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Thermodynamic stability at phase coexistence
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The main point we address in this paper is the question of thermodynamic stability for phase-separating
systems, at coexistence in equilibrium. It has long been known that numerical simulations of different statistical
models may yield “Van der Waals-like” isotherms in the coexistence region. Such “inverted” convexity segments
of thermodynamic fields, known as unstable, are forbidden by the second law of thermodynamics on entropy,
and their presence is not justified in exact results. In numerical experiments, their origin has been associated
with the interface between the two coexisting phases. Nonetheless, the violation of the second law by entropy
has not yet, to our knowledge, been rationalized. In this work, we introduce the thermodynamics of the interface
between coexisting phases and give an alternative interpretation to the theory developed by Hill in the 1960s. Our
approach points to a misinterpretation of the usual measurements of thermodynamic potentials in simulations.
Correct interpretation eliminates the unstable regions of the true potentials. Our adapted theory is verified for the
2D lattice gas through carefully planned simulations. The thermodynamic description of the interface behavior
inside the coexistence region restores the proper convexity of the true chemical potential isotherms. As a bonus,
our interpretation allows direct calculation of surface tension in very good accordance with Onsager’s analytic
prediction.
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I. INTRODUCTION

The 19th-century experimental study of coexisting gas-
liquid phases [1] showed that the system pressure-volume
isotherms present a horizontal plateau which signals the pres-
ence of phase separation. The first successful theory for
Andrews data [1] was proposed by Van der Waals [2]: it had
the advantage of presenting two different densities for the
same pressure, at fixed lower temperatures, as observed for
the liquid-gas coexistence isotherms. However, instead of the
plateau between the liquid and gas volumes, the pressure vs
volume isotherm presented a small concave segment at inter-
mediary volumes, with inversion of convexity. This feature
was corrected by Maxwell, who proposed the insertion by
hand of a coexistence plateau (following experimental results)
which linked the gas and liquid convex branches [3, p. 163].
Van der Waals’s and equivalent mean-field approaches gained
widespread applications, which are extremely useful in the
areas of condensed and soft matter to this day.

The 20th century brought about investigation of models
for fluids through computer simulations. Differently from the
analytical results for mean-field models, numerical experi-
ments of statistical models were able to present gas-liquid
coexistence. Surprisingly, the coexistence region was char-
acterized by inverted convexity segments in field-density
isotherms [4–9]. This feature, change of convexity, violated a
fundamental property of entropy. This should not be expected
from the exact treatment of statistical models. Clarification of
this question is the aim of this paper.
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Thermodynamic variables have well-defined convexity
properties [10, p. 206], [11, p. 682], [12, p. 74], [13,
p. 37], [14], all of which derive from the second law of ther-
modynamics. In equilibrium, entropy S(U,V, N ) is a concave
function of its extensive variables (internal energy U , volume
V , or particle number N , in the case of a simple fluid), which
is a consequence of the fact that entropy must be a maximum
at the equilibrium of composite systems, with respect to pos-
sible partitions of extensive variables in an isolated system.
Thus, we must have ∂2S/∂X 2 < 0, where X denotes an ex-
tensive variable. This property of entropy propagates to the
thermodynamic potentials obtained through Legendre trans-
formation, such as the Helmholtz free energy, F (T,V, N ),
which is a convex function of volume V (∂2F/∂V 2 > 0), for
instance. An inversion of convexity violates the second law
of thermodynamics. A negative ∂2F/∂V 2 implies expansion
under increasing pressure, which explains why an inversion
in convexity also comes under the name of thermodynamic
instability ([10, Ch. 8] and [12, p. 76]).

If thermodynamics is obtained from the statistical me-
chanics of a given model, the derived potentials must have
the proper convexity as prescribed by the second law. Cal-
culations for the average properties of the model may be
developed in different ensembles, the choice of which is usu-
ally guided by mathematical simplicity. Ensembles may be
classified into two different categories (see Sec. III of [15]):
density, or an extensive variables ensemble, for which densi-
ties such as energy, volume, particle number, or magnetization
are fixed; or in the corresponding conjugate field ensembles,
at fixed temperature, pressure, chemical potential, or mag-
netic field, to cite the more common ensembles. It is in the
density ensembles that the convexity problem is known to
arise [4–9].
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FIG. 1. Lattice gas chemical potential μ vs density ρ isotherm below criticality obtained from MC simulations in the (T,V, N ) canonical
ensemble. Insets correspond to the periodic system snapshots at three different densities: ρ = 0.26 in the left loop, ρ = 0.5 in the middle of
the plateau region, and ρ = 0.73 in the right loop. The dashed line is an extension of the plateau region, and its intersections with the isotherm
correspond to the phase coexistence densities. Data are for L = 40 and reduced temperature t = 0.5 (see Sec. III for variable definitions).

