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Confined modes of single-particle trajectories induced by stochastic resetting
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Random trajectories of single particles in living cells contain information about the interaction between
particles, as well as with the cellular environment. However, precise consideration of the underlying stochastic
properties, beyond normal diffusion, remains a challenge as applied to each particle trajectory separately. In this
paper, we show how positions of confined particles in living cells can obey not only the Laplace distribution, but
the Linnik one. This feature is detected in experimental data for the motion of G proteins and coupled receptors
in cells, and its origin is explained in terms of stochastic resetting. This resetting process generates power-law
waiting times, giving rise to the Linnik statistics in confined motion, and also includes exponentially distributed
times as a limit case leading to the Laplace one. The stochastic process, which is affected by the resetting, can
be Brownian motion commonly found in cells. Other possible models producing similar effects are discussed.
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I. INTRODUCTION

Combination of the live-cell single-molecule imaging with
single-particle tracking (SPT) methods has allowed a revolu-
tionary breakthrough for the quantitative analysis of dynamic
processes in living cells [1-4]. This approach gives the vi-
sualization of the movement of individual “particles,” the
latter being single molecules, macromolecular complexes,
as well as viruses or organelles in physiological conditions
[5]. As such, it has been crucial to study the mechanisms
of intracellular transport, cell membrane dynamics, and vi-
ral infection [6-8]. Stochastic processes associated with the
movement of particles are directly affected by interactions that
occur with other cellular structures or components [9]. There-
fore, single-particle dynamics often deviates from Brownian
motion and exhibits heterogeneous behavior characterized
by changes in diffusion, transient confinement, immobiliza-
tion, or anomalous diffusion [10-12]. The development of
theoretical frameworks for the robust analysis of random
trajectories implemented in biological scenarios is thus of fun-
damental importance to understand molecular mechanisms of
interaction [13].

As an example, detection of the transient confinement with
high precision requires the knowledge of position or displace-
ment statistics [14]. Restrained trajectories have shown to
obey the Gaussian statistics, as well as the Laplace one (see,
for example, [15,16]). The Gaussian confinement is often de-
scribed by the well-known Ornstein-Uhlenbeck (OU) model
[17]. In this case, the stationary probability distribution func-
tion (PDF) is Gaussian, and the random trajectories follow
Gaussian statistics with an obvious physical interpretation.
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Unfortunately, the OU model, based on the ordinary Langevin
equation with a harmonic potential, does not provide a de-
scription for confined trajectories with the Laplace statistics.

An alternative scenario, leading to confinement of single-
particle trajectories with the Laplace statistics, can be based
on the stochastic resetting methodology. The resetting of a
stochastic process describes evolution of a stochastic system
that is returned repeatedly to a steady (or equilibrium) state
[18], as it occurs in target search with home returns [19-21].
If the resetting process is Poissonian and independent of the
random motion that undergoes resetting, then the latter has
a steady PDF. For trajectories undergoing Brownian motion
with Poissonian resetting, the steady PDF has the Laplace
form. It is noteworthy that subordinated Brownian processes,
leading to subdiffusion, under Poissonian resetting also pro-
duces a stationary state with the Laplace distribution, but
with another scale parameter [22]. In contrast, the engage-
ment of Lévy motion with the stochastic resetting produces
confinement with the Linnik statistics, in which the Laplace
one is a particular case (see [23]). Experimental works have
provided examples of the occurrence of confinement with
Laplace statistics [14—16].

In this article, considering the frequent occurrence of
stochastic resetting in biological systems, we propose an anal-
ysis pipeline to robustly determine the testing and apply it to
several experimental datasets. Our study shows that the Linnik
statistics does occur in single-particle trajectories of both G
proteins and coupled receptors in living cells. After providing
a brief mathematical background of the stochastic resetting,
we describe the analytical framework and its application to
the experiments that led to the quantification of confined
trajectories and their segments following the Laplace and
Linnik statistics. We discuss the results and further propose
a possible explanation for their occurrence. In our consider-
ation, the transient behavior means that the set of trajectories

©2023 American Physical Society


https://orcid.org/0000-0003-4420-047X
https://orcid.org/0000-0002-8584-9876
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.044130&domain=pdf&date_stamp=2023-10-17
https://doi.org/10.1103/PhysRevE.108.044130

STANISLAVSKY AND WERON

PHYSICAL REVIEW E 108, 044130 (2023)

contains segments in different diffusive modes: free, confined,
and others. Each segment obeys one of the modes, however
trajectories not segmented can be also found. The case when
either segmental or nonsegmental trajectories have different
statistics indicates the inhomogeneity of the medium and the
mode contribution ratio determines how heterogeneous the
medium is. If all the trajectories follow the Brownian motion,
the medium is homogeneous.

