autoregressive moving average family [25]:

Yi,a =
r1∑

β=1

bβYi,a−β +
r2∑

α=0

aαεi,a−α. (10)

The key element to analytically incorporate autocorrelations
is the S transform of the associated matrix of coefficients
A, which, in principle, is not trivial to compute. Calculating
S requires some knowledge of the free probability [26,27].
Burda and Jarosz explicitly solved the model for (r1, r2) ∈
{(1, 1), (1, 0), (2, 0), (0, 1), (0, 2)}. The nonlinear shrinkage
formula has the general form

ξBJ
k = λkIm{1/ZA(uk )}

Im{uk} , (11)

where ZA is the Z transform of A. Consequently, the optimal
estimator in the Frobenius sense is

�BJ =
p∑

i=1

ξBJ
i viv

′
i . (12)

Note that when A = I, the S transform of A is given by

SA(t ) = t + 1

tZA(t )
= 1 ⇒ ZA(t ) = t + 1

t
. (13)

Then,

ξBJ
k = λkIm{1/ZA(uk )}

Im{uk} = λk

(αk + 1)2 + β2
k

, (14)

and we recover Eq. (7).
In particular, the combination of parameters a0 =√

1 − b2
1, b1 = e−1/τ , ai = bi−1 = 0 (for i > 1) represents the

exponential decay model for which ZA is known analytically
[28,29],

ZA(z) = η +
√

η2 − 1 + 1/z2, (15)

where η = coth(1/τ ).
A further estimator proposed from a data-driven approach

employs the technique known as moving window cross-
validation (mwcv) and is denoted as the oracle estimator [30].
It is important to mention that this estimator approximates the
state-of-the-art nonlinear shrinkage [31]. The expression to
estimate the population eigenvalues is given by the expression

ξmwcv
i = 1

K

K−1∑
μ

〈
λ

train,μ
i

∣∣Etest,μ ∣∣λtrain,μ
i

〉
, (16)

where K = (Ttotal − T )/Tout. The idea is to set T observations
as a train and Tout as a test in a moving window scenario of
the entire sample sequence of length Ttotal = KTout + T . Here,
λ

train,μ
i represents the eigenvalues of the training sample in

window μ and Etest,μ the test sample covariance matrix in
window μ:

�mwcv =
p∑

i=1

ξmwcv
i viv

′
i . (17)

B. Hierarchical clustering estimators

The hierarchical clustering estimator was proposed in
Ref. [3]. This estimator is based on the hierarchical clustering
methods, which require a distance or dissimilarity matrix as an
input. Then, we must transform the correlation matrix E into
a dissimilarity matrix. Here, we choose the transformation
Di j = 1 − Ei j , which satisfies the axioms of a distance mea-
sure. The clusters can generally be created through divisive or
agglomerative methods. The proposed estimator considers the
agglomerative strategy, which consists of four steps. The first
step is to set each of the p variables in a single cluster. Next, in
the second step, we search in D for the nearest (most similar)
pair of variables (clusters), say a, b, and denote this distance
by dab. In the third step, the clusters a and b are merged,
denoted as (ab), and the entries of D are updated by removing
the rows and columns corresponding to the variables a and
b. Hence the row and column regarding the new cluster (ab)
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distances to each of the remaining clusters are added to D.
The four-step consists of repeating steps 1–3 until a single
cluster is obtained, where the levels at which two clusters
join together can be represented through a dendrogram. To
quantify the nearest (most similar) clusters, we use the average
linkage given by the agglomerative criteria [32]

dab =
∑

i

∑
j Di j

NaNb
, (18)

where Di j consider the distance between the objects i and j
on clusters a and b, respectively, and Na, Nb represent their
number of items. This particular procedure, known as the
average linkage clustering analysis (ALCA), enables us to
compute the cophenetic distance ρ on the associated den-
drogram [33], which is the distance between clusters at each
hierarchical level. Finally, it is built up a dissimilarity matrix
as a function of ρ: D(ρ); and the filtered correlation matrix
is obtained by �(E )i j = 1 − Di j (ρ). Figure 1 schematically
shows the mechanism of applying the hierarchical clustering
estimator under the ALCA approach to a 4 × 4 matrix with
a hierarchical nested structure. The example shows that the
finer structures are filtered out using this procedure, and only
the strongest correlation blocks are preserved.

