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The ground state, entropy, and magnetic Grüneisen parameter of the antiferromagnetic spin-1/2 Ising-
Heisenberg model on a double sawtooth ladder are rigorously investigated using the classical transfer-matrix
technique. The model includes the XXZ interaction between the interstitial Heisenberg dimers, the Ising coupling
between nearest-neighbor spins of the legs and rungs, and additional cyclic four-spin Ising term in each square
plaquette. For a particular value of the cyclic four-spin exchange, we found in the ground-state phase diagram of
the Ising-Heisenberg ladder a quadruple point, at which four different ground states coexist together. During an
adiabatic demagnetization process, a fast cooling accompanied with an enhanced magnetocaloric effect can be
detected near this quadruple point. The ground-state phase diagram of the Ising-Heisenberg ladder is confronted
with the zero-temperature magnetization process of the purely quantum Heisenberg ladder, which is calculated
by using exact diagonalization based on the Lanczos algorithm for a finite-size ladder of 24 spins and the
density-matrix renormalization group simulations for a finite-size ladder with up to 96 spins. Some indications
of the existence of intermediate magnetization plateaus in the magnetization process of the full Heisenberg
model for a small but nonzero four-spin Ising coupling were found. The DMRG results reveal that the quantum
Heisenberg double sawtooth ladder exhibits some quantum Luttinger spin-liquid phase regions that are absent
in the Ising-Heisenberg counterpart model. Except this difference, the magnetic behavior of the full Heisenberg
model is quite analogous to its simplified Ising-Heisenberg counterpart and, hence, may bring insight into the
fully quantum Heisenberg model from rigorous results for the Ising-Heisenberg model.
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I. INTRODUCTION

The variation of external magnetic fields causing an adi-
abatic change in the temperature of magnetic materials is
referred to as the magnetocaloric effect (MCE). This phe-
nomenon, particularly adiabatic demagnetization, constitutes
a fundamental element in magnetic refrigeration technology.
The amplified MCE holds significant promise for both room-
temperature and low-temperature refrigeration applications,
as extensively discussed in recent reviews, i.e., see Refs. [1,2].
Moreover, the MCE plays an important role in unraveling
the intricate phase diagrams of magnetic materials within
the magnetic field–temperature plane. This is achieved by
harnessing the magnetocaloric anomalies that emerge during
magnetic phase transitions. This approach not only provides
deep insights into the behavior of magnetic materials but also
enhances our understanding of their complex properties and
characteristics. The standard quantity to characterize the MCE
is the so-called magnetic Grüneisen parameter � related to the
adiabatic cooling rate through the formula

� = 1
T

(
∂T
∂B

)
S = − T

CB

(
∂S
∂B

)
T = − T

CB

(
∂M
∂T

)
B, (1)

where CB is the heat capacity at the constant magnetic field B,
T is the temperature, and M is the magnetization.

In recent decades, a lot of theoretical investigations have
brought insight into the MCE within the realm of low-
dimensional quantum and Ising spin models [3–19]. These
endeavors have yielded exact outcomes within these models,
uncovering crucial aspects of the MCE. Furthermore, along-
side the exploration of adiabatic cooling rates, significant
insights into the MCE have emerged from the analysis of
isentropes within the temperature-magnetic field plane. Such
plots provide vital information about the intricate behavior
and characteristics of the magnetocaloric phenomenon.

A large number of exact results have already been made in
understanding the MCE within the various Ising-Heisenberg
spin models [14–19]. These models share common charac-
teristics: a systematic alternation between small clusters of
quantum Heisenberg spins and Ising spins. This arrangement
ensures that the local Hamiltonians for individual blocks
exhibit commutativity, enabling an exact solution of the
Ising-Heisenberg spin model through the utilization of the
generalized classical transfer-matrix method.

Although the periodic alternation of Heisenberg and Ising
spins is infrequent in real magnetic materials, a few notable
examples of exactly solvable Ising-Heisenberg spin chains
have provided remarkably accurate insights into the magnetic
properties of specific compounds. Noteworthy instances in-
clude Cu(3-Clpy)2(N3)2 [20], [(CuL)2Dy][Mo(CN)8] [21,22],

2470-0045/2023/108(4)/044132(12) 044132-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1348-1777
https://orcid.org/0000-0002-7810-7321
https://orcid.org/0000-0002-0023-6094
https://orcid.org/0000-0003-1667-6841
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.044132&domain=pdf&date_stamp=2024-07-26
https://doi.org/10.1103/PhysRevE.108.044132


HAMID ARIAN ZAD et al. PHYSICAL REVIEW E 108, 044132 (2023)

[Fe(H2O)(L)][Nb(CN)8][Fe(L)] [23], Dy(NO3)(DMSO)2Cu
(opba)(DMSO)2 [24,25], [CuMn(L)][Fe(bpb)(CN)2] ClO4

H2O [26], and [Dy(hfac)2(CH3OH)]2[Cu(dmg)(Hdmg)]2

[27,28].
Several observations arise in connection with the four-spin

Ising coupling, which can alternatively be viewed as the Ising
limit arising from the cyclic permutation of quantum spins or
as a higher-order exchange process. Indeed, these exchange
terms have been conclusively shown to have paramount sig-
nificance in comprehending the magnetic properties of solid
3He [29], as well as certain cuprate materials (see Ref. [30]
and the cited references therein).

The Ising and mixed Ising-Heisenberg spin models fea-
turing the four-spin Ising coupling (product of four Ising
variables) have gathered attention in several studies. They
have been explored both as the Ising limit emerging from the
four-spin cyclic permutation and in independent frameworks
[8,31–39]. Moreover, investigations of the Ising-Heisenberg
model on structures such as the sawtooth chain [40–42], the
two-leg ladder [43,44], and the tetrahedral chain [15] have
been conducted in earlier works.

Exact solutions have been achieved for both the spin-1/2
and mixed spin-(1/2,1) Ising-Heisenberg double sawtooth
ladders possessing cyclic four-spin interactions. These so-
lutions have been attained through a modified classical
transfer-matrix technique, yielding valuable insights into their
ground-state phase diagrams, as well as their magnetic and
thermodynamic properties. These findings have been docu-
mented in previous studies [37–39].

Moreover, a comprehensive investigation into the ground-
state phase diagram has been undertaken for the spin-1/2
Heisenberg model on a two-leg ladder. This analysis, con-
ducted in the absence of an external field, was presented in
Ref. [45]. Of particular note is the discovery of a diverse
ground-state phases, encompassing rung-singlet, saturated
ferromagnetic states and an intriguing Luttinger spin-liquid
phase. Interesting phenomena observed within ladder-type
models have initiated a surge of research activity aimed to-
wards unraveling the magnetic excitations and ground-state
phase diagram of frustrated spin ladders accounting for the
next-nearest-neighbor interactions [46].

