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The maximum likelihood method is the best-known method for estimating the probabilities behind the data.
However, the conventional method obtains the probability model closest to the empirical distribution, resulting in
overfitting. Then regularization methods prevent the model from being excessively close to the wrong probability,
but little is known systematically about their performance. The idea of regularization is similar to error-correcting
codes, which obtain optimal decoding by mixing suboptimal solutions with an incorrectly received code. The
optimal decoding in error-correcting codes is achieved based on gauge symmetry. We propose a theoretically
guaranteed regularization in the maximum likelihood method by focusing on a gauge symmetry in Kullback-
Leibler divergence. In our approach, we obtain the optimal model without the need to search for hyperparameters
frequently appearing in regularization.
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I. INTRODUCTION

The maximum likelihood method is often employed to
estimate the ground truth distribution PGT(x) (x ∈ RD) from
the given data that generate them. The basic criterion is to find
a probability model P(x) that minimizes the Kullback-Leibler
divergence (KL divergence) between the probability model P
and the underlying distribution PGT [1,2]:

D[PGT, P] :=
∫

dxPGT(x) ln
PGT(x)

P(x)
. (1)

Since the ground truth PGT is unknown and to be estimated, the
well-known maximum likelihood method employs the empir-
ical distribution Pξ

emp as an approximation of PGT. However,
the probability model P that minimizes the KL divergence
D[Pξ

emp, P] results in the model far from PGT because of
the difference between the empirical distribution Pξ

emp and
the ground truth PGT. This phenomenon is well-known in
machine learning as overfitting [3,4]. To avoid overfitting,
regularization is applied to prevent D[Pξ

emp, P] from becoming
too small [5–8]. Note that much of the success of regulariza-
tion is backed by empirical evidence, and little is guaranteed
theoretically on its performance. For the maximum likelihood
estimation as model selection, Akaike’s information criterion
(AIC) gives a theoretically guaranteed regularization [9–11].
The method proposed in the present paper shares the same
root with AIC. While AIC is defined based on an unbiased
estimator of the KL divergence between the model and the
ground truth, our method does not require such a quantity
explicitly.

Regularization to prevent overfitting is similar to error-
correcting codes [12–14]. In error-correcting codes, a sender
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encodes the message redundantly, and a receiver decodes it by
finding the solution to an optimization problem correspond-
ing to the received code. However, since the communication
channel is noisy, the received code contains errors. Thus, the
optimization problem corresponding to the received code does
not give correct decoding. The receiver utilizes a mixture of
nonoptimal solutions to the optimization problem correspond-
ing to the received code to decode the correct message [15,16].
In correspondence with physics, the optimization problem
corresponds to the search for the ground state for the Hamil-
tonian, which the received code corresponds to. Since the
Hamiltonian corresponding to the received code is incorrect,
the correct message corresponds to the excited state for the
incorrect Hamiltonian. In this situation, a mixture of excited
states at finite temperature is more appropriate than only the
ground state at zero temperature [17–20]. The condition for
maximum restoration in error-correcting codes corresponds
to the Nishimori condition known in the field of spin glasses
[21–23]. In the case of maximum likelihood estimation, the
ground truth PGT influences the empirical distribution, but the
two are different. Thus, it may be better to mix a probability
model with a high value of the KL divergence to the ground
truth than to select an optimal model. In this idea, the KL
divergence plays the role of the Hamiltonian in maximum
likelihood estimation.

The structure of the present paper is as follows: in the next
section, we introduce a gauge transformation that keeps the
KL divergence to obtain the Nishimori condition for probabil-
ity model estimation. In Sec. III, we show that the probability
model given by the Nishimori condition minimizes the KL
divergence with the ground truth PGT in the sense of ex-
pectation. The conventional maximum likelihood estimation
selects an optimal probability model with the highest ex-
planatory power for the given data from the prepared set of
models. Our method requires a change in the concept of model
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selection from that in the conventional maximum likelihood
method. We discuss the two possible changes in Sec. IV. The
first is to select a model probabilistically, and the second is
to construct a new model consisting of prepared probability
models. Section V presents two simple examples. The first
is a model selection from a set formed by only two proba-
bility models. The second example is the set of probability
models of the entire one-dimensional normal distributions.
With prior knowledge that the ground truth PGT is a normal
distribution, it is intuitively expected that the best probability
model obeys normal distribution. However, according to the
latter interpretation described in Sec. IV, we show that the
best probability model given by our method is not a normal
distribution. Section VI discusses improvements to the set of
models. Maximum likelihood estimation requires a set of pre-
pared probability models. Since the performance of maximum
likelihood estimation depends on this set, improvement of the
set is preferred. Section VII discusses the relation between our
proposed method and Bayesian updating, which is standard
for estimating probability distribution based on given data. We
discuss the sequential extension of the set. The last section is
devoted to a conclusion and future perspectives.