In order to address the problem of thermodynamic instabil-
ity, which is systematically associated with phase separation,
we shall adopt the term loop for the segment of inverted
convexity which arises in the isotherms of different field ther-
modynamic variables, as functions of their conjugate densities
(see [12, p. 76]).

Violation of convexity properties, or loops, thus seem to
arise under two very different treatments of statistical mod-
els: (1) in mean-field approaches [3,10], as in the case of
the well-known Van der Waals concave “loops” in pressure
vs volume isotherms, which present segments with neg-
ative compressibility, i.e., (∂V/∂P)T,N = −[∂2F/∂V 2]−1

T,N <

0, or (2) in numerical simulations at fixed density ensem-
bles [4–7], which may yield “loops” in chemical potential μ as
a function of density [(∂μ/∂N )T,V = (∂2F/∂N2)T,V > 0], as
illustrated in Fig. 1, or of temperature as a function of energy
[(∂T/∂E )V,N = −T 2(∂2S/∂E2)V,N > 0] [8,9].

In both cases, mean-field analytical treatment, or numerical
simulations, the region of forbidden convexity presents itself
in association with coexistence of thermodynamic phases of
the model systems. However, the rationale behind the loops,
which may arise in the two situations mentioned above, have
completely different origins, as has been pointed out else-
where [7].

The cause of the nonphysical or forbidden loops in
the thermodynamics of mean-field models is well estab-
lished as an artifact of the calculations, which assume the
system to be homogeneous throughout the coexistence re-
gion [3, p. 41]. Since Maxwell, the forbidden loops are
substituted ad hoc with a coexistence plateau which con-
nects the two single phase branches, accepted as correct
for the model system. This is the well-known “Maxwell
construction,” also known as “equal area construction,”

a reference to the mathematical property yielded by the
procedure [3, p. 163].

In the case of numerical simulations of statistical models,
the origin of the forbidden loops must be looked for else-
where. Differently from the mean-field approaches, numerical
experiments in fixed extensive variable ensembles, such as
microcanonical [8] or canonical ensembles [4–7,16,17], allow
for the appearance of different coexisting phases. If one fixes
an intermediate density, between the gas and liquid densities,
for example, the numerical system necessarily partitions into
a gas and a liquid phase if temperature is sufficiently low. It is
exactly in these density ensembles, in which different phases
develop simultaneously, that thermodynamic instability, or
loops, appear. However, this situation is totally different from
the situation of Van der Waals-like systems, which are treated
as homogeneous throughout. Thus loops must have a different
explanation for the case of simulations.

Several studies have attributed chemical potential loops ob-
tained in canonical ensemble simulations to interface effects
in finite systems, which should disappear in the thermo-
dynamic limit [17]. The de-escalating of loops with size
has been indicated very clearly in several numerical stud-
ies [7,16]. Characteristics of special loop segments have also
been closely associated with interface geometry [7]. However,
violation of convexity remained without an explanation.

In this study, we focus on the convexity inversion in chem-
ical potential isotherms which arise in simulations in the
canonical ensemble (see Fig. 1). We argue that these loops are
only apparent, and disappear under correct thermodynamic
analysis of phase coexistence.

The grand-canonical fixed chemical potential ensemble
presents a different picture: the system remains homogeneous
throughout the simulations, even under coexistence or near
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coexistence conditions, but alternates between the two phases.
Instead of loops one sees a region of apparent metastabil-
ity which is reminiscent of magnetic hysteresis, with the
low-density phase presenting itself beyond the coexistence
potential, as it is increased, whereas the high-density phase
remains present below the coexistence chemical potential, as
the latter is decreased [18].

In summary, numerical simulations of phase-separating
systems in the coexistence region seem to yield both ther-
modynamic instability, through the presence of loops in
thermodynamic variables, as well as the nonequivalence of
ensembles: “loops” in density ensembles, or hysteresis in
field ensembles, for the same thermodynamic field variable.
Both features have been reputed to be a consequence of the
finiteness of the simulated systems [6,18].

In this paper we address the following question: what could
be the origin of the apparent thermodynamic instability seen
in simulations for thermodynamic fields such as chemical
potential? Is instability justified in finite systems?

We recover a theory proposed by Hill [17] for the ther-
mostatistics of different ensembles of systems at coexistence,
presented by the author at the dawn of numerical investigation
of statistical model properties. We add an alternative interpre-
tation to Hill’s approach by introducing the thermodynamics
of the interface between coexisting phases, which had not
been included in his theory. The ensemble probability distri-
butions are corrected correspondingly. Proper treatment of the
thermodynamics of the interface yields the recovery of proper
thermodynamic stability, as we show in Sec. II. This is the
main point of our work.

In order to illustrate and prove our point of view, we
explore the behavior of statistics in both the canonical and
grand-canonical ensembles, and obtain the corresponding
thermodynamics, for the case of the square lattice gas model.
By applying the thermodynamics of the interface in the inter-
pretation of results, thermodynamic stability of the chemical
potential is regained, as shown in Sec. III A.

