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Large deviations of the stochastic area for linear diffusions
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The area enclosed by the two-dimensional Brownian motion in the plane was studied by Lévy, who found the
characteristic function and probability density of this random variable. For other planar processes, in particular
ergodic diffusions described by linear stochastic differential equations (SDEs), only the expected value of the
stochastic area is known. Here we calculate the generating function of the stochastic area for linear SDEs, which
can be related to the integral of the angular momentum, and extract from the result the large deviation functions
characterizing the dominant part of its probability density in the long-time limit, as well as the effective SDE
describing how large deviations arise in that limit. In addition, we obtain the asymptotic mean of the stochastic
area, which is known to be related to the probability current, and the asymptotic variance, which is important
for determining from observed trajectories whether or not a diffusion is reversible. Examples of reversible and
irreversible linear SDEs are studied to illustrate our results.
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I. INTRODUCTION

Lévy studied in the 1940s and 50s [1–3] the area enclosed
by paths of planar Brownian motion, expressed, in analogy
with Green’s theorem, by the line integral

AT = 1

2

∫ T

0
X (t )dY (t ) − Y (t )dX (t ), (1)

where X (t ) and Y (t ) are the coordinates of the Brownian
motion (see Fig. 1). This stochastic integral is interpreted
as an Itô integral and its sign is related in the usual way
to the orientation of the path considered: positive for paths
that rotate counterclockwise and negative for paths that rotate
clockwise.

From the Fourier representation of Brownian motion, Lévy
calculated the characteristic function of AT [2], obtaining

φT (k) = E[eikAT ] = sech

(
kT

2

)
, (2)

from which we find the expected value φ′
T (0) = E[AT ] = 0

and variance var(AT ) = φ′′
T (0) = T 2/4. Later he realized that

the characteristic function can be inverted to obtain the prob-
ability density of AT [3]:

pT (a) = 1

T
sech

(πa

T

)
, a ∈ R. (3)

This density is symmetric, which is consistent with planar
Brownian motion being isotropic so that E[AT ] = 0, and also
confirms the variance, which can be understood superficially
by noting that, since the motion’s radius R typically grows as
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√
T , we must have

var(AT ) = E
[
A2

T

] ∼ R4 ∼ T 2. (4)

Recently, the stochastic area was reexamined from a more
physical perspective in the context of linear stochastic dif-
ferential equations (SDEs) that are ergodic [4–6]. For this
class of Gaussian processes, an exact expression was found
for the long-time expectation of AT /T , which turns out to be
proportional to the antisymmetric component of the stationary
probability current [4]. This is an interesting result, showing

FIG. 1. Illustration of the stochastic area for planar Brownian
motion starting at the origin and finishing after a time T at the point
(XT ,YT ). AT is the area (in gray) enclosed by the path (here not an ac-
tual path of Brownian motion) and the chord joining the final position
to the origin. The arrow shows the direction of the path’s evolution,
leading to a positive stochastic area for the counterclockwise path
shown.
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that AT can be used to determine from observed trajectories
whether or not an SDE is reversible, that is, whether or not
it satisfies the detailed balance condition with respect to its
stationary distribution [4–6]. In this way, the stochastic area
can be seen as an irreversibility metric [5], which is easier to
measure or estimate as a scalar quantity than the stationary
current, obtained in practice using force or velocity tracking
experiments [7–12], or the entropy production, which relies
on detailed knowledge of the dynamics [12–15].

In this paper we continue these works by providing an
exact form for the generating function of AT for linear ergodic
SDEs, from which it is possible to obtain, in principle, its mo-
ments and its probability density at all times. By considering
the long-time limit of the generating function, we also obtain
explicit expressions for the large deviation functions char-
acterizing the exponential form of the probability density of
AT /T at long times. These functions have many applications
in statistical physics, as they provide detailed information
about the likelihood of fluctuations around stationary states,
revealing in many systems the existence of fluctuation sym-
metries and dynamical phase transitions [16–18].

The large deviation functions of the stochastic area were
also studied recently using path integral methods [19]. Here
we derive these functions using a simpler method based on
matrix Riccati equations [20,21] and use them to derive ex-
pressions for the asymptotic expectation of AT /T , confirming
the known result [4], as well as the asymptotic variance, which
is needed to validate the estimation of the expected area and
to determine in experiments or simulations whether an SDE is
irreversible. Two models are used to illustrate these results,
namely, gradient SDEs, which are reversible, and a class
of transverse SDEs that have a nonconservative drift, which
makes them irreversible.

To complete our analysis, we also show how area fluctua-
tions are created physically from rare trajectories that can be
described by means of a modified SDE, called the effective
or driven process [22–25]. The drift of this SDE is derived
exactly using the Riccati formalism [20,21] and shows that
nonzero (zero) area fluctuations are created by trajectories
that mimic an irreversible (reversible) SDE, characterized by
a modified current coupled in a nontrivial way to a modified
density. These results are also illustrated with the two models
above and show in the end that the stochastic area can be used
as a metric to characterize not only the irreversibility of the
stationary state of a process but also the irreversibility of its
fluctuating trajectories.

II. LINEAR DIFFUSIONS

The systems that we consider are modeled as overdamped
diffusions or Langevin-type systems that evolve according to
the linear SDE

dX (t ) = −MX (t )dt + σdW (t ), (5)

where X (t ) ∈ Rn is the state of the system at time t , M is
the n × n drift matrix defining the linear deterministic force
acting on the system, and W (t ) is an m-dimensional vector
of independent Brownian motions acting as the noise source,
which is multiplied by the n × m noise matrix σ . To simplify
the presentation, we consider the case n = m = 2 of systems

evolving in the R2 plane and discuss in the Conclusion how
our results generalize to systems evolving in Rn.