II. GAUGE INVARIANCE IN KL DIVERGENCE

In our framework, the KL divergence between the em-
pirical distribution and a probability model corresponds to a
Hamiltonian in the theory of spin glasses. Under the Nishi-
mori condition [21,23] for spin glasses, the exact internal
energy is calculated. To derive the Nishimori condition, which
plays a central role in error-correcting codes and also in our
discussion, let us consider the expected value of the KL di-
vergence between the empirical distribution and a probability
model corresponding to the internal energy in spin glasses:〈〈

D
[
Pξ

emp, P
]〉

β,ξ

〉
data, (2)

where 〈·〉data denotes the expected value with respect to the
sample data ξ = {ξi}i=1,...,N , i.e.,

〈·〉data :=
∫

·
N∏

i=1

[dξiPGT(ξi )]. (3)

The data ξ are assumed to be sampled independently and iden-
tically from the ground truth PGT. In addition, 〈·〉β,ξ represents
the Gibbs–Boltzmann-type weighted average with inverse
temperature β. The Hamiltonian in our framework is the
KL divergence between the empirical distribution Pξ

emp(x) :=
1
N

∑N
i=1 δ(x − ξi ) and a probability model P:

〈·〉β,ξ :=
∑

P∈M · exp
{−βD

[
Pξ

emp, P
]}

∑
P∈M exp

{−βD
[
Pξ

emp, P
]} , (4)

where
∑

P∈M · is the sum over all models P in the set M of
probability models under consideration.

In the argument of the Nishimori condition in spin glass
theory, the gauge invariance plays an important role. The
Hamiltonian is invariant under the simultaneous transforma-
tion on the thermally fluctuating spins as stochastic variables
and on the coupling constants as quenched random variables.
In our case of the mixture of various probability models, the

model P corresponds to a stochastic variable. In contrast,
since the data ξ are generated randomly from PGT and fixed
once given, they can be considered quenched random. Let us
introduce the following gauge transformation:

P(x) → Pf (x) := det[∇T f (x)]P( f (x)), (5)

ξi → ξ
f

i := f −1(ξi ), (6)

where f is an arbitrary bijective map RD → RD and f −1 is
its inverse map. It is straightforward to show that Pf (x) given
by Eq. (5) is indeed a density function. Since the empirical
distribution is transformed under the gauge transformation as

Pξ f

emp(x) = 1

N

N∑
i=1

δ[x − f −1(ξi)]

= det[∇T f (x)]Pξ
emp( f (x)), (7)

we find

Pξ f

emp(x)

Pf (x)
= Pξ

emp( f (x))

P( f (x))
. (8)

In Eq. (7), we have used δ{ f [x − f −1(ξi)]} = 0 when f (x) �=
ξi since f is a bijective map. In addition, ∇T f (x) represents
the Jacobian of f (x). By the variable transformation y = f (x),
the KL divergence is shown to be invariant under the gauge
transformation:

D
[
Pξ f

emp, Pf
] =

∫
dx det[∇T f (x)]Pξ

emp( f (x)) ln
Pξ

emp( f (x))

P( f (x))

=
∫

dy Pξ
emp(y) ln

Pξ
emp(y)

P(y)
= D

[
Pξ

emp, P
]
. (9)

On the other hand, the probability of the ground truth for
infinitesimal volume element dξ varies under the gauge trans-
formation as

PGT(ξ )dξ → PGT(ξ f )dξ f

= det[∇T f −1(ξ )]PGT( f −1(ξ ))dξ

:= P f
GT(ξ )dξ . (10)

Note that the following theorem holds [24–26]: for any pair
[p(x), q(x)] of density functions in D dimensions, there exists
a convex function ψ satisfying

p(x) = [det ∇∇T ψ (x)]q(∇ψ (x)), (11)

where ∇∇T ψ (x) denotes the Hessian of ψ (x). The func-
tion ψ is unique up to an arbitrary additive constant. Thus,
the target density q(y) can be obtained from any density
p(x) by applying an appropriate variable transformation y =
∇ψ (x), and such a variable transformation is unique. In our
framework, the gauge transformation with f −1(x) = ∇ψ (x)
uniquely determines P f

GT connected to the ground truth PGT.
Using the invariance of the KL divergence under the gauge
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transformation, we find