II. MODELS OF CONFINED MODES

There are at least three ways to get a stationary PDF for
stochastic processes, namely

(i) subordination of random processes;

(i1) stochastic differential equations (SDEs) with an attrac-
tive potential;

(iii) stochastic resetting.

Each of them may be considered as a mode leading to
confinement. Sometimes, they have similarities in limit cases,
but, generally, the limits are different. Let us consider the
above approaches and their features below.

A. Model 1: Subordination of random processes

The subordination consists of time randomization of a
stochastic process with the help of another independent ran-
dom process [24]. Confined trajectories obeying the Laplace
PDF can be produced by the use of a specific subordinator,
closely related to the one providing tempered subdiffusion.
The conjugate property of Bernstein functions connects the
tempered subdiffusion with the confinement [22]. Interpreta-
tion of anomalous diffusion tending to the confinement is that
diffusive motion, accompanied by multiple-trapping events
with infinite mean sojourn time, is transformed into pure
jumps, restricted in a confined environment. If the Laplace
exponent of a tempered «-stable process is (s + x)* — x%,
where y is a positive constant and 0 < o < 1, then its conju-
gate partner from the set of Bernstein functions takes the form
s/((s + x)* — x%) [25]. The PDF of the operational time is
easy to present in the Laplace transform with respect to ¢, i.e.,

} 1
f9= (s+ x)* — x©

The propagator of such a subordinated process can be written
in the integral form

e T/ ()" =x*) (1)

p(x,t) = /OO hx,7) f(zr,t)dr, )
0

where h(x, 7) is the PDF of a parent process, whereas f(z, t)
is the PDF of a directing one. If the ordinary Brownian motion
is a parent process, and the directing process is described by
Eq. (1), it is not difficult to find a stationary distribution in the
Laplace form explicitly

1 2|x|
pp(x,00) = ——=exp| —————== |, )
i V2Da x*! ( 1/2Doz)(0‘1)

where D is the diffusivity constant for the Brownian mo-
tion. Any subordinated non-Brownian motion, in which the
subordinator is defined by the Laplace exponent conjugate
to a tempered «-stable process, has a confined probability

distribution itself [14,16]. Their forms are simpler to present
through the Fourier transform, giving characteristic functions.
This procedure covers a wide class of geometrically infinitely
divisible distributions as a confined case of the non-Brownian
motion subordinated by a special subordinator responsible for
the confinement.

B. Model 2: Coupled SDEs with a potential

The coupled Langevin equations for position x; and dif-
fusivity D, opens new possibilities in description of the
confinement. The system of SDEs reads

1
dx, = ——(x, — X)dt + /D, dW, ",

T

f “4)
dD, = ——(D, — D)dt + o/D;dW,®,

1%))

where 7, and tp are the correlation times for x and D, ¥ and D
denote the average position and diffusivity, whereas o is the
“speed” of fluctuations for the diffusion coefficient [26]. Here,
Wt(l) and Wt(z) are independent Wiener processes. Note that
the second equation of the system (4) is independent of the
first, whereas the latter is “driven” by the former. Moreover,
the former corresponds to a Cox-Ingersoll-Ross (CIR) process
[27]. The stationary solution of the CIR SDE is presented,
for example, in [28]. This PDF is expressed in terms of the
gamma distribution. Next, the stationary state for the first SDE
in the system (4) leads to the Gaussian PDF, if its standard
deviation became constant as in the ordinary OU model. To
find the stationary PDF F; (x) of the coupled equations (4), we
integrate the Gaussian and the gamma PDFs over D. Conse-
quently, the stationary PDF takes the following form:

277_)‘_1/2 o 2|lx — x|
Ix — X*72K5 10 ; ,

F.(x) = W

&)

where K, (z) is the modified Bessel function [29] (here v =
A—1/2), n =/t 1po?, and A = TLZ)ZZ. The index A —1/2
has the meaning of the shape parameter [30]. It is also in-
teresting to mention the characteristic function for this PDF. It
reads

oo eiqfc
F,(x) cos(qx)dx = ————, (6)
Lo (1+ g*n?/4)"
showing similarity with both the Laplace and the Linnik dis-
tributions. Note, if A = 1, then Eq. (5) takes the form of the

Laplace PDF

1 2|x — X|
Fi(x) = —exp <— ) (7
n n

where X is the location parameter and n > 0 is the scale
parameter (sometimes referred to as the diversity).