The intriguing frustrated double sawtooth ladder, as de-
picted in Fig. 1, presents an appealing spin model due to its
potential to give rise to a thought-provoking paradox resem-
bling a two-leg ladder with next-nearest-neighbor interactions
along the legs. This unique attribute arises from the geometric
arrangement of the model, intertwining two frustrated saw-
tooth spin chains by means of distinct rungs [47–49].

While previous investigations have unveiled a lot of cap-
tivating magnetic characteristics within analogous quantum
spin ladder models, certain pivotal insights still remain
controversial. Notably, aspects like the zero-temperature mag-
netization, MCE, and the intricacies of the cooling/heating
process within the double sawtooth ladder, with nonzero
four-spin Ising interaction, persist as unresolved issues
to deal with. Consequently, the present study focuses on
the MCE of the Ising-Heisenberg double sawtooth ladder,
with a particular emphasis on the critical cyclic four-spin
Ising interaction point where four distinct ground states
coexist.

FIG. 1. A schematic illustration of the magnetic structure of
the frustrated spin-1/2 double sawtooth ladder. The balls denote
spin-1/2 particles. Green balls represent Heisenberg spins that are
connected with each other with red solid lines. The dark-blue balls
show Ising spins. The blue dashed circle in each square plaquette
denotes four-spin Ising coupling.

Furthermore, an in-depth examination of the magnetization
process of the complete Heisenberg double sawtooth ladder is
conducted using the full exact diagonalization (ED) method.
To achieve this, we adapted the computational capabilities
of the QUSPIN package [50,51] for solving finite-size ladders
comprising of 24 spins. Additionally, we employ the ITENSOR

package [52] to implement the density matrix renormalization
group (DMRG) method, which relies on tensor network algo-
rithms to diagonalize larger ladders composed of 64, 80, and
96 spins while conserving the total quantum number Sz

T. Of
particular interest is the detailed verification of how the mag-
netization behavior of the full Heisenberg double sawtooth
ladder is influenced by the Heisenberg exchange anisotropy
and the four-spin Ising coupling. This exploration seeks to
shed light on the intricate interplay of these factors within the
ladder’s magnetic properties.

The paper is structured as follows. In the upcoming
section, we provide a comprehensive explanation of the spin-
1/2 Ising-Heisenberg model on the double sawtooth ladder.
We outline the analytical approach employed to tackle this
model. Subsequently, we provide a complete analysis of the
ground-state phase diagram and critical phenomena inherent
in the Ising-Heisenberg model. This section explores the in-
terplay of entropy and the Grüneisen parameter concerning
magnetic field and temperature for various fixed parameter
configurations. The influence of the four-spin Ising coupling
on the adiabatic demagnetization process within the Ising-
Heisenberg model is also investigated. Moving on to Sec. III,
we introduce a full quantum Heisenberg model on the frus-
trated double sawtooth ladder. We then proceed to elaborate
on the numerical techniques we employ, namely, the ED
method based on the Lanczos algorithm and the DMRG
method. These approaches are adapted for investigating the
zero-temperature magnetization process of the full Heisen-
berg double sawtooth ladder. Lastly, in Sec. IV, we summarize
our findings and insights.

II. ISING-HEISENBERG DOUBLE SAWTOOTH LADDER

Let us consider a frustrated spin-1/2 Ising-Heisenberg
double sawtooth ladder (or decorated two-leg ladder) with
four-spin Ising coupling as schematically illustrated in Fig. 1.
The total Hamiltonian of this model is given by the following
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expression:

H =
N∑

j=1

[
(σ1, j · σ2, j )η,�

+
∑

a=1,2

(
J‖sa, j sa, j+1 + Jσ z

a, j

(
sa, j + sa, j+1

))
+ J⊥s1, j s2, j + Ks1, j s1, j+1s2, j s2, j+1

− B
∑

a=1,2

(
σ z

a, j + sa, j
)]

, (2)

where N denotes the total number of unit cells, sa, j are Ising
spin variables taking values 1 or −1, B is the external mag-
netic field applied along the z direction, and each pair of
quantum spins σ1, j and σ2, j interacts via the XXZ exchange
coupling defined through the Pauli matrices σα

i (α = x, y, z)
as follows:

(σ1, j · σ2, j )η,� = η
(
σ x

1, jσ
x
2, j + σ

y
1, jσ

y
2, j

) + �σ z
1, jσ

z
2, j . (3)

The coupling constants J⊥ and J‖ are the Ising-type couplings
on the rungs and along the legs, respectively, and the cou-
pling constant K accounts for the four-spin Ising term in each
square plaquette composed of four Ising spins belonging to
two neighboring unit blocks. The complete elaboration of this
term can be found in Appendix A. The coupling constant J is
the Ising coupling between the Ising spins on the legs and two
quantum spins of the interstitial Heisenberg dimer on the tips.
This coupling is supposed to include only the z component of
the quantum spins. Let us mention that all parameters here are
supposed to be dimensionless, taking J‖ = J⊥ as energy unit.

A. The exact solution in terms of the generalized classical
transfer-matrix method

Let us present a few crucial steps of the analytical proce-
dure used to calculate the partition function Z of the model
within the generalized classical transfer-matrix technique:

Z =
∑
(s1 )

∑
(s2 )

Tr(σ1,σ2 )e
−βH

=
∑
(s1 )

∑
(s2 )

N∏
j=1

T(s1, j, s2, j |s1, j+1, s2, j+1) = Tr TN , (4)

where the 4 × 4 transfer matrix is given by

T(s1, j, s2, j |s1, j+1, s2, j+1)

= exp{−βH I(s1, j, s2, j |s1, j+1, s2, j+1)}
× W (s1, j, s2, j |s1, j+1, s2, j+1), (5)

where the Ising part of the system’s Hamiltonian reads

H I(s1, j, s2, j |s1, j+1, s2, j+1)

= J‖
∑

a=1,2

sa, j sa, j+1 + J⊥s1, j s2, j

+ Ks1, j s1, j+1s2, j s2, j+1 − B
∑

a=1,2

sa, j, (6)