〈〈
D

[
Pξ

emp, P
]〉

β,ξ

〉
data =

∫ N∏
i=1

[dξi PGT(ξi )]
Dξ,β

M,I

Zξ,β

M,I

=
∫ N∏

i=1

[
dξ

f
i PGT

(
ξ

f
i

)]Dξ,β

M, f

Zξ,β

M, f

=
∫ N∏

i=1

[
dξ

f
i PGT

(
ξ

f
i

)]Dξ,β

M,I

Zξ,β

M,I

, (12)

where Dξ,β

M, f := ∑
Pf ∈M f

D[Pξ f

emp, Pf ]e−βD[Pξ f
emp,Pf ] and

Zξ,β

M, f := ∑
Pf ∈M f

e−βD[Pξ f
emp,Pf ] with the notation M f

denoting the image of M by f . The relations Pξ I

emp = Pξ
emp,

PI = P, and MI = M have been used for an identity
map I . In the last equality in Eq. (12), the expression
has been rewritten as a sum over P ∈ M since each
Pf ∈ M f corresponds to an appropriate P ∈ M by the
gauge transformation. In addition, since an arbitrary density
P f

GT(ξ ) can be represented as

P f
GT(ξ ) = exp

[∫
dx δ(x − ξ ) ln P f

GT(x)

]
, (13)

and the formal expression

N∏
i=1

e
∫

dy δ(y−ξi ) ln P f
GT(y) = eN

∫
dy Pξ

emp(y) ln P f
GT(y) (14)

holds, Eq. (12) can be rewritten through Eqs. (10), (13), and
(14) as

〈〈
D

[
Pξ

emp, P
]〉

β,ξ

〉
data =

∫ N∏
i=1

dξi E ξ,N

P f
GT

Dξ,β

M,I

Zξ,β

M,I

, (15)

where E ξ,β
P := eβ

∫
dy Pξ

emp(y) ln P(y). Since∫
dx Pξ

emp(x) ln Pξ
emp(x) in the definition of the KL divergence

is independent of the model P, we have

〈〈
D

[
Pξ

emp, P
]〉

β,ξ

〉
data=

∫ N∏
i=1

dξi E ξ,N

P f
GT

∑
P∈M D

[
Pξ

emp, P
]
E ξ,β

P∑
P∈M E ξ,β

P

.

(16)

Since 〈〈D[Pξ
emp, P]〉β,ξ 〉data is invariant under the gauge

transformation, the result of Eq. (16) is independent of f .
Thus, the result is the same as the average over all elements f
of an arbitrary set of bijective maps F . Denoting the number
(or volume in the case of a continuum) of the bijective maps
by NF , we obtain

〈〈
D

[
Pξ

emp, P
]〉

β,ξ

〉
data = 1

NF

∫ N∏
i=1

dξi

⎡
⎣∑

f ∈F
E ξ,N

P f
GT

⎤
⎦∑

P∈M D
[
Pξ

emp, P
]
E ξ,β

P∑
P∈M E ξ,β

P

. (17)

Using the correspondence between f and P f
GT, the sum for f becomes the sum for P f

GT. Then we have

〈〈
D

[
Pξ

emp, P
]〉

β,ξ

〉
data = 1

NMF
GT

∫ N∏
i=1

dξi

[ ∑
P∈M

D
[
Pξ

emp, P
]
E ξ,β

P

]∑
P∈MF

GT
E ξ,N

P∑
P∈M E ξ,β

P

, (18)

where MF
GT is the set composed of all of P f

GT given by the
bijective maps f ∈ F , and NMF

GT
is the number of its elements

(or volume in the case of a continuum). Note that NF = NMF
GT

holds when F is a discrete set. The ratio of Boltzmann weights
appearing on the right-hand side in Eq. (18) becomes unity
when β = N and MF

GT = M. The condition for the unity in
the ratio is called the Nishimori condition hereafter.

The condition for MF
GT = M is given as follows. We can

use an arbitrary bijective map f in the gauge transforma-
tion. Since P f

GT(x) = det[∇T f −1(x)]PGT( f −1(x)) and, for any
density function Q, there exists a unique bijective map g sat-
isfying Q(x) = det[∇T g(x)]PGT(g(x)), we can find a unique
bijective map f satisfying P f

GT(x) = P(x) for each model P ∈
M. Thus, assuming that F is the set consisting of all bijec-
tive maps f satisfying P f

GT(x) = P(x) ∈ M, MF
GT = M with

NF = NM holds, where NM is the number of elements of M
(or volume in the case of a continuum). Since PGT is unknown,
to give a concrete set of the bijective maps F is impossible.
However, such a set exists, and a concrete expression of F
is not required. Therefore, for an arbitrary set of probability
models M, there exists an appropriate set of bijective maps F
that allows the ratio of Boltzmann weights appearing on the

right-hand side of Eq. (18) to become unity. The Nishimori
condition is always satisfied by β = N and MF

GT = M. In
this case, Eq. (18) yields the simple form as

〈〈
D

[
Pξ

emp, P
]〉

N,ξ

〉
data = 1

NM

∑
P∈M

∫ N∏
i=1

[dξi P(ξi )]D
[
Pξ

emp, P
]
.