C. Two-step estimators

We introduce the two-step estimators, which consist of
applying as a first step a RIE estimator to deal with the sta-
tistical uncertainty due to high dimensionality. Once this type
of uncertainty is eliminated, a hierarchical clustering-based
estimator is applied as a second step to highlight the hier-
archically nested block structure. We expect that a two-step
estimator presents very good performance for several loss
functions because (i) a first application of a RIE reduces the
error of estimation of largest eigenvalues and (ii) the second
application of an appropriate filtering by hierarchical cluster-
ing can reduce the inconsistency in top eigenvectors that is
unavoidably associated with RIEs. In particular, we consider
the following combination of estimators because they present
very good performance:

(1) Two-step (I): �ALCA(�mwcv(E)).
(2) Two-step (II): �ALCA(�BJ(E)).
(3) Two-step (III): �ALCA(�LP(E)).

III. LOSS FUNCTIONS

We use six different loss functions to compare the effect of
the different estimators on the correlation matrices. The first
of these is the KL divergence.

Let A, B be two square matrices of dimension p × p; the
KL divergence of Gaussian processes is given by [3]

K (A, B) = 1
2 [ln[det(BA−1)] + Tr(B−1A) − p]. (19)

We note that, under the assumption of Gaussianity, K (A, B)
is equivalent up to a factor of the commonly known inverse
Stein’s loss function [34].

The second metric is the inverse KL divergence or Stein’s
loss. This metric has the same expression as the KL di-

FIG. 1. The effect of applying the hierarchical clustering estima-
tor under the ALCA approach to a 4 × 4 matrix with a hierarchical
nested structure. (a) Empirical matrix E, (b) the associated dendro-
gram, and (c) the filtered correlation matrix �(E).

vergence given above but applied on the inverse matrices:
K (A−1, B−1). It is important to mention that Stein’s loss
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function LStein is related to the inverse KL divergence by a
scaling factor

LStein(A, B) = 1

p
Tr(A−1B) (20)

−1

p
ln[det(A−1B)] − 1 = 2

p
K (A−1, B−1). (21)

This paper considers the scaled version to prevent the loss
function from going to infinity with the matrix dimension,
and both metrics (Stein’s loss and inverse KL) are assumed
to be indistinguishable. In Ref. [3], it has been shown that the
expected value of the KL divergence does not depend on the
specific model under the Gaussian assumption. Consider two
independent sample covariance matrices E1, E2 coming from
the parent population C; the next scaled expectations are valid
under Gaussian assumptions

E[K (E1, E2)] = p + 1

n − p − 1
,

E[K (C, E)] = 1

p

⎡
⎣p ln

(
2

n

)
+

n∑
t=n−p+1

(
�′(t/2)

�(t/2)

)

+ p(p + 1)

n − p − 1

⎤
⎦, (22)

where �(x) is the usual gamma function and �′(x) is the
derivative of �(x). We have scaled the metric by 2

p to have an
exact equivalence between Stein’s loss and the KL divergence,
yet the original result does not consider this factor.

Moreover, the Frobenius norm is given by

F (A, B) = 1

p
Tr[(A − B)(A − B)′]; (23)

the corresponding inverse Frobenius is F (A−1, B−1). The
Frobenius and the inverse KL divergence are designed to
deal with the covariance matrix, while the inverse Frobenius
and the KL divergence to the inverse covariance matrix, also
known as the precision matrix.

An interesting metric in the framework of the classical
portfolio theory is the minimum-variance loss function [35]:

MV(A, B) = Tr(B−1AB−1)/p

[Tr(B−1)/p]2
− 1

Tr(A−1)/p
(24)

One last metric is the symmetrized Stein’s loss, a combina-
tion of Stein’s loss and the inverse of Stein’s loss:

SS(A, B) = 1

p
Tr(BA−1 + B−1A) − 2. (25)

This metric pays equal attention to the problem of estimating
the covariance and the precision matrix.