FIG. 2. The spin configurations of the spin-1/2 double sawtooth
ladder associated to the possible ground states Eq. (8). Each panel
indicates spin arrangement of two successive unit blocks that are
repeated throughout the ladder. Tick arrows represent the spin ori-
entations, whereas oval shapes stand for the Heisenberg dimers in
quasisinglet state |ϕ2〉. Notations in the kets denote the orientation
of the two spins on each rung such that up means both spins of the
same rung are up, while n indicates that one spin of the rung is up
and another one is down, and s means that the state of the two spins
on the identical rung is quasi-singlet state |ϕ2〉.

and the Boltzmann factor of the quantum dimer, W , is

W (s1, j, s2, j |s1, j+1, s2, j+1) =
4∑

l=1

e−βεn (s1, j ,s2, j |s1, j+1,s2, j+1 ),

in which εn(s1, j, s2, j |s1, j+1, s2, j+1) with n = 1, ..., 4 are the
eigenvalues of the quantum part of the Hamiltonian:

Hq = (σ1, j · σ2, j )η,� −
∑

a=1,2

[B − J (sa, j + sa, j+1)]σ z
a, j . (7)

The eigenvalues and eigenvectors of the quantum part of
the total Hamiltonian Eq. (2) are given in Appendix B.
They explicitly depend on the values of four Ising spin vari-
ables, interacting with the quantum spin dimer. They can
be easily found by the straightforward diagonalization of
the quantum Hamiltonian Eq. (7) in the standard Ising basis
{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}.

B. Ground states

The system under consideration possesses several ground
states, depending on its microscopic parameters, η, �, J⊥, J ,
J‖, K , and B. As the main goal of this section is to clarify the
role of the Heisenberg exchange anisotropy � and four-spin
Ising interaction K in the enhancement of the MCE of the
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Ising-Heisenberg double sawtooth ladder, we here focus on
a peculiar range of parameters, which admit special points
in the ground-state phase diagram with a high degeneracy.
The MCE is stronger around triple points and particularly
around points of confluence of more phases [7]. We are go-
ing to examine the ground-state phase diagram, MCE, and
cooling rate of the spin-1/2 Ising-Heisenberg double saw-
tooth ladder with nonzero four-spin Ising interaction K . To
provide a clear definition of the relevant ground states of the
model, we demonstrate their special spin configurations in
Fig. 2. Among these ground states, |usus〉, |nsus〉, |nsns〉1,
and |nsns〉2 include the dimeric quasi-singlet state |ϕ2〉 and
are subject to the doubling of the unit cell, which is the man-
ifestation of the quantum antiferromagnetic coupling along
the alternating rungs. From this point of view, we compose
the spin orientation of two successive unit cells in our no-
tation. The relevant ground states with the corresponding
magnetization values per unit cell are given by the following
expressions:

|uuuu〉 =
N/2∏
i=1

|↑↑〉2i−1 ⊗ |ϕ4〉2i−1 ⊗ |↑↑〉2i ⊗ |ϕ4〉2i,

Euuuu = −4B + � + 2J‖ + J⊥ + 4J + K, M/Ms = 1,

|nuuu〉 =
N/2∏
i=1

|↓↑〉2i−1 ⊗ |ϕ4〉2i−1 ⊗ |↑↑〉2i ⊗ |ϕ4〉2i,

Enuuu = −3B + � + 2J − K, M/Ms = 3

4
,

|nunu〉 =
N/2∏
i=1

|↑↓〉2i−1 ⊗ |ϕ4〉2i−1 ⊗ |↓↑〉2i ⊗ |ϕ4〉2i,

Enunu = −2B + � − 2J‖ − J⊥ + K, M/Ms = 1

2
,

|usus〉 =
N/2∏
i=1

|↑↑〉2i−1 ⊗ |ϕ2〉2i−1 ⊗ |↑↑〉2i ⊗ |ϕ2〉2i,

Eusus = −2B − 2η − � + 2J‖ + J⊥ + K, M/Ms = 1

2
,

|nsus〉 =
N/2∏
i=1

|↓↑〉2i−1 ⊗ |ϕ2〉2i−1 ⊗ |↑↑〉2i ⊗ |ϕ2〉2i,

Ensus = −B − � − K − 2
√

η2 + J2, M/Ms = 1

4
,

|nsns〉1 =
N/2∏
i=1

|↑↓〉2i−1 ⊗ |ϕ2〉2i−1 ⊗ |↓↑〉2i ⊗ |ϕ2〉2i,

E (1)
nsns = −2η − � − 2J‖ − J⊥ + K, M/Ms = 0,

|nsns〉2 =
N/2∏
i=1

|↓↑〉2i−1 ⊗ |ϕ2〉2i−1 ⊗ |↑↓〉2i ⊗ |ϕ2〉2i,

E (2)
nsns = −� + 2J‖ − J⊥ − 2

√
η2 + 4J2 + K, M/Ms = 0.

(8)

Here the following principles in the notation of ground states
are adopted. The unit cell in the configurations with period

FIG. 3. Ground-state phase diagram of the pure Ising double
sawtooth ladder in the �/J‖ − B/J‖ plane for η/J‖ = 0 and J/J‖ = 1.

doubling contains four pairs of spins; each pair is coupled to-
gether by a rung. Thus, for the two spins on a rung pointing up
we use u, for the pair of spins pointing in opposite directions
we use n, and finally for the quantum quasi-singlet state |ϕ2〉
we use s.

For the case η/J‖ = 0, where J‖ = J⊥ is assumed as
an energy unit, the system is reduced to the simple Ising
model with four different ground states {|nn〉, |un〉, |nu〉, |uu〉}
with boundaries shown by solid lines in Fig. 3. It can be
realized from Eq. (8) that one obtains A± = 0 for η/J‖ = 0
and |ϕ2〉 → |↑↓〉, which implies that two ground states
{|nsns〉1, |usus〉} collapse into simplified counterpart states
{|nn〉, |un〉}. For better clarity, we also draw in Fig. 3 the spin
orientation of a unit block of the Ising model corresponding
to each ground state. It is quite clear that here the ground-state
phase diagram of the pure Ising double sawtooth ladder is
independent of the four-spin exchange coupling K/J‖.