(19)

From this expression, 〈〈D[Pξ
emp, P]〉N,ξ 〉data is independent of

PGT and is given as the average over P ∈ M of the ex-
pected KL divergence between the model P and the empirical
distribution given by the realizations of the data {ξi}i=1,...,N

generated from P. In other words, the expectation for the KL
divergence is calculated only from the probability models, in
principle, on the Nishimori condition. It is consistent with
the fact that the internal energy is calculated exactly on the
Nishimori condition in the framework of spin glass theory
[20].

In the framework of AIC, the unbiased estimator for the
KL divergence between the empirical distribution Pξ

emp and
the probability model P is evaluated specifically [9,11]. Cor-
respondingly, it has been shown that 〈〈D[Pξ

emp, P]〉N,ξ 〉data can
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be calculated, in principle, in our case. However, as seen in
the next section, such a concrete expression is not required
for the best estimation of PGT. Note that 〈〈D[Pξ

emp, P]〉N,ξ 〉data

depends only on the set M of prepared probability models.
Since PGT is unknown, and we estimate using only the sample
{ξi}i=1,...,N , it is natural that the ground truth PGT does not
explicitly affect 〈〈D[Pξ

emp, P]〉N,ξ 〉data, which is irrelevant to
estimation accuracy.

III. PERFORMANCE INEQUALITY

In the present section, we confirm that β = N gives the
best estimation in our framework, in which an average model
weighted by KL divergence provides the estimation. In other
words, we show that the expectation of the KL divergence
between the grand truth PGT and the estimated density P̂ξ

β ,

i.e., 〈D[PGT, P̂ξ
β ]〉data becomes minimum at β = N , where the

estimation P̂ξ

β is an averaged model weighted by the KL
divergence to the empirical distribution given by the data
{ξi}i=1,...,N with the inverse temperature β:

P̂ξ
β (x) =

∑
P∈M P(x)e−βD[Pξ

emp,P]∑
P∈M e−βD[Pξ

emp,P]
. (20)

Considering the difference between 〈D[PGT, P̂ξ
β ]〉data and

〈D[PGT, P̂ξ
N ]〉data, we have

〈
D

[
PGT, P̂ξ

β

]〉
data

− 〈
D

[
PGT, P̂ξ

N

]〉
data

= −
∫ N∏

i=1

[dξiPGT(ξi)]
∫

dx PGT(x) ln
P̂ξ

β (x)

P̂ξ
N (x)

. (21)

Note that the ground truth changes as

N∏
i=1

[dξiPGT(ξi )]PGT(x) →
N∏

i=1

dξi P f
GT(x)E ξ,N

P f
GT

(22)

under the gauge transformation, while P̂ξ

β /P̂ξ
N is invariant.

Since the result in Eq. (21) does not change before and after
the gauge transformation, it equals the average over all gauges
f ∈ F . Since F is the set of bijective maps connecting PGT

and P ∈ M as P f
GT(x) = P(x) in our framework, the average

over f ∈ F equals the average over P ∈ M. Then we find

−
∫ N∏

i=1

[dξiPGT(ξi )]
∫

dx PGT(x) ln
P̂ξ

β (x)

P̂ξ
N (x)

= − 1

NM

∫ N∏
i=1

dξi

∫
dx Sξ,N

M (x) ln
P̂ξ

β (x)

P̂ξ
N (x)

� − 1

NM

∫ N∏
i=1

dξi

∫
dx Sξ,N

M (x)

[
P̂ξ

β (x)

P̂ξ
N (x)

− 1

]
, (23)

where Sξ,β

M (x) := ∑
P∈M P(x)E ξ,β

P , and ln z � z − 1 for z > 0
has been used.

Using the definition of the KL divergence D[Pξ
emp, P], the

concrete form of P̂ξ

β (x) is rewritten as

P̂ξ

β (x) = Sξ,β

M (x)∑
P∈M E ξ,β

P

. (24)

Thus, we evaluate the last line in Eq. (23) as

− 1

NM

∫ N∏
i=1

dξi

∫
dx

[
Sξ,β

M (x)

∑
P∈M E ξ,N

P∑
P∈M E ξ,β

P

− Sξ,N
M (x)

]
.