IV. MODEL

We consider a multiplicative noise model with the follow-
ing structure:

Y =
√

CX
√

A, (26)

E = 1

n

√
CXAX′√C, (27)

where Y is the p × n data matrix, C is the p × p population
cross-correlation matrix, A is the n × n autocorrelation ma-
trix, and Xi j ∼ N (0, 1), that is, each element Xi j follows a
standard Gaussian distribution. The correlation model C is
first constructed as follows:

Lkl =
{

γkl , if k = k(l ), . . . , k(l + pl )

0, otherwise,
(28)

where L is the loading matrix of dimension p × b, k =
1, . . . , p, l = 1, . . . , b, pl the size of each block l , b being
the number of blocks (b � p), and {k(l ), k(l + pl )} the initial
and last values of the given block l . Once defined, L, the
population correlation matrix C is obtained simply by the
expressions

Q = LL′, (29)

Ci j = δi j + Qi j (1 − δi j ), (30)

where δi j denotes the Kronecker delta. We have considered a
block diagonal and hierarchical nested block matrix structure
to model C. The first model comprises 12 independent diag-
onal blocks, while the second model is constructed with 12
overlapped diagonal blocks. In particular, we consider a ho-
mogeneous specification of the loading factors γkl = γ = 0.3.
In both models, the block sizes pl are heterogeneous as well
as the initial and last values {k(l ), k(l + pl )}.

We analyze three different cases. The first case considers
the block diagonal model with autocorrelation matrix A = I.
The second is the hierarchical nested model with autocorre-
lation matrix A = I. And the third is the same hierarchical
nested model but with autocorrelation elements of the form
Ai j = e− |i− j|

τ , where we have fixed τ = 3. In other words, the
first two cases represent time series without memory, while in
the third case, the memory decays exponentially as a function
of the separation between observations i, j.

V. RESULTS

We generate m realizations of multivariate time series Y
for each study case. Each sample matrix E is computed and
filtered using estimators described in Sec. II. Subsequently,
the estimator’s performance is measured through the six loss
functions described in Sec. III. Figure 2 shows a graphi-
cal representation of the block diagonal model accompanied
by a single realization of the process with A = I (case 1).
Likewise, Fig. 3 shows a graphical representation of the hi-
erarchical nested model accompanied by a single realization
of the process with A = I (case 2) and with autocorrelation
elements of the form Ai j = e−|i− j|/3 (case 3). The realizations
are made for dimensions p = 100 and n = 200. It can be seen
that sample matrices show statistical uncertainty because the
number of observations and the number of variables is finite.
The noise occurs naturally when we study cross-correlations
of a large number of variables with a limited number of
records. This condition is quite common in many research
fields. For example, practitioners in finance prefer a high-
dimensional setting, i.e., p ∼ n, to avoid nonstationary effects
or structural changes in return time series of assets traded in
financial markets.
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FIG. 2. Block diagonal model. (a) Population correlation matrix.
(b) A single realization of such processes with autocorrelation matrix
A = I and dimensions p = 100, n = 200.

Figure 4 shows the behavior of the average loss functions
over m = 1000 realizations and dimensions p = 100, n =
200 for case 1 (blue), case 2 (green), and case 3 (brown).
(a)–(f) show 〈L(C,�i )〉 vs 〈L(�i,� j )〉. We denote by L
each of the loss functions (KL divergence, Frobenius, etc.),
〈·〉 represents the average and � represents the filtered corre-
lation matrix under each of the filtering strategies described
in Sec. II. The �mwcv estimator is set with Ttotal = 10T and
Tout = T = n. Moreover, the �BJ estimator is set with τ = 3
[or, equivalently, η = coth(1/3) ≈ 3.11; see Eqs. (11) and
(15)]. Under this setting, the �BJ filter is expected to ob-
tain optimal results for case 3, while the filter would be
misspecified to deal with cases 1 and 2. Thus, we have
omitted the results under the �BJ and the related two-step
(II) estimator for the latter cases. In these curves, we are
comparing the value that minimizes the loss function (y axis)
given the stability level of the estimators (x axis). The dotted

FIG. 3. Hierarchical nested model. (a) Population correlation
matrix. (b) A single realization of such processes with autocorre-
lation matrix A = I. (c) A single realization of such processes with
autocorrelation elements Ai j = e−|i− j|/3. The dimensions of the sam-
ples are p = 100, n = 200.

line represents the average RMT estimator when the num-
ber of eigenvalues λ that are kept in the filtering procedure
varies from 1 to p, where the shadow band represents the
standard deviation. The lower left corner corresponds to the
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FIG. 4. Average loss functions over m = 1000 realizations of the multiplicative noise model [see Eq. (27)] for dimensions p = 100, n =
200. The block diagonal model without memory (case 1) is represented by blue, the hierarchical nested model without memory (case 2) is
represented by red, and the hierarchical nested model with memory (case 3) is represented by brown. (a) 〈K (C,�i )〉 vs 〈K (�i,� j )〉, where
the cross-marker represents the theoretical limits given by Eq. (22). (b) 〈K (C−1, �−1

i )〉 vs 〈K (�−1
i , �−1

j )〉. (c) 〈F (C, �i )〉 vs 〈F (�i, � j )〉.
(d) 〈F (C−1, �−1

i )〉 vs 〈F (�−1
i , �−1

j )〉. (e) 〈MV (C, �i )〉 vs 〈MV (�i,� j )〉. (f) 〈SS(C, �i )〉 vs 〈SS(�i, � j )〉. Both axes are on a logarithmic
scale.