Linear SDEs are used to model many different systems,
including noise-perturbed mechanical systems controlled by
linear forces [26], electrical circuits perturbed by Nyquist
noise [27], and nonequilibrium systems driven by temperature
or chemical baths [28]. One advantage of these SDEs is that
the corresponding Fokker-Planck equation for the probability
density p(x, t ) of X (t ) can be solved exactly for a fixed initial
condition X (0) = x0, yielding a Gaussian density for all times
t > 0 (see, e.g., Sec. 3.7 of [29]).

For our purposes, we require this density to have a long-
time or stationary limit by assuming that the matrix M, which
is not necessarily symmetric, is positive definite (i.e., has
eigenvalues with positive real part) and, furthermore, that the
diffusion matrix D = σσ T is positive definite and invertible.
Under these conditions, the SDE (5) is ergodic and has a
unique (Gaussian) stationary density p∗(x) [29] given explic-
itly by

p∗(x) = 1

2π
√

det C
exp

(
−1

2
〈x,C−1x〉

)
, (6)

where 〈a, b〉 denotes the standard vector inner product in
R2 and C is the stationary covariance matrix satisfying the
Lyapunov equation

D = MC + CMT. (7)

In addition, the SDE has a stationary probability current J∗(x)
describing the long-time or average flow of probability in
space. This current is defined generally as

J∗(x) = F(x)p∗(x) − D

2
∇p∗(x), (8)

where F(x) is the deterministic force or drift entering in
the SDE. In our case, F(x) = −Mx, which yields, together
with (6),

J∗(x) = Hxp∗(x), (9)

where

H = DC−1

2
− M. (10)

The knowledge of p∗ and J∗ is important physically as
it determines whether or not a process is reversible, that is,
whether or not the process has the same statistics when its
evolution is reversed in time. This reversibility property is
defined mathematically via the detailed balance condition and
is related to the current in the following way: If J∗(x) = 0 for
all x, then the SDE is reversible, describing in the long-time
limit an equilibrium steady state, whereas if J∗(x) 	= 0, then
the SDE is irreversible and describes a nonequilibrium steady
state violating the condition of detailed balance.1

For linear SDEs, we can distinguish in general two sources
of nonequilibrium behavior, namely, a nonsymmetric drift
matrix M, indicating the presence of a nonconservative force,

1This classification applies for overdamped diffusions. For under-
damped diffusions, there can be a current in phase space even at
equilibrium.
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and a diffusion matrix D that is not proportional to the iden-
tity matrix I, which arises when a system is in contact with
multiple heat baths at different temperatures or when correla-
tions exist between the noise sources [30–32]. Though distinct
physically, these two sources can cancel each other in some
cases to create a reversible steady state if M and D are such
that H = 0.

III. STOCHASTIC AREA

Let (X (t ))T
t=0 be a path of the linear SDE (5) in R2 over

the time interval [0, T ] with components X (t ) = (X (t ),Y (t )).
Our aim is to study the statistics of the stochastic area enclosed
by this path (see Fig. 1), which we divide by T so as to
consider the time-averaged area or area per unit time

AT = AT

T
= 1

2T

∫ T

0
X (t ) ◦ dY (t ) − Y (t ) ◦ dX (t ), (11)

where ◦ denotes the Stratonovich or midpoint convention for
the stochastic integral. Alternatively, we can write

AT = 1

T

∫ T

0
�X (t ) ◦ dX (t ), (12)

where � is the antisymmetric matrix

� = 1

2

(
0 −1
1 0

)
(13)

and ◦ now denotes, with a slight abuse of notation, the scalar
product interpreted in the Stratonovich convention.

The stochastic area can be interpreted physically as an
integrated angular momentum or torque [5] and is an exam-
ple in stochastic thermodynamics of current-type observables,
which can be related in many cases to physical quantities,
such as the mechanical work or the entropy production [33].
The connection with the current comes from the fact that the
stationary expectation of AT is given by

a∗ = lim
T →∞

E[AT ] =
∫
R2

〈�x, J∗(x)〉p∗(x)dx (14)

and so involves not only the stationary density p∗, given in (6),
but also the stationary current J∗, shown in (9). Using these
expressions, the integral above reduces in form to the second
moment of a Gaussian density, yielding the trace formula
[20,21]

a∗ = Tr(�THC). (15)

From the Lyapunov equation (7), it is easy to show that the
matrix HC = D/2 − MC is antisymmetric, so the trace can
be calculated exactly with � to obtain

a∗ =
(

MC − D

2

)
1,2

, (16)

which recovers the result obtained before [4]. Moreover, from
the expression of the stationary current, we can write

J∗(x) = 2a∗�C−1xp∗(x) (17)

in two dimensions, showing in this case that a linear diffusion
is reversible if and only if a∗ = 0.

The value a∗ is not only the stationary expectation of
AT , but also the typical value of this random variable most

likely to be observed in experiments or simulations when the
integration or observation time T is long. This follows from
the ergodic theorem generalized to stochastic integrals, which
states for ergodic diffusions that AT converges in probability
to a∗ as T → ∞ [24]. We study in the next section this
convergence more precisely by determining the distribution
of AT around a∗.

To complete this section, it is useful to note that AT is
also an example in mathematics of integrals of differential
forms along stochastic paths, referred to as stochastic currents,
which have been studied since the 1970s [34–39]. In this
context, it is common to define stochastic integrals using the
Stratonovich convention, as done in (11). However, in the par-
ticular case of the stochastic area, it is interesting to note that
the stochastic convention or calculus used for calculating the
integral is irrelevant as all conventions give the same result,
essentially because this quantity is a linear antisymmetric dif-
ferential form (see Sec. 4.2 of [40] for the proof). Therefore,
all conventions agree on what the area enclosed by a path is,
as expected geometrically and physically, which explains why
the result for a∗ in (16) is the same whether it is derived using
the Itô convention [4] or, as done here, using the Stratonovich
convention.