(25)

Since
∫

dx P(x) = 1 holds for an arbitrary model P, we have∫
dx Sξ,β

M (x) =
∑

P∈M
E ξ,β

P (26)

for arbitrary β. Using this fact, we find that Eq. (25) vanishes.
Therefore, we attain〈

D
[
PGT, P̂ξ

β

]〉
data

�
〈
D

[
PGT, P̂ξ

N

]〉
data. (27)

The density function P̂ξ
N estimated on the Nishimori condition

is closest to the ground truth PGT in the sense of expectation.
The above result is suggestive. The most accurate estima-

tion in the limit of N → ∞ corresponds to the Nishimori
temperature β → ∞, or zero temperature estimation. It is
consistent with the well-known fact that the best model is ob-
tained through the conventional maximum likelihood method
when the sample size is sufficiently large. In such a case, the
criterion for model selection is minimization for the KL diver-
gence to the empirical distribution Pξ

emp determined from data
{ξi}i=1,...,N . In the conventional maximum likelihood method,
a new model P with lower KL divergence replaces an old
one with higher KL divergence. On the other hand, in our
approach, we weigh these old models by the KL divergence
to obtain a more accurate model.

To reduce the value of 〈D[PGT, P̂ξ
N ]〉data, we should increase

the sample size N or improve the set of models M under
consideration. Note that P̂ξ

N does not depend on PGT but on
the set of models M. In other words, the same M yields the
same estimation result P̂ξ

N , even if the same sample {ξi}i=1,...,N

is generated from different ground truths. It is a natural result
because our estimation is based only on the data. The choice
of M determines the estimation accuracy. In Sec. VI, we dis-
cuss the improvement of M. 〈D[PGT, P̂ξ

N ]〉data is an indicator
for the estimation accuracy and depends on PGT, although P̂ξ

N

is independent of PGT. We have shown that 〈D[PGT, P̂ξ
β ]〉data

gives the minimum at β = N using gauge invariance for the
difference in Eq. (21). However, since D[PGT, P̂ξ

β ] is not gauge

invariant, the value of 〈D[PGT, P̂ξ

β ]〉data depends on PGT.

IV. TWO POSSIBLE INTERPRETATIONS

We show in Sec. V that the estimation P̂ξ
N by our method

is generally not in the prepared set M, i.e., P̂ξ
N /∈ M. In

this case, the best model does not belong to the initially
prepared set of models. On the other hand, the conventional
maximum likelihood method selects the model most explana-
tory to the realized data from the initially prepared models.
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Thus, our framework requires a change in the interpretation
of maximum likelihood estimation. There are two possible
interpretations of our method. The first is to select the model
probabilistically. In our approach, the prepared models have
Boltzmann weights. We can select a model probabilistically
according to the Boltzmann weight if only one of the models
in M is allowed as an estimation result. In this case, a lower
KL divergence is achieved compared to one obtained by the
conventional maximum likelihood method in the sense of
expectation. The second is to accept P̂ξ

N /∈ M as a probability
model. In other words, we construct a new probability model
from the set of initially prepared models P ∈ M. In this case,
the best estimation is deterministic. If we have prior knowl-
edge on PGT, the initial set of models M is naturally prepared
based on prior knowledge. However, the newly constructed
model P̂ξ

N does not generally belong to the set of models con-
sistent with the prior knowledge. We discuss such an example
in Sec. V.

V. SIMPLE EXAMPLES

Based on the discussion up to Sec. III, the best estimation
for the given data {ξi}i=1,...,N in our framework P̂ξ

N (x) is given
as

P̂ξ
N (x) =

∑
P P(x)

∏N
i=1 P(ξi )∑

P

∏N
i=1 P(ξi )

. (28)

In the present section, we deal with simple examples in which
P̂ξ

N is tractable and we discuss the implications of our method.

A. Model selection from two

Let us estimate the probability density behind the given
one-dimensional data {ξi}i=1,...,N . We initially prepare two
one-dimensional normal distributions P±(x) := exp[−(x ∓
a)2/2]/

√
2π (a > 0). In other words, we set M = {P+, P−}.

In this case, simple calculation yields

P̂ξ
N (x) = e− 1

2 (x2+a2 )

√
2π

[cosh ax + (sinh ax)(tanh aN ξ̄ )], (29)

where ξ̄ := 1
N

∑N
i=1 ξi is the sample average. Since

tanh aN ξ̄ → sgn ξ̄ in the limit of N → ∞ with a > 0,
we find P̂ξ

N (x) → exp[− 1
2 (x − asgn ξ̄ )2]/

√
2π in the large-N

limit. Thus, our method selects one from the two models
depending on ξ̄ without uncertainty for N → ∞.