case where we have kept only the signal associated with
the largest eigenvalue. The upper right corner corresponds
to the extreme case where we have kept all the signals or
eigenvalues, so the estimator is identical to the empirical cor-

relation matrix E. Our simulations confirm that 〈K (C,�naive
i )〉

is in agreement with the theoretical limits of the KL diver-
gence given by Eqs. (22) [represented by the cross-marker in
Fig. 4(a)].

044137-7



GARCÍA-MEDINA, MICCICHÈ, AND MANTEGNA PHYSICAL REVIEW E 108, 044137 (2023)

TABLE I. Block diagonal model without memory (case 1). Performance of estimators in terms of 〈L(C,�i )〉, where L denotes the loss
function and 〈·〉 represents the average over m = 1000 realizations and considering dimensions p = 100, n = 200. In boldface we highlight
the lowest value observed for each loss function.

〈K (C,�i )〉 〈K (C−1,�−1
i )〉 〈F (C, �i )〉 〈F (C−1,�−1

i )〉 〈MV (C, �i )〉 〈SS(C,�i )〉
�naive 0.702978 0.307302 0.496612 5.682767 0.985036 1.010279
�RMT 0.025633 0.024646 0.119511 0.025346 0.037386 0.050279
�ALCA 0.029513 0.029777 0.089017 0.046473 0.046671 0.059290
�LP 0.020697 0.017244 0.064047 0.026045 0.033724 0.037942
�mwcv 0.019300 0.015717 0.061817 0.022541 0.030759 0.035017
Two-step (I) 0.017404 0.013441 0.057510 0.019467 0.027199 0.030845
Two-step (III) 0.017012 0.013252 0.056114 0.019154 0.026599 0.030264

The curves’ behavior of the block diagonal model (blue
color) is monotonically increasing almost for every value,
except very near the origin. In contrast, the curves of
the hierarchical nested model (red and brown colors) are
monotonically increasing only relatively far from the ori-
gin. Interestingly, the RMT filter roughly coincides with the
numerical minimum of 〈L(C,�RMT(λ))〉 (dotted lines) for all
the metrics L when no autocorrelations are considered (case
2). Thus, the Marchenko-Pastur bound effectively gives us
the number of optimal signals to preserve in the hierarchi-
cal nested model without autocorrelation but fails to recover
the true number of signals if the model violates the i.i.d.
assumption (case 3). In general, we can see that the two-
step estimators are the ones that obtain the optimal and most
stable values within each case and for all the considered loss
functions.

Tables I–III summarize the performance of estimators in
terms of 〈L(C,�i )〉 for the three studies (see Appendix A)
The filter stability 〈L(�i,� j )〉 of each estimator � in re-
lation to the loss function L is shown in Appendix A (see
Tables IV–VI).

Table I shows the two-step (III) estimator minimizes all the
loss functions for case 1. In other words, the best strategy is
to apply the �LP estimator followed by the ALCA filter. The
second best option is the two-step (I) estimator, which implies
applying the estimator �mwcv followed again by the ALCA
filter. Notably, in third place, and very close to the minimum
values of the two-step estimators mentioned above, are the
results of simply applying the strategy �mwcv.

The results for case 2 are similar for the two best perfor-
mances. The exception concerns the Frobenius metric, where

now the ALCA filter beats the two-step estimator (III) per-
formance and moves it to third place, with the two-step (I)
estimator having the second-best performance against this
metric. Actually, the ALCA estimator turn shifts �mwcv to
obtain the third-best performance about the KL, inverse KL,
MV, and SS loss functions. Only with the inverse Frobeniuos
metric does the estimator �mwcv obtain third place.

For case 3, we have included the �BJ filter, which system-
atically beats the �LP filter as it should because it is calibrated
with the same parameter τ = 3 of the generating process,
although the best performance is disputed between the �mwcv,
two-step (I), and two-step (III) filters depending on the loss
function. The top three also include the two-step (II) and
�ALCA filters under some metrics.