IV. AREA STATISTICS

We derive in this section our main results for the statistics
of AT for linear diffusions using a general formalism devel-
oped recently for linear diffusions [20,21]. We focus on the
long-time limit of the probability density p(AT = a), which
shows a large deviation form that explains the convergence
of AT towards the stationary expectation a∗, with fluctuations
around this value that are exponentially unlikely with T . Us-
ing the same formalism, we describe the paths leading to these
fluctuations in terms of a modified diffusion, which changes
in general the reversible or irreversible nature of the diffusion
considered.

A. Generating function

To our knowledge, the probability density of the mean area
cannot be obtained in closed form directly for general linear
diffusions, so we consider instead its generating function,
defined as

Gk (x, t ) = E[ektAt |X (0) = x]. (18)

This can be viewed as the Laplace transform of the conditional
probability density p(At = a|X (0) = x), up to a scaling factor
involving the time t . Provided the generating function exists
in a neighbourhood of k = 0, we can extract the moments of
AT as

E[(tAt )
n|X (0) = x] = dnGk (x, t )

dkn

∣∣∣∣
k=0

. (19)

To find the generating function, we use the fact that its time
evolution satisfies the linear partial differential equation

∂t Gk (x, t ) = LkGk (x, t ), Gk (x, 0) = 1, (20)

known as the Feynman-Kac (FK) equation [41]. In this
equation, Lk is a differential operator, known as the tilted
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generator, whose expression depends on the generator of the
process X (t ) and the observable under consideration (see
Eq. (29) in [42]). In our case, we have

Lk = −k〈Mx, �x〉 + 〈(−M + kD�)x,∇〉

+ 1

2
〈∇, D∇〉 + k2

2
〈x, �TD�x〉. (21)

Recently, an exact expression for the solution of the FK
equation was found for general linear current-type observ-
ables of linear ergodic diffusions [20,21]. When applied to the
stochastic area, this expression gives

Gk (x, t ) = exp

(
〈x, Bk (t )x〉 +

∫ t

0
Tr[DBk (s)]ds

)
, (22)

where Bk (t ) is a 2 × 2 symmetric matrix that satisfies the
differential Riccati equation

dBk (t )

dt
= k2

2
�TD� + 2Bk (t )DBk (t ) − k

2
(MT� − �M )

+ (−M + kD�)TBk (t ) + Bk (t )(−M + kD�),
(23)

with initial condition Bk (0) = 0. We refer to Sec. III C 1 in
[21] for the derivation of this result.

The matrix Riccati equation can be solved exactly for some
choices of M and D, as we show in the next section, to obtain
an explicit expression for Gk (x, t ), which can then be used to
obtain the moments of AT by differentiation or its density by
performing an inverse Laplace transform (either analytically
or numerically). In cases where it cannot be solved exactly,
one can also resort to numerical techniques developed for
Riccati equations to obtain numerical estimates of Gk (x, t ),
which can be further differentiated or inverted numerically.

Our experience of this equation suggests, however, that
little insight is gained by computing Bk (t ) accurately as a
function of time, especially if one is interested in the statistics
of AT for long times. This is because this matrix quickly
converges to a fixed point in most cases of interest, which
implies that Gk (x, t ) scales exponentially with t as t → ∞
and, in turn, that p(AT = a) scales exponentially with T as
T → ∞. These results are studied next using large deviation
theory.

B. Large deviations

To study the long-time form of the generating function, we
assume that the differential Riccati equation (23) has a sta-
tionary solution B∗

k , satisfying the algebraic Riccati equation

0 = k2

2
�TD� − k

2
(MT� − �M ) + 2B∗

k DB∗
k

+ (−M + kD�)TB∗
k + B∗

k (−M + kD�), (24)

with the requirement B∗
0 = 0. In this case, we see from (22)

that Gk (x, t ) scales asymptotically for long times as

Gk (x, t ) ≈ rk (x)etλ(k), (25)

where

λ(k) = Tr(DB∗
k ) (26)

and

rk (x) = e〈x,B∗
k x〉. (27)

The function λ(k) is known in large deviation theory as the
scaled cumulant generating function (SCGF) and determines
the long-time scaling of p(AT = a) via the Gärtner-Ellis theo-
rem which states that if λ(k) exists and is differentiable, then

p(AT = a) ≈ e−T I (a), (28)

with corrections that are subexponential in time. Moreover,
the rate function I (a) that controls the exponential decay is
given by the Legendre transform of the SCGF

I (a) = kaa − λ(ka), (29)

ka being the unique solution of

λ′(k) = a. (30)

For ergodic linear diffusions, and ergodic Markov pro-
cesses in general, the rate function is convex, positive, and
has a unique minimum at the stationary expectation a∗, which
implies that the density p(AT = a) concentrates exponentially
on a∗, so this value is the typical value of AT , as mentioned
before. In general, we have a∗ = λ′(0), which recovers with
(26) and (24) the result shown in (15). Similarly, the asymp-
totic variance of AT is given by λ′′(0), so

var(AT ) ∼ λ′′(0)

T
. (31)

From (26) and (24) we obtain explicitly

λ′′(0) = Tr[C�TD� + 2C(�M − MT�)CB∗′
0 ]

+ Tr[2C(�TDB∗′
0 + B∗′

0 D�)], (32)

where B∗′
0 is the derivative of B∗

k with respect to k evaluated at
k = 0, which satisfies the Lyapunov equation

B∗′
0 M + MTB∗′

0 = 1
2 (�M − MT�). (33)

In principle, higher-order cumulants can be calculated in a
similar manner.