C. Model 3: Stochastic resetting

The Brownian motion under Poissonian resetting can
be described by a starightforward mathematical framework
[18,31,32]. The Green function in the absence of resetting (or
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in other terms the propagator) is given by

_ 2
exp [_M] ®)

Gi(x, tlxo) = ADr

1
4w Dt

where x( is the initial position, and D is the diffusion con-
stant. The initial condition takes the Dirac § function, namely
G1(x, Olxg) = 6(x — xp). Due to the Poissonian resetting with
the rate r, the PDF p;(x,t|xo) satisfies a renewal equa-
tion [19]. Its form is expressed by a sum of two terms,
described as

t
P1(x, £x0) = 7Gx, 1x) + / e Gy (x, TIX, ) d,
0

)

where X, is the position to which the particle returns after
resetting. It should be noticed that the renewal equation Eq. (9)
holds for more general stochastic processes, with propagators
having a more general form than Gi(x, t|x9) [19,22]. In the
stationary state with + — o0, the first term of Eq. (9) may be
neglected, and the second term can be exactly calculated [18],
providing the typical Laplace PDF [23]

C
pi(x, 00lxp) = Ele*"**"r', (10)

where the scale parameter ¢; = /r/D depends on the rate r.
Hence, particles undergoing Brownian diffusion with reset-
ting behave as performing confined motion with the Laplace
statistics. Poissonian resetting also yields a similar behavior
for subdiffusion [22], i.e., random walks characterized by a
nonlinear mean squared displacement t* with & € (0, 1). The
only difference in this case, is that the scale parameter is given
by ¢y, = +/r*/D. A similar result can also be obtained in a
more general case. In fact, for a subordinator with an inverse
infinitely divisible distribution, the subordinated Brownian
motion under Poissonian resetting tends to a stationary PDF

in the Laplace form with the scale parameter cy = /¥ (r)/D,
where the Laplace exponent W(r) is expressed in terms of
Bernstein functions [33]. Therefore, Poissonian resetting can
force many (but not any) nonstationary stochastic processes
to a steady state with the Laplace PDF, and this general ca-
pability may explain why this distribution is often detected in
confined trajectories of single particles.

If, instead of Brownian motion, we consider the S-stable
Lévy motion with g € (0, 2) as a parent process [34], then
the Poissonian resetting of such random motion leads to a
stationary characteristic function [22]

eikX,

p(k, 00|X,) = ——
P ooV = ks

(11)
corresponding to the symmetric Linnik PDF [35]. In Eq. (11)
the term % shows that the PDF maximum is located at X,,
and D* is constant. When 8 = 2, the Linnik density reduces
to the Laplace case. Both Laplace and Linnik PDFs describe
confinement with jumps (unlike the Brownian confinement
with continuous trajectories) [22], but the difference between
them is that the Linnik PDF has a heavier tail than the Laplace
one [23]. Therefore, the Linnik confinement is characterized
by longer jumps.

D. Advantages and disadvantages of models

As was shown above, there are different mathematical ap-
proaches leading to confinement. Although each model may
be implemented in the dependence of physical conditions,
they have their pros and cons, which are useful to list:

(i) subordination of random processes leads to the Laplace
PDF in many cases of non-Gaussian processes, but the subor-
dinator is too specific;

(i) SDEs with an attractive potential are good for Gaus-
sian confinement, but the Laplace PDF exists for the only
value of the parameter describing the stationary PDF;

(iii) stochastic resetting has great potential for explaining
nonequilibrium states in physics, chemistry, and biology, and
this model provides more grounds for understanding the di-
versity of confined trajectories.

The statistics of confined trajectories can play the key role
in finding physical processes responsible for the occurrence
of confinement. Therefore, discriminating tests of the ran-
dom trajectories on possible PDFs are very important for the
study of confined modes. It should be noticed that stochas-
tic resetting is not so anomalous in living cells as it may
seem. In particular, the diffusive backward motion of paused
RNA polymerases is a diffusion process with stochastic
resetting [36].