Figure 5 shows the average shrinkage eigenvalues (ξ ) as a
function of the average empirical eigenvalues (λ) for case 1
(a), case 2 (b), and case 3 (c) under each of the considered
filters. We can see the single-step filters do not deal well with
the extreme eigenvalues, and the two-step estimators some-
how regularize the estimations. Notably, the misspecification
of the �LP filter in case 3 presents a huge bias on almost the
entire spectrum. In general, the bias of the smallest eigenvalue
has severe consequences on the metrics that require inverting
the correlation matrix because a near singular matrix could be
obtained. Hence, the importance of correctly estimating these
eigenvalues.

On the other hand, the behavior of the eigenvectors can
be characterized by the inverse participation ratio (IPR) [36].
The IPR of the eigenvector vi is defined as [7] IPR(vi ) =∑p

j=1[v( j)
i ]4; where v

( j)
i is the jth element of the eigenvector

vi. An eigenvector vi located in only one component has the

TABLE II. Hierarchical nested model without memory (case 2). Performance of estimators in terms of 〈L(C, �i )〉, where L denotes
the loss function and 〈·〉 represents the average over m = 1000 realizations and considering dimensions p = 100, n = 200. In boldface we
highlight the lowest value observed for each loss function.

〈K (C,�i )〉 〈K (C−1,�−1
i )〉 〈F (C, �i )〉 〈F (C−1,�−1

i )〉 〈MV (C, �i )〉 〈SS(C,�i )〉
�naive 0.704715 0.308027 0.475366 8.871255 0.796652 1.012742
�RMT 0.035000 0.030668 0.243333 0.044913 0.040020 0.065668
�ALCA 0.018728 0.019151 0.080116 0.049903 0.023976 0.037879
�LP 0.031284 0.028860 0.212684 0.050627 0.037316 0.060144
�mwcv 0.029365 0.026917 0.195309 0.043923 0.034257 0.056282
Two-step (I) 0.017844 0.015434 0.084999 0.032445 0.021296 0.033278
Two-step (III) 0.017522 0.015251 0.101058 0.031783 0.020347 0.032772
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TABLE III. Hierarchical nested model with memory (case 3). Performance of estimators in terms of 〈L(C, �i )〉, where L denotes the loss
function and 〈·〉 represents the average over m = 1000 realizations and considering dimensions p = 100, n = 200. In boldface we highlight
the lowest value observed for each loss function.

〈K (C,�i )〉 〈K (C−1, �−1
i )〉 〈F (C, �i )〉 〈F (C−1, �−1

i )〉 〈MV (C,�i )〉 〈SS(C, �i )〉
�naive 2.636596 0.741668 1.428074 70.128771 1.192546 3.378264
�RMT 0.131541 0.169630 1.078062 0.205236 0.085844 0.301171
�ALCA 0.082404 0.084835 0.414592 0.194150 0.090226 0.167239
�LP 0.394159 0.312629 0.974296 2.093030 0.272487 0.706789
�BJ 0.077930 0.063499 0.587735 0.419335 0.136441 0.141428
�mwcv 0.060966 0.053122 0.524506 0.073864 0.066712 0.114087
Two-step (I) 0.060880 0.047672 0.451754 0.074127 0.067626 0.108552
Two-step (II) 0.061383 0.047843 0.498786 0.076085 0.067689 0.109226
Two-step (III) 0.060302 0.059961 0.384679 0.106745 0.069054 0.120263

upper bound IPR(vi ) = 1, while an eigenvector uniformly dis-
tributed over the p components has the lower bound IPR(vi ) =
1/p. Figure 6 shows the average IPR as a function of the ith
eigenvector of the filtered correlation matrix for case 1 (a),
case 2 (b), and case 3 (c) under each of the considered filters.
It can be observed that the IPR of the eigenvectors related
to the filters that fall into the RIE family present a stable
behavior with a uniform distribution of its elements, which is
natural since these filters assume that the eigenvectors do not
change. The small fluctuations are due to the normalization
effect to obtain orthonormal eigenvectors after reconstructing
the correlation matrix. On the contrary, the behavior of the
eigenvectors that involve the ALCA filter is more localized
and is closer to the eigenvectors of the population model
(black line).