For the Ising-Heisenberg double sawtooth ladder
(η/J‖ 	= 0), by simultaneous eigenenergy comparison of
the four different ground states |nsus〉, |usus〉, |nunu〉,
and |nuuu〉, one finds a straightforward expression for the
exchange anisotropy �/J‖, four-spin Ising interaction K/J‖
and B/J‖ such that these ground states coexist together at a
quadruple point. The two ground states |nunu〉 and |usus〉 are
degenerate whenever the following condition is satisfied:

�Q/J‖ = 2 + J⊥/J‖ − η/J‖. (9)

In our calculations, we set J⊥/J‖ = η/J‖ = 1.0, leading to
�Q/J‖ = 2.0. We elucidate in Fig. 4(a) the two-body ex-
change coupling dependence of the special value of the
four-spin Ising interaction at the quadruple point coordinates,
i.e.,

KQ/J‖ = 1
2 (η/J‖ + J/J‖ −

√
(η/J‖)2 + (J/J‖)2), (10)

which depends only on η/J‖ and J/J‖. Obviously, the max-
imum value of Kmax

Q /J‖ = 1
2 (2 − √

2|η/J‖|) occurs in the
antiferromagnetic regime when η/J‖ = J/J‖ (solid point on
the top of curve). It is noteworthy that here we restrict
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FIG. 4. (a) Topological representation of the critical four-spin exchange interaction Eq. (10) at which four ground states |nsus〉, |usus〉,
|nunu〉, and |nuuu〉 coexist together at a quadruple point with magnetic field position BQ/J‖ = 3 + 2J/J‖ − 2KQ/J‖. (b) The KQ/J‖ as a function
of the magnetic field position of the quadruple point BQ/J‖ for η/J‖, J/J‖ ∈ [0, 1]. The line marked with blue hexagons shows maximum
amount of Bmax

Q and Kmax
Q for J/J‖ = 1 where η/J‖ varies from 0 (red crosses) up to 1 (yellow circles). KQ as a function of BQ is shown for

a few selected values of η/J‖ by lines with different styles. Filled circle on top of curve plotted in(a) shows the coordination of the point
Kmax

Q /J‖ = 1
2 (2 − √

2|η/J‖|) ≈ 0.2929, assuming η/J‖ = J/J‖ = +1. This point is geometrically the same one on the ending point of the
yellow curve plotted in (b) with BQ/J‖ = 4.4142.

ourselves to the parameter region 0 � {η/J‖, J/J‖} � 1 for
simplicity. Furthermore, the magnetic field position of the
quadruple point depends on the coupling constants J/J‖ and
KQ/J‖ as follows:

BQ/J‖ = 3 + 2J/J‖ − 2KQ/J‖. (11)

Figure 4(b) displays four-spin Ising interaction of the quadru-
ple point KQ/J‖ as a function of its magnetic field position
BQ/J‖ [see Eq. (11)] when J/J‖ is varied from 0 up to 1. It
is noteworthy that the term KQ/J‖ itself depends on the J/J‖
according to Eq. (10). It is quite clear from this figure that
by increasing the interaction ratio J/J‖, the quantity KQ/J‖
increases and, accordingly, BQ/J‖ increases. Lines with differ-
ent styles demonstrate quantity KQ/J‖ with respect to BQ/J‖
for a few selected values of η/J‖. All lines arise from the same
minimum magnetic field point Bmin

Q /J‖ = 3.0 and terminate
at different maximum magnetic field points. Regarding this,
Eqs. (10) and (11) hold for each point of the shaded area of
Fig. 4(b) where the coordinates of the quadruple point do
not exceed this area. The line marked with blue hexagons
manifests a descending behavior of Bmax

Q /J‖ with respect to
the interaction ratio η/J‖. In other words, when the exchange
interaction ratio η/J‖ increases, the term Bmax

Q /J‖ moves to-
wards lower values, while Kmax

Q /J‖ increases.
Keeping this fact in mind, we plot in Fig. 5 the ground-

state phase diagram of the Ising-Heisenberg ladder for η/J‖ =
J/J‖ = 1.0 and K = KQ. To have a direct conjunction be-
tween Fig. 4(b) and Fig. 5, we have marked a particular
point with a black circle on the upper bound of the yellow
curve at (Kmax

Q /J‖, Bmax
Q /J‖) ≈ (0.2929, 4.4142), which indi-

cates the position of the quadruple point appearing Fig. 5.
For higher interaction ratio J/J‖, four aforementioned ground
states coexist together at higher magnetic field and higher
four-spin Ising interaction [see a black circle on the yellow
curve in Fig. 4(b)]. Moreover, there are two triple points
at (�/J‖, B/J‖) ≈ (0.595, 1.5858) and at (�/J‖, B/J‖) ≈
(2.595, 5.5858), where three different ground states coexist
together.

As a result, the position of the quadruple point moves
towards higher magnetic field with increasing J/J‖, while the
position of the first triple point moves towards a lower mag-
netic field. Therefore, increasing J/J‖ leads to diminishing
the boundary of phase |nsns〉1 with zero magnetization and
to increasing the boundary of phase |nsus〉 with M/Ms = 1/4.
Other phase boundaries will remarkably change as well. In the
next section, we investigate the MCE of the Ising-Heisenberg
ladder near the first triple point at which the coexistence of
three ground states |nsns〉1, |nsus〉, and |nunu〉 occurs, then
we compare the results with ones obtained for the MCE of the
Ising-Heisenberg model close to the quadruple point.

In Fig. 6, we display the ground-state phase diagram
of the Ising-Heisenberg double sawtooth ladder in the
K/J‖ − B/J‖ plane for the specific case �/J‖ = 2 [see
Eq. (9)], assuming J/J‖ = η/J‖ = 1.0. Under these

FIG. 5. Ground-state phase diagram of the Ising-Heisenberg
double sawtooth ladder in the �/J‖ − B/J‖ plane for
η/J‖ = J/J‖ = 1 and K = KQ ≈ 0.2929, where the quadruple
point occurs at (�Q/J‖ = 2.0, BQ/J‖ ≈ 4.4142). Red circle
manifests the quadruple point.
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FIG. 6. Ground-state phase diagram of the spin-1/2 Ising-
Heisenberg double sawtooth ladder in the K/J‖ − B/J‖ plane for
exchange interaction ratios η/J‖ = J/J‖ = 1, �/J‖ = 2. Red broken
lines represent the same phase boundary for the ground states |nunu〉
and |usus〉, which become degenerate when Eq. (9) holds for the
interaction ratios J⊥/J‖ and η/J‖. Solid dot indicates the position
of the quadruple point according to Eqs. (9)-(11) whose coordinates
are (KQ/J‖, B/J‖) ≈ (0.2929, 4.4142). The horizontal dotted lines
indicate the value KQ/J‖ given by Eq. (10). We note that according
to Eqs. (10) and (11) that hold for each point of the shaded area
of Fig. 4(b), having (K, B) = (KQ, BQ), thus the quadruple point is
generated, if and only if, �/J‖ = �Q/J‖ = 2.0.

circumstances, the aforementioned quadruple point appears
in the ground-state phase diagram of the model such that
the two ground states |nunu〉 and |usus〉 become degenerate,
while Eq. (9) holds for the interaction ratios J⊥/J‖ and η/J‖.
A shaded region delimited by red dashed lines identifies the
coexistence region of these two degenerate ground states
with the identical magnetization (M/Ms = 1/2). The solid
point in Fig. 6 indicates the coordinates of the quadruple
point.