III. ANALYSIS OF EXPERIMENTAL DATA

To choose the most suitable model of confinement, we
analyze stochastic trajectories detected in the SPT experiment

[2].

A. Classification of diffusion modes

Truthful classification of random trajectories in cells is of
great importance [37]. At the current level of development
of science and technology, it builds bridges between physics,
biology, biochemistry, and biophysics necessary for under-
standing how living cells function on the microscopic basis
[1]. We used the data of motion for G proteins and coupled
receptors on the surface of living cells (Fig. 1). Their primary
analysis can be started with classification of the trajectories
according to the standardized maximal distance [10]. This
method is useful because it allows us to evaluate quickly
the contribution of confined trajectories [14,22]. However, it
is rather rough and does not take into account the segmen-
tation of trajectories. Segments can be different: immobile,
confined, free (Brownian motion), and directed (diffusion
with drift). Moreover, multisegment trajectories show vari-
ous modes in segments. Therefore, we used an accurate and
computationally efficient transient motion analysis algorithm,
termed “divide-and-conquer moment scaling spectrum” (DC-
MSS) [38]. This approach includes three stages: initial track
segmentation, initial segment classification, and final valida-
tion. The first stage calculates the maximum pairwise distance
(MPD) between particle positions within the window. The
value of MPD reveals the switches between different diffusive
modes: MPD (immobile) < MPD (confined) < MPD (free)
< MPD (directed). In the next stage the track segments iden-
tified in the first stage are classified, using the MSS analysis
of molecule displacements. The final stage compensates for
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FIG. 1. Examples of random one-segment trajectories, focusing
on confined modes, in the motion of G proteins (a) and coupled re-
ceptors (b) observed in living cells. The type of segments is identified
by the DC-MSS algorithm and statistical tests (see more details in
Sec. III).

initial track oversegmentation by testing the merger of ad-
jacent segments. Using DC-MSS, we have carried out the
segment analysis of trajectories for G proteins and coupled
receptors in living cells. Their classification shows that there
is a significant number of confined segments (see Table I). The
difference in the number of segments between G proteins and
coupled receptors is due to a purely experimental situation:
G proteins were presented with fewer trajectories than cou-
pled receptors. Confined segments may have various statistics.
Therefore, the next step of our data analysis is to discriminate
them in statistics.

TABLE I. Classification of experimental data with random-walk
segments in the trajectories of G proteins and coupled receptors
under basal conditions along the coordinates x and y with the cutoff
length of trajectories more and equal to 50.

Coupled
Types G protein receptor
Coordinates X y X y
Confined segment 6513 6513 9637 9637
Normal PDF 3373 3371 6684 6746
Laplace PDF 2245 2285 2353 2232
Linnik PDF 895 857 600 659

B. Test of confined motion

To group confined tracks of G proteins and coupled recep-
tors by statistics, we use a simple statistical test, based on
the logarithm of the ratio of maximized likelihoods between
normal and Laplace distributions [39]. The ratio Q reads

0= gln(Z) - gln(n) +nin@®) — nln() + g (12)
where the terms are dependent on the following values:

PO .
9=;;|Yi—n|,

A

fi = median{Yy, >, ..., 1,},

S| =

1 n n
§r=-) Gi—p7P p=-) Y (13)
" z
If the statistical test shows Q > 0, the sample satisfies the
normal distribution, but O < 0 suggests the Laplace distribu-
tion or a similar one to it. This procedure took into account
only segments with a length greater than and equal to 50.
Unfortunately, this test cannot refer segments with the Linnik
statistics to the Laplace case due to their close relationship.

C. Detection of Linnik confinement

To recognize segments with the Linnik PDEF, we apply
the test suggested by Anderson and Arnold [40]. It allows
estimating the parameter S of the Linnik PDF for chosen
segments. This test uses the minimization of the following
objective function:

11=/ Q) — (1 + &) exp(—)dz, (14)
0

where 7j(z) = n~"' }__, cos(zy;), and y1, y2, . .., Y, is a data
sampling. The expression is minimized with respect to two
parameters, 8 and & (scale parameter). The presence of the
weight function exp(—z?) provides fast convergence of the
integral. Thus, Eq. (14) can be calculated numerically at no
extra cost. The results of applying this test for G proteins
and coupled receptors are shown in Table I. Note that the
diffusive motion of these particles differs in statistics along
x and y. Basically, the testing supports our above statistical
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analysis of confined segments. Really, most segments with the
jumplike confinement have the index $ equal or close to two,
which is typical for the Laplace statistics. Nevertheless, there
is also a significant part of segments with g ~ 1.203 £+ 0.002
corresponding to the Linnik case. They are detected in both
cases, for G proteins and coupled receptors. This shows that
the effect is not an anomaly or exotic. Histograms of the
confinement radius estimated for each category (Gaussian,
Laplace, and Linnik statistics) as well as the localization pre-
cision estimated for the segments classified as “immobile” are
presented in Appendix A.