VI. DISCUSSION

In principle, one would expect that asymptotic estimators
based on random matrices and free probability perform better
as the dimension of the correlation matrix increases. How-
ever, we have found at least one case where the hierarchical
estimators perform better than the RIE estimators, even at
p = 500 [37]. This behavior can be explained due to the
assumptions of the semianalytical solution of the nonlinear
shrinkage function proposed by Ledoit and Wolf. Their ex-
pression was also used in the Burda and Jarosz approach and
our analysis. The central assumption of the solution is the
existence of a compact interval that contains all the eigenval-
ues as the matrix dimensions tend to infinity. In other words,
the eigenvalues should not grow with the dimension to con-
verge to a well-defined density. However, diagonal block and
hierarchical nested models have one eigenvalue that grows
with the dimension of each of their blocks (see Appendix B).
That is, a model of k blocks has k unbounded eigenvalues,
which violates the assumptions of the asymptotic results of
the RIE solutions. More precisely, the expressions in Eqs. (7)
and (11) are correct and valid as long as p, n → ∞. What
is problematic is the kernel approximation of the density ρE

and the Hilbert transform hE since they do not converge for
our block structure models. Hence, our models violate this
principle. Thereupon, the hierarchical clustering and two-step
estimators can give better estimates regarding optimality and
stability.

Analyzing eigenvalues and eigenvectors reveals why the
selected two-step filters perform well against most metrics. If
we change the order in constructing these estimators, we lose
the regularizing effect by filtering the high-dimensional noise
before applying the clustering methods. We have verified that
estimating the smallest eigenvalues get worse by inverting the
order of the single estimators composing the two-step filters.
This behavior is particularly noticeable for the inverse KL
and inverse Frobenius metrics since they can be written as
a function of the inverse of the eigenvalues. Therefore, if
these are very close to zero, we obtain metrics that tend to
infinity or indeterminate. On the part of the eigenvectors, the
models that involve the hierarchical estimators modify the
distribution of their elements and bring them closer to the
population behavior qualitatively. Nevertheless, block models
present eigenvalues’ multiplicity, and the set of eigenvectors is
not unique. There may be slightly different solutions depend-
ing on the algorithm to compute them. Thus, a future question
to explore is to what extent it is possible to filter the correlation
matrix by modifying only the eigenvalues.

On the other hand, the excellent performance of the data-
driven estimator �mwcv is notable. We have seen that the
�mwcv filter outperforms the two-step filters in case 3 under
some metrics. A preliminary explanation is that the �mwcv

filter can capture autocorrelations due to its construction as
a time-varying estimator. Then, the correlation matrix of
a nonstationary financial time series might be better esti-
mated by the �mwcv and two-step (I) filters. Furthermore, the
authors of Ref. [31] proved that it is possible to approximate
the optimal RIE estimator ξ (λ) = l (the true eigenvalues)
by overlapping the eigenvectors of two different realizations
of the same population covariance matrix �—even valid if
the test sample covariance matrix can be rank deficient, i.e.,
n = Tout < p. Intuitively, the superposition of the training and
testing eigenvectors helps estimate the empirical eigenvalues,
as if rotating them into the test direction unveils their true
value. This evidence opens the door to considering other types
of nonlinear shrinkage ξ (λ) under the RIE approach.

An interesting future work would consider statistical learn-
ing models to shape the function ξ (λ) and consider the
stylized fact of heterogeneous structures in financial correla-
tion matrices under more general distributional assumptions.
Moreover, the nonlinear shrinkage functions �LP and �BJ

are optimal concerning the Frobenius loss function. Then,
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FIG. 5. Average shrinkage eigenvalues (ξ ) vs average empirical
eigenvalues (λ). (a) Case 1. (b) Case 2. (c) Case 3. The black line
represents the corresponding population model C. The shadow band
represents one standard deviation. Both axes are on logarithmic
scales.

further future work could also go in the direction of analyz-
ing the performance of the block diagonal and hierarchical
nested models under a nonlinear shrinkage formula optimized
having as a target the loss function used to evaluate their
performance and in the spirit of the proposed expressions in
Refs. [24,34,38].

FIG. 6. Average IPR as a function of the rank of the ith eigenvec-
tor of the filtered correlation matrix. (a) Case 1. (b) Case 2. (c) Case
3. The black line represents the corresponding population model C.
The shadow band represents one standard deviation. Both axes are
on logarithmic scales. The rank of eigenvectors runs from 1 (smallest
eigenvalue) to 100 (largest eigenvalue).
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TABLE IV. Block diagonal model without memory (case 1). Stability of estimators in terms of 〈L(�i,� j )〉, where L denotes the loss
function and 〈·〉 represents the average over the realizations of m = 1000 and considering dimensions p = 100, n = 200. In boldface we
highlight the lowest value observed for each loss function.