As shown in Fig. 1, P̂ξ
N (x) differs from the normal dis-

tribution for small N and converges rapidly to the normal
distribution as N increases. The deviation from the normal
distribution for small N can be interpreted as an interference
between the two models. Since we cannot select one model
definitely for a sample with a finite size, additional variance
emerges due to the other model.

In addition to the effect of finite N , it is interesting that
P̂ξ

N is given even for ξ̄ = 0. In the conventional maximum
likelihood method, the KL divergence from the empirical
distribution to P+ equals the KL divergence to P− in such a
situation. Then one appropriate model cannot be selected as
the solution to the optimization problem. On the other hand, a

FIG. 1. P̂ξ
N (x) obtained for a set of two normal distributions.

The results for N = 2, N = 10, and N = 50 are represented by
curves formed with circles, triangles, and squares, respectively. The
solid curve depicts the normal distribution P+(x) = exp[− 1

2 (x −
a)2]/

√
2π . The curves for P̂ξ

N with N = 50 and P+ are almost over-
lapped. The parameters are set to be ξ̄ = 0.1 and a = 1.

unique optimum solution becomes P̂ξ
N (x) = 1

2 [P+(x) + P−(x)]
in our framework. Although the estimated model does not
belong to the initially prepared set of probability models,
i.e., P̂ξ

N /∈ M = {P+, P−}, it is considered as an intuitively
appropriate solution to the optimization problem.

B. Estimation from data generated by a normal distribution

In the present subsection, we assume the case where the
ground truth PGT is known to be a one-dimensional normal
distribution. In such a situation, the natural set of models M
consists of all possible one-dimensional normal distributions,
i.e., P(x|σ, a) = 1√

2πσ 2
exp[− 1

2σ 2 (x − a)2] defined for all pos-
itive numbers σ > 0 and real numbers a ∈ R.

Defining the set of probability models by M :=
{P(x|σ, a)|σ > 0, a ∈ R}, we evaluate the denominator in
Eq. (28) as

Zξ

M = 1

2
CNUN (Vξ )�

(
N

2
− 1

)
, (30)

where Vξ := 1
N

∑N
i=1 ξ 2

i − ξ̄ 2 is the sample variance for the
data ξ , and �(z) := ∫ ∞

0 dt t z−1e−t is a Gamma function. We
have used the notation Zξ

M := ∑
P∈M

∏N
i=1 P(ξi ). In addi-

tion, the notations CN := [(2π )(N−1)/2
√

N]−1 and UN (z) :=
[2/(Nz)]N/2−1 have been used. Similarly, the numerator in
Eq. (28) is

Sξ

M = 1

2
CN+1UN+1(Vξ,x )�

(
N

2
− 1

2

)
, (31)

where Vξ,x := 1
N+1 (N ξ̄ + x)2 − [ 1

N+1 (N ξ̄ + x)]2 is the sample
variance for the data composed of ξ and the new sample point
x. The notation Sξ

M(x) := Sξ,N
M has also been used. Then the
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FIG. 2. P̂ξ
N (x) for M consisting of all normal distributions. The

results for N = 3, N = 10, and N = 50 are represented by curves
formed with circles, triangles, and squares, respectively. The solid
curve depicts the normal distribution exp(− 1

2 x2)/
√

2π . The parame-
ters are set to be ξ̄ = 0 and Vξ = 1.

best estimation on the Nishimori condition becomes

P̂ξ
N (x) = CN+1UN+1(Vξ,x )

CNUN (Vξ )

�(N/2 − 1/2)

�(N/2 − 1)
. (32)

Since

P̂ξ
N (x) ∝

[
(N + 1)Vξ

(x − ξ̄ )2 + (N + 1)Vξ

](N−1)/2

, (33)

it is found that P̂ξ
N is given by (N − 1)/2 power of the

Lorentzian distribution with the peak located at ξ̄ and the
peak width of [(N + 1)Vξ ]1/2 as shown in Fig. 2. The obtained
model is not a normal distribution, although our estimation
assumes that the ground truth PGT obeys normal distribution.
This result seems to be counterintuitive. However, the prior
knowledge of the ground truth of normal distribution does not

limit the model to normal distribution. When the sample size
N is finite, selecting one normal distribution may lead to a
large deviation from the ground truth PGT. To rule out the
possibility of a large deviation, the best estimation deviates
from any normal distributions. We emphasize that such a
situation occurs because of the finite sample size N . Indeed,
we find in the limit N → ∞ that