Additionally, two side products of our investigation of
convexity were obtained. Our adaptation of Hill’s theory re-
quires that we couple the investigations in both ensembles:
the grand-canonical and the canonical ensemble. The appar-
ent divergence between canonical and grand-canonical results
disappears, as very low probability spatial configurations are
probed in the fixed field ensemble. As well, as a consequence
of our approach we also obtain a straightforward method
for measuring the interface tension between two coexisting
phases from numerical experiments, which is much simpler
than existing methods (see, for example, [7]). The latter is
presented in Sec. III B.

II. THERMOSTATISTICS OF PHASE COEXISTENCE

What is the precise origin of loops in numerical simu-
lations? In the 1960s Hill [17] presented a theory aimed at
answering this question, which we describe briefly. Let Y rep-
resent a thermodynamic field and X the respective conjugate
density. At a particular density X , a system at coexistence
presents two different densities, say, X1 and X2, which rep-
resent the densities of the two coexisting phases. If one runs
simulations for fixed conjugate field Y , density X fluctuates

around the two values X1 and X2. Thus, if one plots the prob-
ability P(X ;Y ) of density X at fixed thermodynamic field Y ,
one obtains a two-peak function, with peaks centered on X1

and X2, separated by a minimum at Xmin.
For clarity of argument, let us consider a simple fluid.

The grand-canonical probability of finding N particles in the
system at (T,V, μ) is given by

P(N ; T,V, μ) = eβμN Z (T,V, N )

�(T,V, μ)
, (1)

where Z (T,V, N ) and �(T,V, μ) are, respectively, the canon-
ical and the grand canonical partition functions of the system,
and β = 1/kBT .

According to Hill’s proposal, the maximum of the distribu-
tion [ ∂P(N ;T,V,μ)

∂N ]T,V,μ = 0 should yield the chemical potential
in the canonical ensemble:

βμ + 1

Z (T,V, N )

∂Z (T,V, N )

∂N
= 0 (2)

in accordance with the corresponding equation of state in the
Helmholtz free-energy representation(

∂F

∂N

)
T,V

= μ(T,V, N ). (3)

According to Hill [17], the liquid-gas coexistence would
be signaled by a two-peaked distribution of particle number
N for the system in the chemical potential bath, thus yielding
two maximum values for particle density, corresponding to
Ngas and Nliq, at the same chemical potential μcx.

However, as we will show below, Eq. (3) is correct only
for the homogeneous phases. In the coexistence region, the
system free energy must include dependence on the behavior
of the interface between coexisting phases: Eq. (3) is no longer
valid, and Hill’s theory must be modified accordingly.

The full expression for the free energy of a simple fluid at
coexistence, Fcx, must be written as

Fcx(T,V, N ) = Fbulk + Fint (T,V, N ), (4)

where Fbulk = Fgas(T,Vgas, Ngas) + Fliq(T,Vliq, Nliq ). Note that
N = Ngas + Nliq and V = Vgas + Vliq. The free energy of the
interface is given by

Fint = γ (T )Aint (T,V, N ), (5)

where γ describes surface tension, while Aint is the area of the
interface [19,20].

From Eqs. (4) and (5), a new equation of state related to
variation of the number of particles is obtained:(

∂Fcx

∂N

)
T,V

= μcx(T,V, N ) + γ

(
∂Aint

∂N

)
T,V

, (6)

where the coexistence chemical potential is obtained from the
bulk free energies as

μcx(T,V, N ) =
(

∂Fbulk

∂N

)
T,V

. (7)

Equation (7) results from equality of the chemical potentials
of the different phases under equilibrium,

μcx =
(

∂Fgas

∂Ngas

)
T,V

=
(

∂Fliq

∂Nliq

)
T,V

, (8)

and from Ngas + Nliq = N .

044135-3



ALVES AND HENRIQUES PHYSICAL REVIEW E 108, 044135 (2023)

At coexistence, Eq. (6) replaces the usual state equation for
the chemical potential [Eq. (3)]. This is the main point of our
work, with important consequences on the interpretation of
simulation results, as we show in the next section.

It will be useful to define a pseudochemical potential μ̃,
related to the true coexistence chemical potential μcx through

μ̃(T,V, N ) = μcx(T,V, N ) + γ

(
∂Aint

∂N

)
T,V

. (9)

Note that Eq. (6) implies that in order to obtain the true
chemical potential from the system free-energy behavior un-
der variation of particle number one should maintain interface
area fixed. Thus it is clear that, at coexistence, computing the
usual partial derivative of the system free energy [Eq. (3)] with
respect to particle number, at fixed temperature and volume,
does not yield the chemical potential but, instead, the sum of
the chemical potential with a term proportional to the variation
of the interface area with particle number [Eq. (6)].