It is demonstrated in Fig. 4(b) that the field coordinate of
the quadruple point shifts towards lower magnetic field and
lower four-spin Ising interaction values as the interaction ratio
J/J‖ decreases. For example, the coordinates of the quadruple
point in Fig. 6 are (Kmax

Q /J‖, Bmax
Q /J‖) ≈ (0.2929, 4.4142).

Now, suppose J/J‖ = 0.5, the coordinates of the quadru-

ple point are (KQ/J‖, BQ/J‖) ≈ (0.19098, 3.62). One can see
in Fig. 6(b) that there are three different first-order phase
transitions in the ground-state phase diagram of the Ising-
Heisenberg ladder for K/J‖ = 0 and �/J‖ = 2.0. Apparently,
state |nsus〉 with magnetization value M/Ms = 1/4 is the
ground state of the system for moderate magnetic fields.
Under this condition, state |nuuu〉 with magnetization value
M/Ms = 3/4 still could not be the ground state of the Ising-
Heisenberg double sawtooth ladder.

The ground-state phase diagram of the spin-1/2 Ising-
Heisenberg model on the double sawtooth ladder in the
J/J‖ − B/J‖ plane is displayed in Fig. 7 for the parameter
set η/J‖ = �/J‖ = 1, supposing the isotropic interaction be-
tween the Heisenberg spins. By inspecting Fig. 6(a), one can
find out that for the small but nonzero value of the four-spin
Ising interaction ratio 0 < K/J‖ < 1, the Ising-Heisenberg
system shows a rich ground-state phase diagram. The phase
boundary of ground state |nuuu〉 gradually broadens with
increasing of the ratio K/J‖, while the phase boundary of
ground state |nunu〉 diminishes until it ultimately disappears
[see Fig. 6(b)]. In addition, the four-spin exchange interaction
gives rise to ground state |nsus〉, emergent in a ferromagnetic
regime of the interaction ratio J/J‖ < 0. It could be concluded
that the stability region of ground states |nsus〉 and |nuuu〉
increases for η/J‖ = �/J‖ = 1 with increasing of K/J‖, while
the region of ground state |nunu〉 decreases until it completely
disappears.

C. Adiabatic (de)magnetization process of the spin-1/2
Ising-Heisenberg ladder

Recently, many authors have widely reported that var-
ious frustrated quantum spin systems exhibit an enhanced
MCE during the adiabatic demagnetization process, which
may be of principle importance for the low-temperature mag-
netic refrigeration. Hence, let us also investigate the adiabatic
demagnetization process of the spin-1/2 Ising-Heisenberg
double sawtooth ladder under particular adiabatic conditions.
In the following, we will study the isentropes (levels of con-
stant entropy) in the B/J‖ − T/J‖ plane and the magnetic
Grüneisen parameter times temperature, T �B,as a function of
the magnetic field close to the triple and quadruple points,
which have been comprehensively described in the previous

FIG. 7. Ground-state phase diagram of the spin-1/2 double sawtooth ladder in the J/J‖ − B/J‖ plane for fixed values of η/J‖ = J/J‖ =
�/J‖ = 1, assuming (a) K/J‖ = 0.5 and (b) K/J‖ = 1. In (a), all multicoexistence points are triple points.
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FIG. 8. (a)–(c) Contour plots of the isentropes of the spin-1/2 Ising-Heisenberg double sawtooth ladder in the temperature T/J‖versus the
magnetic field B/J‖ plane for the fixed value of J/J‖ = η/J‖ = 1. According to Eq. (10), the four-spin exchange term is taken as K = Kmax

Q ≈
0.2929 in all panels. In (a), the corresponding coordinates of the first triple point is taken as �/J‖ = 0.595 [see Fig. 5(b)]. In (b), we consider
the isotropic coupling constant �/J‖ = 1.0. In (c), according to the coordinates of the quadruple point in Fig. 5(b), we consider the exchange
anisotropy as �/J‖ = 2.0. By inspecting Fig. 5(b), each temperature drop occurs near the first-order zero-temperature phase transition. (d)–(f)
The magnetic Grüneisen parameter multiplied by temperature T �B as a function of magnetic field B/J‖ for the same set of parameters as
(a)–(c), respectively. Three different temperatures T/J‖ = (0.05, 0.1, 0.2) are considered.

section. The effects of the exchange anisotropy �/J‖ on
the entropy and the magnetic cooling rate are investigated
as well.

Figures 8(a)–8(c) show the entropy of the spin-1/2
Ising-Heisenberg double sawtooth ladder in the B/J‖ − T/J‖
plane by assuming the following parameter values: J/J‖ =
η/J‖ = 1 and three different exchange anisotropies �/J‖ =
(0.595, 1.0, 2.0). It is worthwhile to recall that Eq. (10) holds
for the particular case K = Kmax

Q ≈ 0.2929 [see horizontal
dotted lines in Figs. 6(a)–6(c)]. By comparing Fig. 8(a) with
the ground-state phase diagram depicted in Fig. 5(b), one
encounters that the sizable MCE in a low-temperature regime
with a relatively low value of the entropy S/4N coincides with
first-order ground-state phase transitions. It can be understood
that if the magnetic field decreases adiabatically from B/J‖ =
2.0 towards the triple point B/J‖ = 1.5858, the temperature
dramatically drops down.

By increasing the exchange anisotropy �/J‖, the value of
entropy significantly changes near the critical fields, at which
temperature falls down [see Figs. 8(b) and 8(c)]. Evidently,
the alterations of entropy S/4N are sharper close to the triple
and quadruple points where the temperature drops down
more rapidly. Generally, we observe three enhanced regions
of MCE accompanied with a relatively fast cooling of the
model at two selected coordinates corresponding to the triple
and quadruple points of Fig. 5(b) [see Figs. 8(a) and 8(c)].
In Fig. 8(a), the first region of enhanced MCE is due to
the existence of the triple point at which three ground states
|nsns〉1, |nsus〉, and |nunu〉 coexist together. The second region
of enhanced MCE is caused by the field-induced ground-state

phase transition from |nunu〉 to |nuuu〉, while the third one
appears near the field-driven ground-state phase transition
from |nuuu〉 to |uuuu〉. Analogously, it can be observed that
the modulation of the interaction parameters �/J‖ and K/J‖
results in a change of the position of critical points at which
the enhanced MCE occurs [see Figs. 8(b) and 8(d)].