C. Effective process

The rate function determines at an exponential scale the
likelihood of fluctuations of AT around its typical value a∗.
To understand how these fluctuations arise dynamically, we
can imagine performing an experiment where we single out
trajectories that have the same area value, say, AT = a, and
analyze this subset of trajectories to determine whether they
can be described as a Markov process, in our case with an
SDE. Mathematically, this experiment corresponds to condi-
tioning the process X (t ) on the event AT = a and is known
from recent works [22–25] to lead in the long-time limit
to a modified Markov process, referred to as the effective,
driven, or fluctuation process, which describes the dynamics
of the conditioned set of trajectories. To be more precise, those
trajectories, which are rare in the original process, correspond
in the long-time limit to the trajectories of an effective process
that realize the value AT = a in a typical way (see [23–25] for
more details).
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In our case, the effective process takes the form of a modi-
fied SDE, expressed as

dX k (t ) = Fk (X k (t ))dt + σdW (t ), (34)

which has the same noise matrix as the original SDE in (5) but
now involves a modified drift Fk (x), called the effective drift,
given by

Fk (x) = −Mkx, (35)

where

Mk = M − kD� − 2DB∗
k (36)

is a modification of the drift matrix M. Here the parameter k
is set according to the Legendre relation in (30), which plays a
role similar to the temperature-energy relation in equilibrium
statistical mechanics [16], in that k can be seen as an inverse
temperature that is tuned to achieve a fixed value AT = a of
the stochastic area. In particular, for k = 0 we have F0(x) =
−Mx, the drift of the original SDE in (5), since λ′(0) = a∗.

We refer to our recent work on the large deviations of linear
diffusions [20,21] for the derivation of these results. For our
purposes, the main point to note is that the effective SDE
(34) preserves the linearity of the original SDE (5) because
the stochastic area is a linear current-type observable. As a
result, it is characterized in the long-time limit by a Gaussian
stationary probability density, given by

p∗
k (x) = 1

2π
√

det Ck
exp

(
−1

2
〈x,C−1

k x〉
)

, (37)

where Ck is now the unique positive-definite solution to the
Lyapunov equation

D = MkCk + CkMT
k . (38)

Moreover, it has a modified stationary current J∗
k given, simi-

larly to (9), by

J∗
k (x) = Hkxp∗

k (x), (39)

with Hk given from (10) with the substitutions C → Ck and
M → Mk as

Hk = DC−1
k

2
− Mk . (40)

These results are again expressed in terms of k. To relate
them to a given area value AT = a, we need to fix k so that
(30) is satisfied. Alternatively, we can note that the effective
process must realize a typical value a∗

k of the area for a given
k, obtained from (14) by replacing p∗ with p∗

k and J∗ with J∗
k .

This yields

a∗
k = Tr(�THkCk ), (41)

which is consistent with λ′(k) = a∗
k and the fact that the trajec-

tories leading to AT = a are realized as the typical trajectories
of the effective SDE.

In the next section we study the manner in which the
stationary density and current of the modified SDE differ from
those of the original SDE in order to understand the manner in
which the latter process must behave at the level of its fluctuat-
ing trajectory to manifest a particular area fluctuation. Given
the nature of this observable, it should be clear already that

nonzero area fluctuations will be associated with a nonzero
effective current, so the reversible nature of a process can be
modified at the level of fluctuations.

V. APPLICATIONS

We illustrate our results in this section for two simple linear
diffusions that are representative of reversible and irreversible
diffusions. We obtain for both the exact generating function
and extract from it the mean and variance, as well as the SCGF
and rate function describing the area fluctuations in the long-
time limit. Finally, we analyze the form of the effective drift to
identify the physical mechanisms that create these fluctuations
in the presence of conservative and nonconservative forces.

A. Gradient diffusion

The first model that we consider is a diffusion X (t ) in R2

satisfying the SDE (5) with the drift matrix

M =
(

γ 0
0 γ

)
= γ I, (42)

with γ > 0 and noise matrix σ = εI with ε > 0, so that D =
ε2I. This process describes, as is well known, the dynamics of
an overdamped Brownian particle in a quadratic potential with
friction or stiffness γ [43], characterized by the stationary
density

p∗(x) = γ

πε2
exp

(
− γ

ε2
‖x‖2

)
, (43)

where ‖x‖ = 〈x, x〉, and a stationary current that vanishes
everywhere, since the drift is conservative, meaning that it is
the gradient of a potential. Therefore, the process is reversible,
as confirmed by the fact that a∗ = 0.

To determine the distribution of AT around this typical
value, we consider its generating function, as given by (22),
noting that, for the system considered, the matrix Bk (t ) is
proportional to the identity matrix for all times t , as shown
in Sec. 5.2.1 of [20], so we write

Bk (t ) = bk (t )I, (44)

where bk (t ) is a scalar function. In this case, the differential
Riccati equation (23) becomes an ordinary differential equa-
tion for bk (t ), taking the form

dbk (t )

dt
= ε2k2

8
+ 2ε2b2

k (t ) − 2γ bk (t ), bk (0) = 0, (45)

having substituted the relevant expressions for M and D into
(23). This equation can be solved explicitly to obtain

bk (t ) = γ

2ε2

(
1 −

1 + γk

γ
tanh(tγk )

1 + γ

γk
tanh(tγk )

)
, (46)

where

γk =
√

γ 2 − k2ε4

4
. (47)

Moreover, the integral of the trace in (22) can be calculated
explicitly, yielding the following expression for the generating
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function:

Gk (x, t ) = ebk (t )‖x‖2

×
√

8γk exp
{
γ t − arctanh

[
γ

γk
tanh(tγk )

]}
√

8γ 2 − k2ε4[1 + cosh(2tγk )]
, (48)

valid for k ∈ (−2γ /ε2, 2γ /ε2). It can be checked that this
recovers Lévy’s result in (2) for Brownian motion by setting
γ = 0 and ε = 1 and by replacing k by ik to obtain the
characteristic function rather than the generating function.