Interpretation of Eq. (9) is as follows: free-energy variation
with particle number, at coexistence, must yield the plateau
(given by μcoex), expected at phase separation, plus a term
which describes the rate of variation of the interface with
particle number. This rate is positive when the interface is
forming, and is negative in the region in which the interface
is disappearing. As we shall discuss in the following section,
this additional term is responsible for the loops which appear
in the pseudochemical potential we have defined, while the
true chemical potential displays the correct plateau behavior.

What about the grand-canonical ensemble probability
P(N ; T,V, μ)? If the usual grand-canonical probability is
written in terms of the true chemical potential of the ho-
mogeneous phase [Eq. (1)], at coexistence the probability
distribution for the number of particles [Eq. (1)] must be
rewritten in order to include the interface area effect. Thus
one must write

P(N ; T,V, μ̃) = eβμ̃N Z (T,V, N )

�(T,V, μ̃)
. (10)

The interface contribution is represented through μ̃.
Under the circumstances of coexistence, extrema with re-

spect to particle number N of the the distribution function at
coexistence P(N ; T,V, μ̃) are given by

βμ̃ + 1

Zcx(T,V, N )

∂Zcx(T,V, N )

∂N
= 0. (11)

The corresponding equation of state is then

μ̃ − ∂Fcx(T,V, N )

∂N
= 0, (12)

and we recover Eq. (9) through Eq. (6).
Note that the usual grand-canonical probability [Eq. (1)]

must be rewritten, at coexistence, to include the presence
of the interface area through the pseudochemical potential
[Eq. (9)]. It is this coexistence grand-canonical probability
[Eq. (10)] which displays the two-peaked distribution and
not the usual grand-canonical probability, as proposed by
Hill [17].

III. THERMOSTATISTICS OF PHASE COEXISTENCE
FOR THE LATTICE GAS

In order to check our modified Hill’s theory, we have
carried out very careful simulations for the square lattice gas
of L2 lattice sites. For clearness, the latter model is briefly
defined. Individual lattice sites may be empty or occupied by
a single particle which interacts attractively with its nearest
neighbors. The effective Hamiltonian in the grand-canonical
ensemble may be written as

H = −ε
∑
i, j

ηiη j + μ
∑

i

ηi, (13)

with η = 0(1) empty (occupied) sites. The fluid model can
be easily mapped onto the magnetic Ising model, given by
effective Hamiltonian H = −J

∑
i, j σiσ j + h

∑
i σi, with σ =

+1(−1). The two models are equivalent if we make J = 4ε

and h = μ + 2ε. In two dimensions, analytical results for the
Ising model developed by Onsager are available [21] and
serve as good test on the theory. The zero magnetic field con-
dition for magnetic coexistence corresponds to a gas-liquid
coexistence chemical potential μcx/ε = −2, and the reduced
critical temperature is given by tC = kBTC/ε ≈ 0.57.

So we must ask what are the implications of our proposal
on the interpretation of simulation results. The answer is that
some care must be taken with the interpretation of measured
quantities. More specifically, the contribution of the interface
behavior must be separated from bulk contributions.

In order to apply the thermostatistics of Sec. II to the lattice
gas, we must study its properties in both the canonical and the
grand-canonical ensembles.

In the first place, we obtain the (T,V, μ̃) ensemble discrete
probabilities P(N ; T,V, μ̃), given by Eq. (10), at different
pseudochemical potentials μ̃. Simulations are carried out via
a combination of multicanonical [22,23] and Wang-Landau
techniques [24], which allow us to look at events of very small
probability.

In the Wang-Landau method, the density of states is esti-
mated from a random walk in the space of the parameters one
is interested in. Once a good estimate for the density of states
is obtained, ensemble probabilities are trivially obtained. In
our work, we have used the Wang-Landau’s method [24] to
estimate the density of states for energy and particle num-
ber. In the multicanonical technique [22,23], low-probability
configurations are artificially privileged. The artificial effect is
corrected before the averages are calculated. The combination
of both techniques proved extremely successful in the estima-
tion of density of states of very low probability, as we show in
the following subsection.

The use of these techniques is central to our grand-
canonical simulation results because they allow us to probe
events of very low probability, between the gas and liq-
uid densities. Below the reduced temperature tC ≈ 0.57, the
probability densities present two maxima. By running the sim-
ulations for a large set of pseudochemical potentials, the three
densities corresponding to the extrema of P(N ; T < Tc,V, μ̃)
are used to construct the full μ̃ vs 〈ρ〉 isotherms, in accordance
with Eqs. (10)–(12).