Now, let us discuss the effects of the exchange anisotropy
and the cyclic four-spin Ising coupling on the magnetic
Grüneisen parameter. To this end, we plot in Figs. 8(d)–8(f)
the magnetic Grüneisen parameter times temperature, T �B,
against the magnetic field at three different temperatures:
T/J‖ = (0.05, 0.1, 0.2) for the same set of the interaction
parameters as used in Figs. 8(a)–8(c), respectively. It follows
from Fig. 8(d) that the product T �B changes its sign near
the triple point emergent at B/J‖ ≈ 1.5858, which is closely
related to an accumulation of the isentropy lines due to the
coexistence of three different ground states. Setting up all
parameters such that four ground states |nsus〉, |nunu〉, |usus〉,
and |nuuu〉 coexist together at the quadruple point with coor-
dinates (�/J‖, Kmax

Q /J‖, Bmax
Q /J‖) = (2.0, 0.2929, 4.4142)

results in observing a fast cooling/heating of the
Ising-Heisenberg system with even larger value of the
Grüneisen parameter. Therefore, the magnetic behavior
of Grüneisen parameter corroborates that the MCE is
considerably enhanced during the adiabatic demagnetization
process if the interaction parameters (K/J‖,�/J‖) are
tuned close enough to the quadruple point. From the exact
results obtained for the entropy and cooling rate of the
Ising-Heisenberg double sawtooth ladder shown in Figs. 8(c)
and 8(f), one can deduce that the MCE is remarkably

044132-7



HAMID ARIAN ZAD et al. PHYSICAL REVIEW E 108, 044132 (2023)

enhanced in a close vicinity of the quadruple point. It could
be indeed concluded that the spin-1/2 Ising-Heisenberg
double sawtooth ladder exhibits enhanced MCE compared to
other ranges of K/J‖ 	= KQ/J‖ whenever Eqs. (10) and (11)
hold for each point on the curves plotted in Fig. 4(b).

Another result gained from our examinations is the particu-
lar response of the magnetic Grüneisen parameter with respect
to temperature variations. We display in Figs. 8(d)–8(f) the
product T �B as a function of the magnetic field at three
different temperatures as well. As usual, increasing the tem-
perature suppresses, in general, the enhanced MCE occurred
at critical magnetic fields. The interesting point to declare is
that the observed MCE at triple and quadruple points shows
an unconventional resistance against the rising temperature.
As a matter of fact, the enhanced MCE is sizable close to the
triple and quadruple points even at higher temperatures when
�/J‖ = 2.0, K/J‖ = KQ/J‖, and the magnetic field is tuned
sufficiently close to the critical point BQ/J‖.

III. MAGNETIZATION PROCESS OF THE SPIN-1/2
HEISENBERG DOUBLE SAWTOOTH LADDER

In this section, we proceed to study of the zero-temperature
magnetization process of the full quantum spin-1/2 Heisen-
berg model on the double sawtooth ladder with four-spin Ising
coupling in the presence of the external magnetic field. Unlike
the previous case, the magnetic ground states of the fully
quantum spin-1/2 Heisenberg double sawtooth ladder cannot
be rigorously extracted through exact analytical methods and,
hence, the ED exploiting the Lanczos algorithm and DMRG
methods are used as two numerical techniques to solve the
Hamiltonian of the spin-1/2 Heisenberg double sawtooth
ladder given by

H =
N∑

j=1

[
(σ1, j · σ2, j )η,� +

∑
a=1,2

(J‖σa, j · σa, j+1

+ Jσa, j · (σa, j−1 + σa, j+1)) + J⊥σ1, j · σ2, j

+ Kσ z
1, jσ

z
1, j+1σ

z
2, jσ

z
2, j+1 − B

∑
a=1,2

σ z
a, j

]
. (12)

By using ED method, we have exactly computed the
lowest-energy eigenstates of the spin-1/2 Heisenberg model
on the double sawtooth ladder for relatively small finite-size
systems up to N = 12 rungs (i.e., the total number of spins
is 24). These exact numerical results will be subsequently
confronted with the DMRG data calculated for the spin-1/2
Heisenberg double sawtooth ladder for larger finite-size sys-
tems with N = 24, 32, 40, 48 (i.e., the total number of spins
are 48, 64, 80, 96, respectively). In our numerical calculations,
periodic boundary conditions (PBCs) were implemented such
that N + 1 = 1. We opt for a total of 25 DMRG sweeps in
our analysis. To ensure the precision of the DMRG outcomes
in each sweep, we tuned the pertinent parameters, as outlined
below:

(1) The maximum bond dimension of the MPS is dy-
namically adjusted throughout each sweep, reaching a peak
value of 2200. This adjustment serves as a pivotal factor in
controlling the accuracy of our computations.

(2) The energy cutoff, dictating the threshold for trunca-
tion errors in each sweep, is rigorously defined at 10−11. This
criterion aids in maintaining the desired level of accuracy.

(3) Introducing a noise term, proportionate to the magni-
tude of the truncation error, further improves the precision
of our results. This step contributes to refining the overall
reliability of our computations.

First, let us consider absence of the four-spin coupling (i.e.,
K/J‖ = 0) to obtain zero-temperature magnetization curves
of the full spin-1/2 Heisenberg double sawtooth ladder for
two different values of the exchange anisotropy �/J‖ = 1
and �/J‖ = 2 (see Fig. 9). Figure 9 confronts the numerical
results for zero-temperature magnetization curves as obtained
from the ED and DMRG methods for the fixed values of
η/J‖ = �/J‖ = J/J‖ = 1 and K/J‖ = 0. It is evident from
Figs. 9(a)–9(d) that the magnetization curves definitely ex-
hibit zero and one-half magnetization plateaus when the
total magnetization is normalized with respect to the satura-
tion magnetization, while the presence of other plateaus is
questionable. To shed light on this issue, the width of the
intermediate magnetization plateaus at one-quarter, one-half,
and three-quarters of the saturation magnetization is plotted
in Figs. 10(a)–10(c) for �/J‖ = 1. In Fig. 10(a), one observes
that the intermediate one-quarter magnetization plateau grad-
ually shrinks with increasing of the system size and it entirely
disappears in the thermodynamic limit N → ∞. Contrary to
this, it is evident from Fig. 10(b) that the width of intermediate
one-half magnetization plateau firmly survives in the thermo-
dynamic limit N → ∞. Last but not least, it follows from
Fig. 10(c) that the intermediate three-quarter magnetization
plateau gradually disappears in the thermodynamic limit and,
hence, it does not represent the true magnetization plateau
for �/J‖ = 1. It could be concluded that the intermediate
zero- and one-half magnetization plateaus of the spin-1/2
Heisenberg double sawtooth ladder survive in the thermody-
namic limit, whereby the analogous intermediate plateaus of
the spin-1/2 Ising-Heisenberg double sawtooth ladder cor-
respond to ground states |nsns〉1 and |nunu〉. The DMRG
simulations of the spin-1/2 Heisenberg double sawtooth lad-
der thus decisively verify the presence or absence of given
intermediate magnetization plateaus in the thermodynamic
limit.