It is unclear whether the expression in (48) can be in-
verted by Laplace transform to obtain an analytic expression
for the density p(At = a) starting from the initial condition
X (0) = x. We have tried to invert it numerically, but the result
yields little information graphically beyond the expectation
and variance which can be computed analytically from (19),
obtaining

E[AT ] = 0 (49)

for all times T , starting from X (0) = x, and

var(AT ) = e−γ T

4γ 2T 2
{γ ε4T cosh(γ T )

+ ε2[‖x‖2γ + ε2(γ T − 1)] sinh(γ T )}, (50)

starting from the same initial condition. The first result is
expected intuitively given that the gradient dynamics has no
inherent rotational bias. As for the variance, it can be checked
that (50) decays to leading order like 1/T , confirming that the
density p(AT = a) concentrates on a∗ = 0 as T increases.

This concentration is determined again by the large devia-
tion approximation (28). To find the associated rate function,
we note that the stationary solution B∗

k to the Riccati equa-
tion (23) can be obtained either by taking the limit t → ∞ in
(46) or by solving the algebraic Riccati equation (24), given
here for the coefficient b∗

k of B∗
k = b∗

kI as

ε2k2

8
+ 2ε2b∗

k
2 − 2γ b∗

k = 0, (51)

and by choosing the solution with b∗
0 = 0. The result of either

procedure is

b∗
k = γ − γk

2ε2
, (52)

so the SCGF is found from (26) to be

λ(k) = γ − γk (53)

for k in the interval shown after (48). Taking the Legendre
transform of this expression, we then find

I (a) = γ ε2

√
4a2 + ε4

+ 4a2γ√
4a2ε4 + ε8

− γ (54)

for the rate function, defined for all a ∈ R.
The plot of this function in Fig. 2 shows that there are two

regimes of area fluctuations. Close to the typical value a∗ = 0,
I (a) is locally quadratic, which implies, on the one hand, that

FIG. 2. Rate function for the mean stochastic area of the gradient
diffusion for the parameter values γ = 1 and ε = 1.

the small fluctuations or deviations of AT close to this value
are Gaussian distributed with a variance that decays according
to (31) with an asymptotic variance equal to

λ′′(0) = ε4

4γ
. (55)

This value is important, as we discuss in the next section, for
determining the error bars associated with the estimation of
the expected area. On the other hand, far from a∗, I (a) scales
according to

I (a) ∼ 2γ

ε2
|a|, (56)

so the large deviations of the stochastic area are exponentially
distributed. This can also be inferred from the fact that λ(k) is
defined for a limited range of values k ∈ (k−, k+) around the
origin. In this case, the left tail of I (a) has an asymptotic slope
equal to k− while its right tail has an asymptotic slope equal
to k+ (see Example 3.3 in [16] for more details).

To understand the mechanisms at play behind these two
types of fluctuations, we consider the effective drift matrix
Mk characterizing the linear effective process with drift (35).
From the expressions of γ , D, and Bk we find from (36)

Mk =
(

γk
kε2

2

− kε2

2 γk

)
, (57)

which is positive definite for k in the range shown after (48).
This drift matrix defines a so-called transverse system, char-
acterized by an effective stiffness γk in the diagonal, which
determines with (37) and (38) the stationary density

p∗
k (x) = γk

πε2
exp

(
−γk

ε2
‖x‖2

)
, (58)

and a transverse off-diagonal term kε2/2 that creates a rotation
in the dynamics, leading from (39) and (40) to a nonzero
stationary current

J∗
k (x) = kε2

2

(−y
x

)
p∗

k (x) (59)

when k 	= 0. This current rotates in a counterclockwise circu-
lar direction for k > 0 and a clockwise circular direction for
k < 0, as shown in Fig. 3.
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FIG. 3. Vector plot of the stationary current J∗
k (x, y) of the ef-

fective process associated with the stochastic area for the gradient
diffusion. The density plot underneath shows the modified station-
ary density p∗

k (x, y). The parameters are γ = 1, ε = 1, and k = 1,
corresponding to the positive fluctuation a = λ′(1) = 1/(2

√
3). For

negative fluctuations a < 0, the plot is very similar; all that changes
is the orientation of the current, which switches from counterclock-
wise for k > 0 to clockwise for k < 0. For k = 0, J∗

0 = J∗ = 0.

Intuitively, for a positive fluctuation a > 0 to occur,
the system can perform more counterclockwise loops than
clockwise loops around the origin or, once a bias for coun-
terclockwise loops already exists, perform counterclockwise
loops that venture far away from the origin so as to accumulate
more area. From the result above, we see that the gradient dif-
fusion exploits both of these strategies when fluctuating: The
nonconservative rotational force in the effective drift increases
in magnitude with k to create a current that favors rotating
trajectories, while the effective friction γk decreases with k,
letting the process spend more time further away from the
origin, thereby creating larger area loops around the origin.
This is illustrated in Fig. 3 for the parameter values γ = 1,
ε = 1, and k = 1 associated with a positive area fluctuation
and thus to a counterclockwise stationary current J∗

k (x).
The same picture holds for negative area fluctuations, as-

sociated with k < 0. In this case, the direction of the current
is reversed, forcing clockwise rotating trajectories, which are
confined, however, in the same way around the origin by the
friction γk , since it is even in k.