P̂ξ
N (x) → 1√

2πVξ

exp

[
− 1

2Vξ

(x − ξ̄ )2

]
(34)

holds using Stirling’s formula �(z + 1) ∼ √
2πz(z/e)z and

the definition of the exponential function (1 + z/n)n → ez

for n → ∞. Thus, in the limit of large samples, our result
reproduces the normal distribution, which the prior knowledge
implicates, and is consistent with the well-known conclusion
of the maximum likelihood estimation. P̂ξ

N given by Eq. (32)
can be interpreted as a finite size effect version of normal
distribution.

VI. IMPROVEMENT OF MODEL SET

The best estimation P̂ξ
N depends only on the set of prepared

models M. Let us consider the sequential extension of the set
of models M to improve the estimation accuracy. In this pro-
cess, a new set of models M∗ is constructed by the addition
of a new model P∗ to the original set M. If the number NM
of elements in M is sufficiently large, the constructed model
P̂ξ

N,∗ from the modified set M∗ is expressed as

P̂ξ
N,∗(x) = P̂ξ

N (x) + [
P∗(x) − P̂ξ

N (x)
] zξ

∗
Zξ

M
+ O

((
zξ
∗
/

Zξ

M∗
)2)

,

(35)

where zξ
∗ := ∏N

i=1 P∗(ξi). For practical purposes, it is prefer-
able P̂ξ

N,∗ is closer to the ground truth PGT than P̂ξ
N is in the KL

divergence. The expectation of the KL divergence between the
newly obtained model P̂ξ

N,∗ and PGT is calculated as

〈
D

[
PGT, P̂ξ

N,∗
]〉

data
= 〈

D
[
PGT, P̂ξ

N

]〉
data −

∫ N∏
i=1

[dξi PGT(ξi)]
∫

dx
[
P∗(x) − P̂ξ

N (x)
] PGT(x)zξ

∗
P̂ξ

N (x)Zξ

M
+ O

((
zξ
∗
/

Zξ

M
)2)

. (36)

Since P̂ξ
N (x) is non-negative, it is necessary to add P∗ such

that P∗(x) − P̂ξ
N (x) becomes as large as possible at x where

PGT(x)/P̂ξ
N (x) is large to make 〈D[PGT, P̂ξ

N,∗]〉data as small
as possible. In other words, it is preferable to add a model
that assigns as high a probability as possible at x, which is
underestimated in the originally constructed model P̂ξ

N . The
systematic expansion of M described above leads to a de-
crease in the expected value of the KL divergence between P̂ξ

N
and PGT. Such a systematic process may yield an algorithm
that can efficiently estimate PGT.

VII. RELATION TO BAYESIAN UPDATING

Our proposed method is related to Bayesian updating. It
updates the prior distribution p̂(θ ) for the parameter θ of the
model Pθ (x) based on observed data:

p̂(θ |ξ ) = Pθ (ξ ) p̂(θ )∑
θ Pθ (ξ ) p̂(θ )

. (37)

In our method, the weights for probability models are updated
when new data ξN+1 are observed. According to our result,
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Eq. (28), the weight for the model P is given as

p̂(P|ξ ) =
∏N

i=1 P(ξi )∑
P

∏N
i=1 P(ξi )

(38)

when the realization of the data {ξi}i=1,...,N is observed. In-
terpreting P̂(P|ξ1, . . . , ξN ) as the posterior distribution of the
model P, when new data ξN+1 are added, the posterior distri-
bution of the model P is given by Bayesian updating as

p̂(P|ξ1, . . . , ξN , ξN+1) = P(ξN+1) p̂(P|ξ1, . . . , ξN )∑
P P(ξN+1) p̂(P|ξ1, . . . , ξN )

.

(39)

Note that the update rule, Eq. (39), is a direct result from
Eq. (28). Our proposed method is concluded to be consistent
with Bayesian updating starting from a prior distribution of
equal weights for all probability models.