The ED and DMRG results for zero-temperature magne-
tization curves of the spin-1/2 Heisenberg double sawtooth
ladder are plotted in Figs. 9(e)–9(h) for the particular case
�/J‖ = 2. It could be anticipated that the magnetization
curves of the spin-1/2 Heisenberg double sawtooth ladder
may display intermediate magnetization plateaus at zero, one-
quarter, and one-half of the saturation magnetization even
for a very large number of spins. Based on the DMRG
calculations, it can be conjectured that two intermediate
magnetization plateaus at one-quarter and one-half of the
saturation magnetization are indeed the actual magnetization
plateaus persisting in the thermodynamic limit. To bear ev-
idence of this statement we plot in Figs. 10(d)–10(f) the
width of the intermediate magnetization plateaus against the
inverse value of the total number of spins, including results
extrapolated to the thermodynamic limit. For the two afore-
mentioned intermediate magnetization plateaus, the lower and
upper edges of the intermediate magnetization plateaus do not
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 9. Full ED (blue lines) and DMRG (black lines) results for zero-temperature magnetization curves of the spin-1/2 Heisenberg double
sawtooth ladder. The interaction ratios η/J‖ = J/J‖ = 1 and K/J‖ = 0 are considered in all panels. The ED data were obtained for N = 12,
whereas the DMRG data were obtained for the following set of parameters: (a) �/J‖ = 1, N = 24; (b) �/J‖ = 1, N = 32; (c) �/J‖ = 1,
N = 40; (d) �/J‖ = 1, N = 48; (e) �/J‖ = 2, N = 24; (f) �/J‖ = 2, N = 32; (g) �/J‖ = 2, N = 40; (h) �/J‖ = 2, N = 48.

converge in the thermodynamic limit to the same asymptotic
value, which means that they both represent true intermedi-
ate magnetization plateaus of the full spin-1/2 Heisenberg
double sawtooth ladder with �/J‖ = 2. Similarly as in the
previous case, the intermediate plateau at three-quarters of the
saturation magnetization may not be a true plateau because

the associated energy gap is closed when extrapolated to the
thermodynamic limit.

It can be concluded that the intermediate magnetization
plateaus at zero and one-half of the saturation magneti-
zation for �/J‖ = 1 [see Figs. 9(a)–9(d)), and at zero,
one-quarter, and one-half of the saturation magnetization for

(a) (b) (c)

(d) (e) (f)

FIG. 10. The magnetic fields BLB/J‖ and BUB/J‖ corresponding to lower and upper bounds of the intermediate magnetization plateaus
(DMRG data: circles, ED data: squares) together with the relevant extrapolation to the thermodynamic limit N → ∞ by considering (a) one-
quarter plateau for �/J‖ = 1, (b) one-half plateau for �/J‖ = 1, (c) three-quarter plateau for �/J‖ = 1, (d) one-quarter plateau for �/J‖ = 2,
(e) one-half plateau for �/J‖ = 2, (f) three-quarter plateau for �/J‖ = 2.
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FIG. 11. 3D plot of the zero-temperature magnetization of the spin-1/2 quantum Heisenberg double sawtooth ladder as a function of the
magnetic field B/J‖ and four-spin exchange interaction K/J‖ for fixed value of the interaction parameters η/J‖ = J/J‖ = 1 and two selected
values of the exchange anisotropy: (a) �/J‖ = 1, (b) �/J‖ = 2. Here, we consider finite-size system characterized by N = 12, and we employ
the ED method.

�/J‖ = 2 [see Figs. 9(e)–9(h)] represent the actual magne-
tization plateaus. To complete our discussion, we study the
effect of four-spin Ising coupling on the magnetization pro-
cess of the spin-1/2 Heisenberg model on the double sawtooth
ladder. Three-dimensional zero-temperature plot of the mag-
netization of the spin-1/2 Heisenberg double sawtooth ladder
is presented in Fig. 11 as a function of the magnetic field B/J‖
and the cyclic four-spin Ising interaction K/J‖.

Figure 11(a) displays the magnetization normalized with
respect to its saturation value as a function of the magnetic
field and four-spin Ising interaction for fixed values of the
interaction parameters η/J‖ = J/J‖ = 1 and �/J‖ = 1. We in-
vestigate a finite-size system consisting of 24 spins (N = 12)
through the utilization of the ED method. It is worthwhile
to recall that the magnetization curve displays for K/J‖ = 0
two actual intermediate magnetization plateaus at zero and
one-half of the saturation magnetization (based on our DMRG
results shown in Fig. 9). With increase of the four-spin
coupling K/J‖, one observes substantial changes of the mag-
netization curve with a gradual shrinking of zero and one-half
magnetization plateaus, whereas the intermediate one-quarter
plateau contrarily becomes broader. It is quite plausible to
conjecture that there are accordingly strong indications for
the appearance of the one-quarter and three-quarter magne-
tization plateaus for nonzero values of the Ising four-spin
interaction K/J‖. Opposite to this, the intermediate one-half
magnetization plateau may terminate for nonzero K/J‖ at a
special quantum critical point. If we turn back to Fig. 6(b), we
find that a similar scenario happens also for the one-half mag-
netization plateau of the spin-1/2 Ising-Heisenberg double
sawtooth ladder corresponding to ground state |nunu〉, which
gradually shrinks upon increasing the four-spin coupling K/J‖
and ultimately terminates at a critical point with the coordi-
nates (K/J‖, B/J‖) ≈ (0.8, 3.4142).