Interestingly, as k → ±2γ /ε2, the two boundary values for
which the SCGF is defined, we see from (47) that γk → 0,
so the confinement gets weaker for large area fluctuations
(either positive or negative), while the rotation parameter
kε2/2 saturates to ±γ . This means that the effective process
favors trajectories that creates large loops over trajectories that
rotates faster. In other words, if a large, say, positive, area
fluctuation is observed, then it is more likely that this area
was created by a trajectory that ventured far away from the
origin (counterclockwise around the origin) as a opposed to a
trajectory that rotates very fast (counterclockwise) close to the
origin. This density effect gets stronger as |k| or |a| increases,
which explains the crossover from Gaussian to exponential
fluctuations [44,45].

B. Transverse diffusion

For our second application, we consider an irreversible
system that sustains a nonzero stationary current, such that
a∗ 	= 0. To this end, we take the drift and diffusion matrices
to be

M =
(

γ ξ

−ξ γ

)
(60)

and D = ε2I, respectively. This system is again a transverse
diffusion, which serves in physics as a minimal model of ir-
reversible processes [30–32,46]. As before, the antisymmetric
part of the drift involving the parameter ξ creates a stationary
current given by

J∗
k (x) = ξ

(−y
x

)
p∗

k (x), (61)

with the stationary density

p∗(x) = γ

πε2
exp

(
− γ

ε2
‖x‖2

)
, (62)

which is the same as that obtained in (43) for the gradient
diffusion. The current J∗ is counterclockwise for ξ > 0 and
clockwise for ξ < 0 and leads with (15) to the typical value
of the stochastic area

a∗ = ε2ξ

2γ
, (63)

which is positive for ξ > 0 and negative for ξ < 0.
The generating function of the stochastic area for this dif-

fusion can also be found exactly, as Bk (t ) is still proportional
to the identity, and leads in fact to the same result as in (48)
but with

γk =
√

γ 2 − kε2(kε2 + 4ξ )

4
(64)

for k ∈ (k−, k+), where

k± = −2ξ ± 2
√

γ 2 + ξ 2

ε2
. (65)

The change of γk affects the moments of AT , including its
expectation, which is now

E[AT ] = ξ{γ ε2T + [γ ‖x‖2 + ε2(γ T − 1) tanh(γ T )]}
2γ 2T [1 + tanh(γ T )]

,

(66)

starting from X (0) = x. Moreover, it can be checked from
(64) and (48) that Gk (x, t ) is invariant under the replacement
k → −k − 4ξ/ε2 for all times t . This is a well-known sym-
metry of the generating function, referred to as the fluctuation
relation [47], which implies at the level of the distribution of
AT that

p(AT = a)

p(AT = −a)
= e4ξaT/ε2

, (67)

so that fluctuations with a particular sign are exponentially
suppressed with T relative to fluctuations with the opposite
sign. Such a symmetry is normally associated with the entropy
production [33] and arises here because the stochastic area
can be related for linear diffusions in two dimensions to the
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FIG. 4. Rate function for the stochastic area of the transverse
diffusion for the parameter values γ = 1, ξ = 1, and ε = 1, for
which a∗ = 0.5.

nonequilibrium work, which is itself related to the entropy
production [21].

The fluctuation relation can also be inferred from the large
deviation functions. Since the form of Gk (x, t ) is unchanged
compared to the first model, the SCGF is still given by (53)
but for k in the range (65) and γk in (64). From this the rate
function is obtained by Legendre transform as

I (a) =
√

ε4(γ 2 + ξ 2)

4a2 + ε4
− 2aξ

ε2
− γ

+ 4|a|3(γ 2 + ξ 2)√
a2ε4(4a2 + ε4)(γ 2 + ξ 2)

, (68)

which is such that

I (−a) = I (a) + 4ξa

ε2
, (69)

consistently with (67).
The plot of I (a) is shown in Fig. 4 for γ = ξ = ε = 1.

Compared with the gradient diffusion, we now see that I (a)
is asymmetric around the typical value a∗, indicating that the
system is more likely to produce fluctuations that go in the
direction of the current. Close to a∗, we still have a Gaussian
regime of fluctuations characterized by the asymptotic vari-
ance

λ′′(0) = ε4(γ 2 + ξ 2)

4γ 3
. (70)

Moreover, the tails of I (a) are also asymptotically linear,
implying that the large deviations of AT are still exponentially
distributed, though in an asymmetric way, so that we have

I (a) ∼ −2ξ − 2
√

γ 2 + ξ 2

ε2
a (71)

as a → −∞ and

I (a) ∼ −2ξ + 2
√

γ 2 + ξ 2

ε2
a (72)

as a → ∞.
From these results, we expect the effective diffusion to

behave, as in the case of the gradient diffusion, as a modi-
fied transverse diffusion that adjust the stiffness and rotation

parameters so as to produce specific area fluctuations. This is
confirmed by calculating Mk from (36), which gives

Mk =
(

γk ξk

−ξk γk

)
, (73)

where γk is the effective friction given in (64) and

ξk = ξ + kε2

2
(74)

is the effective rotation. As a result, we can immediately
deduce from (62) and (61) that

p∗
k (x) = γk

πε2
exp

(
−γk

ε2
‖x‖2

)
(75)

and

J∗
k (x) = ξk

(−y
x

)
p∗

k (x). (76)

Note that ξk in (74) is consistent with the rotational constraint

∇ × (D−1Fk ) = ∇ × (D−1F ) + k∇ × (�x), (77)

found for the effective process (see Sec. 5.6 of [24]), which
implies here a constraint on the skew difference of Mk:

(Mk )1,2 − (Mk )2,1 = M1,2 − M2,1 + ε2k. (78)

The stationary density and current obtained in (75) and
(76) are illustrated in Fig. 5 for different fluctuation regimes
associated with different k values. The physical interpretation
of these regimes follows closely our discussion of the gradient
diffusion, keeping in mind that the transverse diffusion now
has an inherent rotation that favors trajectories that rotate in
the direction of the drift or stationary current. Indeed, taking
the case ξ > 0, we observe the following:

(i) Area fluctuations a > a∗ larger than the typical value,
associated with 0 < k < k+, are created by rare trajectories
that rotate slightly faster than the natural rotation induced
by the drift (ξk > ξ ) and that are weakly attracted to the
origin (γk < γ ), so they venture further in the plane to accrue
more area [see Fig. 5(a)]. As in the gradient case, the latter
mechanism dominates for very large area fluctuations and is
responsible for the exponential distribution seen for a � a∗.
Moreover, ξk also saturates to a maximum rotation when
k → k+ or, equivalently, when a → ∞, found from (65) and
(74) to be equal now to

√
γ 2 + ξ 2.2

(ii) Positive area fluctuations below a∗, associated with the
range −2ξ/ε2 < k < 0, are created by trajectories that rotate
less (ξk < ξ ) and are closer to the origin (γk > γ ), compared
to typical trajectories of the system associated with a∗ [see
Fig. 5(b)]. The combination of the two effects leads to Gaus-
sian small fluctuations close to a∗.

(iii) Negative area fluctuations, associated with k− < k <

−2ξ/ε2, are created by trajectories that rotate against the
current (ξk < 0), so there is a current reversal, though γk

is still reduced compared to γ , so those trajectories have
larger excursions from the origin [see Fig. 5(c)]. As in the
first fluctuation regime, the latter mechanism is dominant for

2We note that γka , where ka is the root of (30), is even as a function
of a, while ξka is odd in a.
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FIG. 5. Vector plot of the stationary current J∗
k (x, y) of the effective process associated with the stochastic area for the transverse diffusion

for the three fluctuation regimes: (a) a > a∗, (b) 0 < a < a∗, and (c) a < 0. The density plots underneath show the modified stationary density
p∗

k (x, y). The parameters are γ = 1, ξ = 1, and ε = 1.

very large negative fluctuations, explaining the exponential
distribution seen for a � 0, since ξk saturates to −

√
γ 2 + ξ 2

when k → k−, and so when a → −∞.
Compared to the gradient diffusion, there is a further in-

teresting effect in the transverse diffusion arising when we
consider the value a = 0 between the second and third fluc-
tuation regimes above, associated with k = −2ξ/ε2. In this
case, ξk = 0, so the current of the effective process vanishes,
which means that this process is reversible. This is expected
physically, since the trajectories responsible for the rare event
AT = 0 must effectively cease to rotate in a preferred direction
in the long-time limit and therefore must appear in simula-
tions or experiments as if they were produced by a reversible
process. This is an important observation, showing that the
stochastic area can be used as an irreversibility metric but only
in a probabilistic way: From the measurement or estimation of
AT , one cannot say with certainty that a process is irreversible,
but can only do so with a probability or confidence determined
from the statistics of this quantity, as we discuss next.

VI. IRREVERSIBILITY TEST

The mean stochastic area AT is a natural estimator of the
asymptotic mean a∗, which can be used, as discussed, to deter-
mine whether a diffusion is reversible (a∗ = 0) or irreversible
(a∗ 	= 0) [5]. As a statistical estimator, AT is asymptotically
unbiased as well as consistent, since its variance decreases
with the observation time T , so AT converges in probability
to a∗ as T → ∞. Naturally, for a finite time, the distribution
of AT is not fully concentrated on a∗; it has a finite width
around this value that determines the error bar or confidence
interval associated with the estimation of a∗ and in turn the
confidence that one has in deciding from observed trajectories
that a diffusion is irreversible.

This confidence interval is obtained in the usual way from
statistics using the fact that AT has Gaussian fluctuations
around a∗ with the variance shown in (31) [48]. Accordingly,
if we set the confidence level at one standard deviation, then
we can say that the area AT estimated from one trajectory of
duration T will lie within the interval [a∗ − σT , a∗ + σT ] with

67% probability, where

σT =
√

var(AT ) ∼
√

λ′′(0)√
T

(79)

is the theoretical standard deviation of AT . In practice, a∗ is
estimated from AT , while λ′′(0), the theoretical asymptotic
variance, is estimated either from a single trajectory using
batch mean methods [49] or from a collection of many trajec-
tories, copies or replicas, as commonly done in Monte Carlo
simulations [50].

By extending this result to a one-sided confidence interval,
illustrated in Fig. 6, we can define a statistical test to determine
whether a diffusion is irreversible.3 To be specific, consider
the case where a∗ > 0 and let σT be such that a∗ − σT = 0,
as in Fig. 6. Then P(AT > 0) ≈ 0.84 based on the Gaus-
sian approximation. From the figure it is also clear that if
a∗ − σT > 0, that is, if 0 is outside the one-sided interval, then

3Note that irreversibility cannot be tested statistically by observing
the event AT 	= 0, since the probability of this event is trivially 1.
Rather, we must use the fact that a∗ 	= 0 induces an asymmetry in the
fluctuations of AT to test for the event AT > 0 or AT < 0, depending
on whether a∗ > 0 or a∗ < 0, respectively.

FIG. 6. Statistical test for irreversibility based on the probability
that AT > 0 (in gray).
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FIG. 7. Experimental test for determining whether a diffusion
is irreversible based on the estimation of a∗. The estimated area
AT (black solid line) is obtained from a trajectory of the transverse
diffusion with γ = ξ = ε = 1, for which a∗ = 0.5 (blue solid line).
As AT approaches a∗, the corresponding error bar gets above 0 at
some time Tσ (vertical black dashed line), from which we can say
that the system is irreversible with a probability greater than 0.84.
The gray line shows the theoretical standard deviation around the
expectation a∗.