〈K (�i,� j )〉 〈K (�−1
i ,�−1

j )〉 〈F (�i, � j )〉 〈F (, �−1
i , �−1

j )〉 〈MV (�i, � j )〉 〈SS(�i, � j )〉
�naive 1.011480 1.011512 0.993376 9.102604 1.469460 2.022991
�RMT 0.030454 0.030248 0.185746 0.020132 0.038568 0.060702
�ALCA 0.050803 0.050802 0.147216 0.081805 0.082820 0.101605
�LP 0.015637 0.015614 0.042401 0.025937 0.027382 0.031251
�mwcv 0.010394 0.010385 0.030306 0.015103 0.017561 0.020779
Two-step (I) 0.003341 0.003339 0.009333 0.004962 0.005754 0.006680
Two-step (III) 0.004123 0.004108 0.011924 0.006024 0.007032 0.008231

support by Consejo Nacional de Humanidades, Ciencias y
Tecnologías (CONAHCYT) Project No. A1-S-43514.

APPENDIX A

Tables IV–VI show the average stability 〈L(�i,� j )〉 of
each estimator � in relation to the loss function L (see
Tables I–III in the main text.)

APPENDIX B

1. Top eigenvalues of diagonal block and hierarchical
nested models

a. Diagonal block model

Consider a block diagonal matrix A of dimension p × p
with b blocks Al (l = 1, . . . , b), each of dimensions pl × pl

satisfying
∑

l pl = p:

A =

⎛
⎜⎜⎜⎜⎝

A1 0 . . . 0

0 A2 . . . 0

. . . . . . . . . . . .

0 0 0 Ab

⎞
⎟⎟⎟⎟⎠. (B1)

Let each block Al be of the form

Al =

⎛
⎜⎜⎜⎜⎝

1 a(l ) . . . a(l )

a(l ) 1 . . . a(l )

. . . . . . . . . . . .

a(l ) a(l ) a(l ) 1

⎞
⎟⎟⎟⎟⎠, (B2)

where a(l ) ∈ [0, 1]. The characteristic polynomial of Al

is found to be det(Al − λI) = (1 − a(l ) − λ)pl −1(1 + (pl −
1)a(l ) − λ) = 0. Thus, the eigenvalues of block Al are
given by

λ =
{

1 + a(l )(pl − 1); with multiplicity 1

λ = 1 − a(l ); with multiplicity pl − 1.
(B3)

The eigenvalues of A are the combined eigenvalues of each
block due to the property

det(A − λI) = det(A1 − λI) . . . det(Ab − λI). (B4)

Therefore, there are b eigenvalues of A that grow with the
dimension of their blocks at the rate pl . Consequently, b
eigenvalues are not bounded when p → ∞.

In addition, we can notice that A is reducible because
there does not exist a directed path between the blocks in the
associated directed graph G(A), that is, G(A) is not strongly
connected [39]. Nevertheless, each directed subgraph G(Al )
is strongly connected given that Al > O. Then, each block
matrix Al is irreducible, and either

pl∑
j=1

[ai j]l = ρ(Al ) for all 1 � i � pl (B5)

or

min
1�i�pl

⎛
⎝ pl∑

j=1

[ai j]l

⎞
⎠ < ρ(Al ) < max

1�i�pl

⎛
⎝ pl∑

j=1

[ai j]l

⎞
⎠, (B6)

where [ai j]l are the (i, j)th elements of Al , and ρ(Al ) is its
spectral radius. Further, the sum of each row of Al is the same,

TABLE V. Hierarchical nested model without memory (case 2). Stability of estimators in terms of 〈L(�i,� j )〉, where L denotes the
loss function and 〈·〉 represents the average over the realizations of m = 1000 and considering dimensions p = 100, n = 200. In boldface we
highlight the lowest value observed for each loss function.