Even more striking features can be figured out in the mag-
netization curves plotted in Fig. 11(b) for �/J‖ = 2. Based on
the DMRG results shown in Fig. 9, it is obvious that the mag-
netization curve of the spin-1/2 Heisenberg double sawtooth
ladder exhibits for �/J‖ = 2 and K/J‖ = 0 three intermediate
plateaus at zero, one-quarter, and one-half of the saturation
magnetization together with three gapless spin-liquid regions
separating them. The full ED calculations unveil that the
intermediate one-half magnetization plateau becomes nar-
rower upon increasing the four-spin Ising interaction K/J‖.
By inspecting Fig. 6(b), one can realize that in the ground-
state phase diagram of the spin-1/2 Ising-Heisenberg double
sawtooth ladder the area of the ground state |nunu〉(|usus〉)
corresponds to the one-half magnetization plateau and also
gradually decreases upon increasing the four-spin coupling
K/J‖ until it disappears at a quadruple point (KQ/J‖, BQ/J‖) ≈
(0.2929, 4.4142). On the other hand, the parameter region
corresponding to the other ground state |nuuu〉 related to the
three-quarter magnetization plateau increases upon increasing
the four-spin interaction term K/J‖.

IV. CONCLUSIONS

In this paper, we have exactly solved the spin-1/2 Ising-
Heisenberg double sawtooth ladder supplemented with the
four-spin Ising interaction by taking advantage of the classical
transfer-matrix technique. The ground-state phase diagram,
the magnetocaloric properties, and magnetic Grüneisen pa-
rameter of this model were rigorously examined. We found a
peculiar quadruple point in the ground-state phase diagram at
which four different ground states coexist together, whereby
this quadruple point cannot be observed for the pure Ising
double sawtooth ladder. Besides, the enhanced MCE has been
detected near the triple and quadruple points. The exact results
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for the isentropes of the spin-1/2 Ising-Heisenberg double
sawtooth ladder evidenced a fast cooling during the adiabatic
demagnetization process when the magnetic field is tuned
to a close vicinity of the triple and quadruple points. The
coordinates of the quadruple point depends on a relative ra-
tio between the isotropic exchange interaction between the
Heisenberg dimers and the nearest-neighbor Ising interac-
tion along the legs. For a particular value of the four-spin
Ising interaction that drives the investigated spin-1/2 Ising-
Heisenberg model to a quadruple point, one even detects the
enhanced MCE at relatively high temperatures.

By employing the numerical ED and DMRG methods,
we also investigated the magnetization process of the spin-
1/2 Heisenberg double sawtooth ladder with and without the
four-spin Ising coupling. A proper finite-size analysis allowed
us to discern the true intermediate magnetization plateaus
from the gapless quantum spin-liquid regions. The ED data
imply that the intermediate one-half magnetization plateau
gradually shrinks upon increasing the four-spin Ising coupling
and seems to vanish at a special quantum critical point. A
gradual suppression of the gapped one-half plateau phase
due to the rising four-spin Ising interaction, which possibly
closes an energy gap, might be an indication of the Kosterl-
itzThouless quantum critical point. The precise nature of the
quantum critical point can be an interesting subject of future
studies.
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APPENDIX A

The following term presents a comprehensive description
of the cyclic four-spin exchange:

Hring =
N∑

j=1

K[(s1, j · s1, j+1)(s2, j+1 · s2, j )

+ (s1, j · s2, j )(s1, j+1 · s2, j+1)

− (s1, j · s2, j+1)(s1, j+1 · s2, j )], (A1)

where sa · sb = sx
asx

b + sy
asy

b + sz
asz

b. In the present paper, we
consider solely the z components of the spin operators to
contribute to the anisotropic segment of the Hamiltonian. As
a result, the expression for the cyclic four-spin term takes on
a straightforward form:

Hz
ring =

N∑
j=1

Ksz
1, j s

z
1, j+1sz

2, j+1sz
2, j . (A2)

APPENDIX B

The eigenvalues of the quantum part of the Hamiltonian
Eq. (7) are

ε1,2 = −� ±
√

J2(s1, j − s2, j + s1, j+1 − s2, j+1)2 + η2,

ε3,4 = � ± [2B − J (s1, j + s2, j + s1, j+1 + s2, j+1)], (B1)

and the corresponding eigenvectors are given by

|ϕ1,2〉 = 1√
1 + A2±

(|↑↓〉 + A±|↓↑), (B2)

|ϕ3〉 = |↓↓〉,
|ϕ4〉 = |↑↑〉,

where

A± = 1

η
[J (s2, j − s1, j + s2, j+1 − s1, j+1)

±
√

J2(s2, j − s1, j + s2, j+1 − s1, j+1)2 + η2]. (B3)

The explicit form of the 4 × 4 transfer matrix is

T =

⎛
⎜⎜⎜⎜⎜⎝

z−1
1 z−1

2 λ−1μ2(χ0 + ψ2) z−1
2 λμ2(χ1 + ψ1) z−1

2 λμ2(χ1 + ψ1) z1z−1
2 λ−1μ2(χ0 + ψ0)

z2λ(χ1 + ψ1) z1z−1
2 λ(χ2 + ψ0) z1z2λ

−1(χ0 + ψ0) z2λ(χ1 + ψ−1)

z2λ(χ1 + ψ1) z1z2λ
−1(χ0 + ψ0) z−1

1 z2λ
−1(χ2 + ψ0) z2λ(χ1 + ψ−1)

z1z−1
2 λ−1μ−2(χ0 + ψ0) z−1

2 λ−1μ−2(χ1 + ψ−1) z−1
2 λ−1μ−2(χ1 + ψ−1) z−1

1 z−1
2 λ−1μ−2(χ0 + ψ−2)

⎞
⎟⎟⎟⎟⎟⎠, (B4)

where the following notations are adopted:

z1 = e2βJ‖ , z2 = eβJ⊥ , λ = eβK , μ = eβB,

χn = 2eβ� cosh
β

2

√
(2nJ )2 + η2, n = 0, 1, 2.

ψn = 2e−β� cosh (β(B − nJ )), n = −2,−1, 0, 1, 2. (B5)
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[11] K. Karľova and J. Strečka, J. Low Temp. Phys. 187, 727 (2017).
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[20] J. Strečka, M. Jaščur, M. Hagiwara, Y. Narumi, K. Kindo, and

K. Minami, Phys. Rev. B 72, 024459 (2005).
[21] W. Van den Heuvel and L. F. Chibotaru, Phys. Rev. B 82,

174436 (2010).
[22] S. Bellucci, V. Ohanyan, and O. Rojas, Europhys. Lett. 105,

47012 (2014).
[23] S. Sahoo, J. P. Sutter, and S. Ramasesha, J. Stat. Phys. 147, 181

(2012).
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