P(AT > 0) > 0.84.4 The exact value of P(AT > 0) in this
case depends on a∗ and σT . A similar result applies if a∗ < 0
by reflecting the figure horizontally. In that case, we have
P(AT < 0) ≈ 0.84 if a∗ + σT = 0 and P(AT < 0) > 0.84 if
a∗ + σT < 0.

With these results, we propose the following steps for
testing the irreversibility of a diffusion:

(1) Simulate or observe a trajectory (Xt )T
t=0 over the dura-

tion T to estimate a∗ with AT .
(2) From the same trajectory, estimate the standard de-

viation σT using batch means methods or, alternatively,
regenerate many trajectories of duration T to estimate that
standard deviation.

(3) Denote the estimator of σT by σ̂T . If AT − σ̂T > 0 or
AT + σ̂T < 0, then one is at least 84% sure that the observed
diffusion is irreversible.

(4) If the test in step 3 is inconclusive, then repeat the
process for a longer duration T .

We illustrate this test in Fig. 7 for the transverse diffusion
with γ = ξ = ε = 1 for which a∗ = 0.5, as seen from (63)
and in Fig. 4. By simulating one trajectory of that system, we
see that the estimated area AT fluctuates initially and starts to
hover around 0.5, so we start to be confident that the system is
irreversible, based only on the observation of AT . To quantify
that confidence, we must compute the error bar associated
with AT and wait until a later time, denoted by Tσ in the
plot, when the error bar stops containing the value a = 0, thus
rejecting the possibility that the system is reversible. From
that point on in time, we are 84% confident that the system
is irreversible.

4This is a rough estimate, obviously, coming from the Gaussian
approximation of p(AT = a), which can be refined knowing from
our results that the tails of that density are exponential.

Note that, for simplicity, we have computed the error bars
reported in Fig. 7 by simulating N = 100 independent trajec-
tories. In this case, the standard deviation of the estimated area
is further reduced by a factor

√
N , since we have effectively

collected a sample of 100 area values that are independent.
In cases where this cannot be done, e.g., in an experimental
setting where only one trajectory can be observed, the stan-
dard deviation of the estimated area can still be estimated
using batch means methods, which proceed by splitting the
trajectory in near-independent segments (see [49] for details).

In the experimental test above, it is important to note that
step 3 being inconclusive does not mean that the system is
reversible; it only means that we cannot say at that point that
the system is irreversible. In fact, it is not possible, strictly
speaking, to decide that a system is reversible, even with some
probability, because the latter case corresponds to the event
AT = 0, which for a real random variable has zero probability
to happen and so cannot be tested statistically.

This shows that, to test reversibility, one needs to access
quantities or statistics other than AT that relate to the re-
versibility of a diffusion. One such quantity or indicator is
the asymmetry between the fluctuating and relaxing parts of
fluctuation loops observed in irreversible systems [4]. Another
quantity that we propose for future studies is the skewness
of AT , which we expect to be generally zero for reversible
diffusions and nonzero for irreversible diffusions, following
the linear diffusions studied in the preceding section.

VII. CONCLUSION

We have studied the statistics of the area enclosed by
random trajectories of linear diffusions in two dimensions,
following previous studies of this quantity initiated by Lévy
for planar Brownian motion. We have derived an exact form
for the generating function of the stochastic area and have
derived from this function explicit expressions for the large
deviation functions characterizing the probability density of
the stochastic area in the long-time limit. The results show
two different regimes of fluctuations around the stationary
expected area: a Gaussian regime of small fluctuations near
the expected area, which is important as we have seen for
determining whether a diffusion is irreversible, and an expo-
nential regime of large area fluctuations, which is symmetric
or asymmetric when the underlying diffusion is reversible or
irreversible, respectively. The difference between these two
regimes reflects, as we have also seen, different types of rare
trajectories. Small area fluctuations, on the one hand, tend
to be created by trajectories that stay close to the origin but
rotate at a different rate around this point, whereas large area
fluctuations, on the other, tend to be created by trajectories
that venture far from the origin as a way to accrue more area
while rotating around this point at a more or less constant rate.

Similar results hold for other linear diffusions, including
the Brownian gyrator [19–21], which is driven in a nonequi-
librium state by a temperature difference [51–55], as well as
systems involving correlated noise components [31], which
lead to nondiagonal components in D. The methods that we
have presented can also be applied to higher-dimensional
linear diffusions by considering the stochastic area (AT )i j in
all possible planes (i, j) of the Rn space, so as to define a

044136-10



LARGE DEVIATIONS OF THE STOCHASTIC AREA FOR … PHYSICAL REVIEW E 108, 044136 (2023)

stochastic area matrix or tensor [4]. This tensor is anti-
symmetric by definition, and so has n(n − 1)/2 independent
components, which means that testing the irreversibility of
a diffusion in Rn requires, in principle, that we apply the
test proposed here for that many components. This can be a
difficult task, but it is simpler, nevertheless, than estimating
the current field J∗(x) over a grid in Rn from observed trajec-
tories.

Finally, we expect many of the properties of the stochastic
area found here for linear models to hold more generally
for nonlinear ergodic diffusions. In particular, the distribution
of the area should be asymmetric whenever the underlying
diffusion is irreversible, leading to a skewness of the area,
also observed recently for other current-type observables and
processes [56–58]. Similarly, the two regimes, Gaussian and

exponential, of fluctuations that we have found should apply
more generally to nonlinear diffusions and should come again
from the competition that exists between rotating and wander-
ing trajectories. In this context, it would be interesting to see
if there is a general bound on the rotation of trajectories asso-
ciated with large area fluctuations, as found here for gradient
and transverse diffusions, which would imply a bound on their
vorticity.
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