〈K (�i,� j )〉 〈K (�−1
i ,�−1

j )〉 〈F (�i, � j )〉 〈F (, �−1
i , �−1

j )〉 〈MV (�i, � j )〉 〈SS(�i, � j )〉
�naive 1.015298 1.013145 0.952442 14.119574 1.188050 2.028444
�RMT 0.039437 0.039263 0.441274 0.022705 0.036337 0.078700
�ALCA 0.037348 0.037287 0.158198 0.096944 0.048786 0.074635
�LP 0.038438 0.038397 0.348333 0.051018 0.043579 0.076836
�mwcv 0.032339 0.032347 0.313248 0.030515 0.034258 0.064685
Two-step (I) 0.012385 0.012390 0.084258 0.021132 0.015412 0.024775
Two-step (III) 0.013008 0.012994 0.115886 0.022353 0.015728 0.026002
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TABLE VI. Hierarchical nested model with memory (case 3). Stability of estimators in terms of 〈L(�i, � j )〉, where L denotes the loss
function and 〈·〉 represents the average over the realizations of m = 1000 and considering dimensions p = 100, n = 200. In boldface we
highlight the lowest value observed for each loss function.

〈K (�i, � j )〉 〈K (�−1
i , �−1

j )〉 〈F (�i, � j )〉 〈F (,�−1
i , �−1

j )〉 〈MV (�i,� j )〉 〈SS(�i,� j )〉
�naive 3.377219 3.384450 2.854999 99.721840 1.788246 6.761669
�RMT 0.288290 0.288862 2.137602 0.220317 0.223823 0.577152
�ALCA 0.156065 0.156478 0.760417 0.351341 0.181564 0.312543
�LP 0.723069 0.724795 1.899020 2.867135 0.610633 1.447864
�BJ 0.083587 0.084194 0.775484 0.534801 0.137637 0.167781
�mwcv 0.058353 0.058390 0.686160 0.056490 0.064800 0.116743
Two-step (I) 0.039335 0.039237 0.438580 0.046152 0.046753 0.078572
Two-step (II) 0.039901 0.039489 0.509946 0.047698 0.046319 0.079389
Two-step (III) 0.096686 0.096735 0.615370 0.186985 0.118327 0.193421

then the minimum and maximum is equal. Hence, we have

ρ(Al ) =
pl∑

j=1

[ai j]l = 1 + (pl − 1)a(l ). (B7)

Moreover, the generalization of the Perron-Frobenius theorem
assures that A has a nonnegative real eigenvalue equal to its
spectral radius. Therefore, one of the spectral radii ρ(Al ), l =
1, . . . , b, is the spectral radius of A. It can be corroborated that
Eq. (B7) coincides with the first part of Eq. (B3).

b. Hierarchical nested model

We have something similar for the hierarchical nested
model. In this case, the number of independent blocks is
reduced. However, each of them is irreducible by the same
argument given above. Let Ak be an independent hierarchical
nested block, where

∑c
k=1 pk = p (k = 1, . . . , c), such that

c < b. In other words, each independent hierarchical block
is composed of several overlapping blocks. We have by con-
struction

min
1�i�n

⎛
⎝ n∑

j=1

[ai j]k

⎞
⎠ = 1 + (pk − 1)a(k), (B8)

max
1�i�n

⎛
⎝ n∑

j=1

[ai j]k

⎞
⎠ = 1 + pk (pk − 1)a(k). (B9)

The minimum is reached when no overlapping exists, and the
model is reduced to the diagonal block model. The maximum
is reached when each internal block overlaps with each other,
and as we can have at most pk blocks, a factor pk appears.
Then, Eqs. (B5) and (B6) apply, and the bounds for the spec-
tral radius of each independent block are

1 + (pk − 1)a(k) < ρ(Ak ) < 1 + pk (pk − 1)a(k). (B10)

Again, the generalization of the Perron-Frobenius theorem
assures that A has a nonnegative real eigenvalue equal to its
spectral radius. Thus, one of the spectral radius ρ(Ak ), k =
1, . . . , c, is the spectral radius of A. Therefore, c eigenvalues
of A grow with the dimension of their blocks at the rate pk

(at least). Consequently, c eigenvalues are not bounded when
p → ∞.

c. Observations

We observe that the number of independent blocks in the
hierarchical nested model is less than the number in the diago-
nal block model, i.e., c < b. Consequently, the block’s size of
the former should be bigger to satisfy

∑c
k=1 pk = ∑b

l=1 pl =
p. Therefore, pk > pl , and the top eigenvalue of the hierarchi-
cal nested model grows faster than the top eigenvalue of the
diagonal block model.

In our models a(k) = a(l ) = γ 2 = (0.3)2 = 0.09, the di-
agonal block model has b = 12 diagonal blocks, while the
hierarchical nested model has c = 3 independent (nonover-
lapping) blocks. Then it is clear that the top eigenvalue of the
latter grows faster to infinity than the former as p → ∞.
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