Second, to test our corrected Hill’s theory, Eq. (9) or (11),
we have also run canonical ensemble simulations. Those were
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FIG. 2. Grand-canonical probabilities P(N ; μ̃). The left curve displays P(N ; μ̃) for decreasing values of the pseudochemical potential μ̃

from coexistence and below, while the right curve displays P(N ; μ̃) for increasing pseudochemical potential values above coexistence. Circles
indicate extrema of the distributions. Data are for L = 40 and temperature t = 0.5.

carried out through the usual Metropolis algorithm [25]. In
this ensemble the numerical chemical potential is usually
obtained through Widom’s insertion method [20], which ba-
sically consists in calculating μ through the discretization of
Eq. (3). Thus, the chemical potential μ may be shown to be a
function of an average of the Boltzmann factor of the energy
added to the system upon insertion of a “virtual” particle:

μ(T,V, N ) ≡ −kBT ln
Z (T,V, N + 1)

Z (T,V, N )

= kBT ln

[
ρ〈

exp
( evirtual−particle

kBT

)〉
T,V,N

]
. (14)

However, as we discussed above, Eq. (3), as well as its
discretized version, Eq. (14), yield the chemical potential
only for the case of homogeneous phases. Under conditions
for coexistence, the system presents mostly configurations of
phase separation with an interface. Thus, if the thermody-
namic parameters correspond to coexistence conditions, the
true chemical potential μ in simulations is no longer given by
the discretized partial derivative of the canonical free energy.
Rather, the latter is really a combination of the coexistence
chemical potential and a term proportional to the gradient
of the area of the interface, as given by Eq. (6). As a con-
sequence, if the numerical experiment is carried out under
coexistence conditions, Widom’s insertion [Eq. (14)] yields a
pseudochemical potential μ̃ [Eq. (9)], and not the true chemi-
cal potential μ.

Note that, according to Eq. (9), μ̃ must rise above the true
coexistence chemical potential μcx if the area of the interface
increases with particle number N , whereas the opposite is true
if adding particles brings down the interface area. Also, if the
interface area is maintained constant as particles are added
to the system, the pseudochemical potential equals the true
coexistence chemical potential, μ̃ = μcx. This dependence on

the gradient of interface area with particle number is the origin
of the loops, as we show in the following text.

Our procedure is as follows: (1) in the pseudo-grand-
canonical ensemble (T,V, μ̃), we measure the full discrete
particle density probability distributions P(N ; μ̃), whose ex-
trema yield a precise pseudochemical potential μ̃ vs density
〈ρ〉 relations [Eqs. (10)–(11)]; (2) we obtain the pseudo-
chemical potential isotherms 〈μ̃〉 vs density ρ directly from
usual canonical ensemble (T,V, N ) simulations, through dis-
cretized Eq. (9) [see Eq. (14) and corresponding text]; and (3)
results from the two different ensembles are compared. Simu-
lations are carried out under periodic boundary conditions. As
will be discussed later, this feature of simulations is essential
in our proposal of data analysis.

Simulation results displayed in Figs. 1–5 are for lattice size
L = 40. Figure 6 shows results for L = 40, 50, 60, 70, 80.

A. Simulation results: Comparison between canonical and
grand-canonical ensembles and elimination of loops

The probabilities for the number of particles N in the
system in the pseudo-grand-canonical ensemble [Eq. (10)]
are represented in Fig. 2, for different values of the reduced
pseudochemical potential μ̃/ε [see Eq. (9)], at reduced tem-
perature t = kBT/ε. It can be seen that the small density peak
diminishes while the large density peak increases, for increas-
ing μ̃/ε up to μ̃/ε = −2. Above this value, the small density
peak diminishes while the large density peak increases, as μ̃/ε

is continually augmented. For μ̃/ε = −2, one can see a small
plateau at intermediate densities of the probability distribu-
tion, for which the small-density and high-density peaks are
of the same height.

In the canonical (T,V, N ) ensemble, of fixed density ρ,
the usual Metropolis algorithm [25] was used to obtain 〈μ̃〉,
at each density, from the equation of state represented by
Eq. (14).
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FIG. 3. Comparison between results obtained from (T,V, N ) and (T,V, μ̃) simulations. Panels (a) and (b) display distribution probability
functions P(N ; T,V, μ̃) obtained in the grand-canonical ensemble for μ̃ = −2.0 and for μ̃ = −1.98, respectively. In panels (c) and (d), the
continuous line represents the same pseudochemical potential isotherm, as obtained from canonical ensemble simulations. Circles indicate
densities which correspond to extreme points of the grand-canonical P(N ; μ̃) (a, b) at fixed μ̃ = −1.98 (c) and at fixed μ̃ = −2 (d). For
μ̃ = −2.0, the minima constitute a plateau. The dashed vertical lines serve to indicate the relation between the densities for the three extrema
of P(N ; μ̃ with the corresponding densities on the pseudochemical potential (T,V, μ̃) isotherms. Note the coincidence of (ρ, μ̃) points obtained
from simulations in the two different ensembles. Data points are for L = 40 and t = 0.5.