By repeating the Bayesian updating with given data
{ξ}i=1,...,N fixed, we can improve the posterior distribution for
the probability model P by obtaining the posterior distribu-
tion. In this approach, the posterior distribution for the model
P of the (k + 1)th step p̂k+1(P|ξ1, . . . , ξN ) is obtained from
the posterior distribution of the kth step p̂k (P|ξ1, . . . , ξN ) as
the prior distribution. p̂k+1(P|ξ1, . . . , ξN ) is updated as

p̂k+1(P|ξ1, . . . , ξN ) = p̂k (P|ξ1, . . . , ξN )
∏N

i=1 P(ξi )∑
P p̂k (P|ξ1, . . . , ξN )

∏N
i=1 P(ξi )

,

(40)

where p̂0(P|ξ1, . . . , ξN ) = p̂0(P) is the initial prior distribu-
tion for the model P. For this update rule, the fixed point
p̂∞(P|ξ1, . . . , ξN ) is given by Eq. (38). Thus, our method can
be understood as a fixed point of Bayesian updating.

It has been pointed out that Bayesian updating does not
require regularization. We have found that Bayesian updat-
ing can be interpreted as an error-correcting version of the
maximum likelihood method. In other words, we can con-
clude that Bayesian updating is an estimation method that
minimizes the KL divergence between the ground truth dis-
tribution and the probability model in the sense of expected
value.

VIII. CONCLUSION

We have discussed a method for estimating density func-
tions based on gauge symmetry in the KL divergence. Our
framework naturally prevents overfitting, although the con-
ventional maximum likelihood method can lead to incorrect
estimation results due to overfitting to empirical distributions.
While empirical regularization to prevent overfitting often
requires a search for the optimal hyperparameters, our method
does not require adjustment of hyperparameters because the
optimal hyperparameter is given explicitly as the Nishimori
condition. As a natural extension of the conventional max-
imum likelihood method, our estimation P̂ξ

N is realized by
the average of probability models with Boltzmann weights.
The result P̂ξ

N is the best estimation obtained from the sam-
ple {ξi}i=1,...,N as shown in Sec. III. The performance of the
estimations P̂ξ

N is determined by the set of prepared models
M. Therefore, it is necessary to find M that provides high
estimation accuracy. In Sec. VI, we have discussed the method

of sequential extension to obtain such a set. In addition, we
have discussed two interpretations of our method in Sec. IV
and simple examples in Sec. V.

Our method is valid when the data {ξi}i=1,...,N are given
independently. On the other hand, it cannot be applied di-
rectly to a sequence of correlated data encountered in many
practical situations. In the sense of prediction, there is no
use in estimating the distribution PGT(ξi ) for a single da-
tum ξi when {ξi}i=1,...,N are correlated. For a sequence of
correlated data, it would be more meaningful to estimate
the distribution PGT(ξ1, . . . , ξN ) of the series of the entire
data series {ξi}i=1,...,N . In this case, we should focus on es-
timating the mechanism that generates the data series. For
example, for the series of data {ξi}i=1,...,N generated by a sta-
tionary Markov process, estimating the transition probability
T (ξi+1|ξi) is more fundamental than estimating the distribu-
tion PGT(ξ1, . . . , ξN ). In this case, ξi+1 can be considered to
be generated independently with a given state ξi. Thus, our
method can be applied to estimate the transition probability
T (ξi+1|ξi).

Through our proposed method, the average of multiple
models weighted by KL divergence gives a better model.
However, it is impractical to calculate P̂ξ

N concretely, in gen-
eral, because a partition function differs for each model. For
example, even if the models are limited to the Boltzmann ma-
chines [27,28], it is not easy to calculate a partition function
for each model. On the other hand, such an average of multiple
models is often used in ensemble learning [29]. Therefore, the
difficulties faced in model averaging are the same as those
encountered in ensemble learning. Our method is practically
applicable for a set of probability models that are handled
in ensemble learning. Ensemble learning tries to overcome
them with various ideas. For example, parallel computation
is effective since each model can be built independently. Ran-
dom forests take a simple arithmetic mean of the expected
values from many models, but from our point of view, we
conclude that an average weighted by KL divergence is more
reliable. Our proposed method is expected to help improve the
accuracy of ensemble learning.

The gauge symmetry of the KL divergence plays a central
role in the maximum likelihood estimation. In supervised
machine learning with a loss function, it would be possible to
perform a regularization similar to our method by exploiting
the gauge symmetry of the loss function. In the training phase
of conventional machine learning with many parameters, such
as deep learning, the model that minimizes the loss function is
solely selected. In such a case, any loss function (and any reg-
ularization) gives almost the same results as long as the model
is not significantly different from the ground truth. A model
with high-generalization performance is obtained empirically
with little dependence on the form of the loss function (and
regularization term) in deep learning with sufficiently large
M [30,31]. However, in our framework, the generalization
performance is expected to be highly dependent on the form
of the loss function since models with high loss also contribute
to the results. It is future work to understand the relationship
between the choice of the loss function and generalization
performance in machine learning from the viewpoint of gauge
symmetry.
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