If the modified theory of Hill is fulfilled (even for finite
systems), we expect the (ρ, μ̃) values at the loops (Fig. 1)
to be given by the extrema of the probabilities P(N ; μ̃)
of the pseudo-grand-canonical ensemble (Fig. 2). Compar-
ison between data obtained from runs in the two different
ensembles is illustrated in Fig. 3. Figures 3(a) and 3(b)
display grand-canonical probability distributions for two dif-
ferent pseudochemical potentials, μ̃/ε = −1.98 and μ̃/ε =
−2.0. The densities corresponding to the extrema of the
P(N ; μ̃) distributions are indicated by vertical dashed lines.
They are also indicated by circles in Figs. 3(c) and 3(d) of
the grand-canonical μ̃ vs 〈ρ〉 isotherms. For μ̃/ε = −1.98,
two maxima and a minimum can be seen. For μ̃/ε =
−2.0, instead of a single minimum, one can see a plateau.
Figures 3(c) and 3(d) represent 〈μ̃〉 vs ρ isotherms (shown
as continuous lines) obtained in the canonical ensemble from
Widom’s insertion. Note that the (〈ρ〉, μ̃) points obtained
from the extrema of grand-canonical P(N ; μ̃), represented
as circles in the lower plots, coincide with the (ρ, 〈μ̃〉) val-
ues measured in the canonical ensemble. This is true for
μ̃/ε = −1.98, as well as for μ̃/ε = −2.0. For μ̃/ε = −2.0,
the plateau in the pseudochemical potential μ̃ coincides with
the plateau (or continuous set of minima) of the P(N ; μ̃)
probability distribution.

In Fig. 4 we compare the complete t = 0.5 isotherm μ̃(ρ)
obtained from the numerical experiments in the two different
ensembles through the procedure described for Fig. 3. It can
be seen that results coincide entirely throughout the whole
range of densities. The coincidence of both curves constitutes
a good check on our modified version of Hill’s theory.

Let us analyze the above results in light of state equa-
tion (6) [or Eq. (10)] and examine some of the consequences
of this analysis.

Figure 3 shows that a small plateau for the canonical 〈μ̃〉,
seen at intermediate densities, is in correspondence with the
continuous set of minima of the P(N ; μ̃) probabilities for N
in the grand-canonical ensemble. According to Eq. (9), the
presence of the plateau region in the canonical μ̃ isotherms, at

FIG. 4. Comparison between thermodynamics obtained from
different ensembles. Canonical ensemble: μ̃ is obtained directly from
simulations through Eq. (14) at fixed density ρ. The correspond-
ing canonical ensemble data are displayed as a continuous line.
Grand-canonical ensemble: density ρ is obtained from extrema of
the probability P(N ; T,V, μ̃) (see Fig. 3). The corresponding grand-
canonical ensemble data are displayed as circles. L = 40 and t = 0.5.
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intermediate densities, requires that interface area remains sta-
tionary under increase in particle number. Thus pseudo- and
true chemical potential converge, which means that we can
identify the coexistence potential with the plateau value, i.e.,
μcx/ε = μ̃plateau/ε = −2.0. This hypothesis is confirmed by
the grand-canonical probability distribution, which displays
equal peaks for the same μ̃/ε = −2.0. It has long been known
that the area beneath the two peaks must be equal at coexis-
tence [26], [27], within an error which is exponentially small
in L. For the lattice gas case, because of model symmetry, the
two peaks are also of the same height. Therefore, both the
canonical and the grand canonical data point to coexistence at
μ̃/ε = −2.0. Note that this is also the value predicted by the
exact Onsager theory.

The above discussion points to a second interesting result.
It is tempting to extract the coexisting gas and liquid densities,
ρgas and ρliq, from the intersection points of the extension of
the canonical μ̃ = −2.0 plateau with the μ̃ curve itself (see
Fig. 1). This hypothesis is validated by the fact that the grand
canonical distribution curve for μ̃ = −2.0 yields the same
values for the densities corresponding to the maxima, that is,
the same ρgas and ρliq predicted from the hypothesis on the
canonical isotherm.

Now, how can we interpret the effects of variation in in-
terface area upon the pseudochemical potential? Is there any
additional information we can get from the corresponding
loops?

Inspection of the isotherms of Fig. 3 shows that on the
left side of the plateau, at lower densities, a “plus” half-loop
is seen, with μ̃ increasing above μcx. On the right side of
the plateau, for larger densities, a “minus” half-loop is seen,
with μ̃ becoming lower than μcx. Equation (9) shows that the
“plus” half-loop corresponds to ∂Aint

∂N > 0 and thus to increas-
ing interface area with the addition of particles. Otherwise, as
for the “minus” half-loop, it must occur under the condition of
reduction of the interface area ( ∂Aint

∂N < 0), with μ̃ going below
the coexistence potential, under addition of particles. Such
behavior is compatible with the appearance of phase separa-
tion. As one goes over the lower density limit for coexistence,
given by ρgas, the formation of a small dense bubble initiates,
and an interface area appears and increases as particles are
added, which causes the pseudopotential to rise above μcx.
At intermediate densities, and under periodic boundary con-
ditions, the interface stops increasing, and the pseudopotential
equals the true coexistence potential. Above some density, the
low-density phase begins shrinking, the interface area starts to
contract, and the pseudopotential falls below the true chemical
potential.

Rationalizing this result requires looking at the geometry
of the interface, a procedure suggested in a few papers (see,
for example, [7]). For the 2D system, the interface area is
in fact a line, and the phase volume corresponds to a phase
surface area. At small densities, the liquid phase constitutes a
circle, with interface length given by 2πR. Radius R increases
with the addition of particles. At intermediate densities, and
under periodic boundary conditions, the circle deforms to-
wards a stripe of length L. For the stripe, interface length is
given by 2L and is constant while particle number and stripe
width increase. For larger densities, the liquid phase tends
to occupy the whole lattice, and the gas phase shrinks to a

FIG. 5. True vs pseudochemical potential isotherms. Extension
of the plateau in μ̃(ρ ) (thin line) identifies limits of coexistence and
gas and liquid densities ρ. The thick line represents the true chemical
potential isotherm μ(ρ ). Integration of the μ̃ “plus” loop allows for
calculation of surface tension γ (t ). Data are for L = 40 and t = 0.5.

circle. The interface length Aint decreases, as circle radius R
diminishes. Minimizing the free energy of the interface, Fint =
γ (t )Aint implies minimizing interface area. This implies that
one of the phases will present a circular form for 0 < R <

L/π and tend to a stripe for R outside this range. Similar
reasoning for a 3D system yields the condition 0 < R < L/π

for a spherical phase which deforms into a rectangular box
otherwise. In the stripe (rectangular box, in d = 3) region,
Aint is constant, in spite of the increase in particle number,
and thus pseudochemical potential μ̃ remains constant and
equal to μcx, from Eq. (9). The evolution of geometry of
phase coexistence with global density is illustrated through
the presentation of a few configurations as insertions in Fig. 1.

The reasoning presented above allows us to obtain the true
coexistence chemical potential, as well as the coexistence den-
sities ρgas and ρliq. Figure 5 displays true and pseudochemical
potentials. The effect of interface area on the isotherms is
subtracted, and true μ vs density isotherms are obtained.

The true coexistence chemical potential μcx presents no
thermodynamic instabilities and is in accordance with the
convexity essential properties of thermodynamic potentials.
This is our principal result. Correct treatment of interface ther-
modynamics removes instability and yields plateaus instead of
loops.

B. Surface tension

An important check on our proposal is possible. In the case
of the 2D lattice gas, an analytic expression for the interface
tension was presented in Onsager’s paper [21], which, for the
lattice interacting gas, is given by

γ (t )

ε
= 1

2
− t ln

[
1 + e− 1

2t

1 − e− 1
2t

]
, (15)

with t ≡ kBT/ε.
Usually [5,6,28] surface tension is calculated from

the pseudo-grand-canonical probability distribution function
P(N ; μ̃) at coexistence. In our proposal, numerical results for
the function μ̃ obtained in the canonical ensemble allow direct
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(a) (b)

FIG. 6. Lattice gas surface tension γ (t ). In the left figure our L = 40 data for γ (t ) are displayed as circles and can be compared to
Onsager’s exact result, Eq. (15) (dashed line). The right figure displays behavior with size L for temperatures t = 0.45 and t = 0.5. The exact
results, corresponding to L → ∞, are indicated with the diamond symbol. For t = 0.46, fitting yields γ (t, L → ∞) = 0.1135, compared to
exact γ (t = 0.46) = 0.1140. For t = 0.5, fitting yields γ (t, L → ∞) = 0.1770, compared to exact γ (t = 0.5) = 0.1771.

calculation of surface tension γ from the pseudochemical
potential μ̃ isotherms.

This can be done through the integration of Eq. (9), in the
region of one of the semiloops, on either side of the plateau.

The rationale is as follows: (1) The variation of μ̃ with
density ρ, at fixed temperature, is a function solely of the
variation in the interface area between the coexisting phases,
since the interface tension γ is a function only of temperature
[see Eq. (5)]. (2) The interface has zero area up to the gas den-
sity ρgas and rises rapidly beyond ρgas, as density is increased,
reaching some maximum rate, after which rate decreases and
at some density becomes null, initiating the plateau region for
a set of densities which we denote as ρplateau. (3) The area of
the flat interface Aflat−int (T, L) remains constant in the plateau
region of the pseudochemical potential μ̃ (see discussion in
Sec. A above).

Reasoning in (1)–(3) allows us to contract Eqs. (5) and (9),
and write

γ (t ; L) = V (L)

A f lat−int (L)

∫ ρplateau

ρgas (t )
[μ̃(t ) − μcx(t )] d

(
N

V

)
. (16)

Equation (16) is a general result and can be used for
calculating interface surface tension γ (t ) for any system
which presents “loops” in the pseudochemical potential and
a plateau. “Loops” must be integrated numerically, and inter-
face area must be measured.

For squares or cubes, and under periodic boundary
conditions, at temperatures at which roughness of the inter-
face may be neglected, we may write A f lat−int (L) = 2Ld−1

[with A f lat−int (L) = 2L, a lateral perimeter, for d = 2, or
A f lat−int (L) = 2L2, a set of lateral surfaces, for d = 3].

We thus have for the interface tension γ (t ; L)

γ (t ; L) = L

2

∫ ρplateau

ρgas (t )
[μ̃ − μcx]t dρ (17)

since V = Ld . This is a general result for systems of cubic
symmetry, and independent of dimensionality d . Figure 5
illustrates our procedure for the 2D lattice gas.

Figure 6(a) shows our numerical results for surface tension
γ (t ; L)/ε for different temperatures, as compared to the ana-
lytical prediction by Onsager [21]. In Fig. 6(b) it can be seen
that γ (L) decreases linearly with 1/L and that extrapolation to
infinite L yields Onsager’s results, within an error of less than
0.5%. Therefore one may write

γ (t ; L) = γ (t ; L → ∞) + o(1/L), (18)

which implies that the numerical area under the loop must
scale as 1/L [Eq. (17)]. So the loops should disappear as L →
∞, which explains their slow elimination described by other
authors (see, for example, [6]).

IV. CONCLUSION

In this study we have found an interpretation for the
forbidden loops in the chemical potential isotherms usually
encountered for systems at coexistence in numerical sim-
ulations in the canonical ensemble [4–7]. We have shown
that proper thermodynamic analysis of the coexistence free
energy, Fcx, which must include the interface contribution,
Fcx = Fbulk + Fint , implies an important modification of the
usual textbook equation of state for the chemical potential.
The usual partial derivative of the free energy with respect to
particle number, ( ∂Fcx

∂N )T,V , does not yield the true chemical
potential. We have called the average quantity measured a
pseudochemical potential, which is equal to the sum of the
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true coexistence chemical potential and a term which comes
from the interface energy, and is proportional to the gradient
of the interface area. We show that it is this additional term
which produces the loops displayed by the pseudopotential.
Loops disappear for the true chemical potential.

In numerical experiments in the canonical ensemble, the
chemical potential is usually obtained from Widom’s insertion
method, derived from discretization of the usual textbook
equation of state. Under phase separation, such a procedure
yields the pseudopotential. In order to obtain the true chemical
potential, a hypothetical alternative would be to take configu-
rations of constant interface area, i.e., to look for ( ∂Fcx

∂N )T,V,Aint .
This is unfeasible in simulations. However, in the framework
of our proposal, investigation of the “pseudo”-chemical poten-
tial isotherms may yield rich information on phase separation.

We have undertaken such an investigation for the case
of phase coexistence in the square lattice gas. We show the
following: (1) the true coexistence chemical potential may
be obtained from the small plateau displayed by the pseudo-
chemical potential isotherms at intermediate densities; (2) the
coexisting densities may be extracted from the crossing of the
extension of the plateau and the pseudopotential isotherm; and
(3) the interface tension may be measured from the integration
of μ̃ − μcx along one of the semiloops. The surface tension
of the 2D lattice gas was measured as described in (3) and
converges, for large L, to the exact value obtained analytically
by Onsager in the 1940s.

The justification for our proposal in the last paragraph
comes from the adaptation of Hill’s theory, with the introduc-
tion of the interface free energy into his arguments. A test of
the adapted theory was undertaken, by comparing data for the
pseudochemical potential coming from the grand canonical to
those coming from the canonical ensemble. In the first case,
data for the isotherms at a given pseudochemical potential are
taken from the extrema of the probability distribution. In the
second case, the pseudochemical potential is measured from
Widom’s insertion procedure. We show entire compatibility of
the two sets of data. Regions of stationarity of the probability
distribution are directly related to the μ̃ plateau regions and to
constant interface area. The latter justifies taking the plateau
as the true coexistence potential μcx.

In summary, we have shown that no violation of the
second law of thermodynamics really takes place, and that
proper convexity of the chemical potential is recovered, if it
is correctly calculated, by subtracting the effect of the vari-
ation in interface area. As a side product of our analysis,
we propose a much simpler method for the calculation of
surface tension, directly from the canonical pseudopotential
isotherms, turning unnecessary the nontrivial calculation of
the full grand-canonical distribution probability function.

We have presented very good results for the well-known
lattice gas model, which, we believe, is a good test of our
ideas. There are no restrictions, however, to the application
of the procedure to other lattice or off-lattice fluid models.
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