IV. RESETTING AT POWER-LAW TIMES

Let us mention that from the three models (subordination,
system with potential and stochastic resetting) only the last
one can lead to the emergence of Linnik confinement from
Brownian motion, represented certainly in many trajectories.
Moreover, the stochastic resetting has the ability to be gener-
alized from an exponential distribution of resetting times to
a power-law one by using the Mittag-Leffler function. The
Brownian motion with Poissonian resetting, leading to expo-
nentially distributed times, has been studied in great details
(see [18,19] and references therein), while the power-law
models have been explored less. For the first time stochastic
resetting following the power-law distributed times, was con-
sidered in [41,42]. Below, we study such a model. It includes
both the resetting with power-law times and the exponential
case as a limit.

A more general resetting protocol is to take the sequence
of resetting times to be generated by a probability density
function (7). This is the so-called non-Poissonian resetting
[19]. It follows that W(t) =1 — f; ¥(s)ds is the survival
probability, i.e., the probability that no resetting has occurred
up to time t. In particular, for Poissonian resetting, the func-
tions read Y (t) = re”’" and W(r) = ¢~ '". The first renewal
equation (9) can be easily generalized

Py (X, txo) = W(t) Gy (x, t]xp)
+/ ¥ (t)Gi(x, T|X,) d. (15)
0

The stochastic resetting with power-law times can be imple-
mented with help of the Mittag-Leffler distribution. Let us
recall that a statistical distribution in terms of the Mittag-
Leffler function was defined by Pillai [43]. Differentiating
it, the Mittag-Leffler PDF becomes y*~'E, ,(—y*) with
0 <a < 1, where Ey () = Y po Y*/T(ak + B) is the two-
parameter Mittag-Leffler function [44]. If ¢« — 1, the PDF
tends to exponential. Next, in a stationary state of Eq. (15)
the PDF p, (x, t|xo) takes the following form:

Pa(x, 00|x0) = r/Oo(rf)“flEa,a[—(rf)“]Gl(x, T|X,)dr.
0

(16)

Note that the normalization condition
J75, Palx, 00lxg)dx =1 is connected with the integral
fooo(rr)“’lEa,a[—(rr)“] dt = 1/r. Moreover, in this context
the function W(t) = E,1[—(rt)¥] tends to e for o — 1
and, as expected, the relation » = 0 shows the absence of

Probability density function

FIG. 2. Brownian motion under the Mittag-Leffler resetting
(r=3,D=2,x=0.1,X,=0.5,a =0.75).

resetting in Eq. (15). If we pass from the PDF G| (x, t|x) to its
characteristic function ¢=*"2r through the Fourier transform,
then it is not difficult to find the characteristic function for
Puo(x, 00]xp), namely

o0
Pk, 00lxg) = / P (x, 00lxg) € dx

[o.¢]
kX

= (17)

1+ D~ k2o / e
When o« =1, the expression p;(k, oolxy) is the character-
istic function for Eq. (10), clearly describing the resetting
with exponentially distributed times. After the inverse Fourier
transform, the characteristic function (17) leads to the Linnik
distribution generalizing the Laplace distribution [23]. The
evolution from the Brownian motion under non-Poissonian
resetting to the Linnik distribution is presented in Fig. 2.
Thus, the Linnik distribution as a stationary state in random
processes under stochastic resetting can occur not only when
the B-stable Lévy motion for 0 < 8 < 2 is subject to the
Poissonian resetting [22,45], but also when Brownian motion
is under resetting at power-law times generated by the Mittag-

Leffler distribution in which 0 < o < 1.

The model of the Mittag-Leffler resetting is characterized
by the same index for small and large times. In Appendix B we
present its generalization, using the three-parameter Mittag-
Leffler function, where the stochastic resetting depends on
two indices. This makes the model more flexible and more
adequate for the stochastic resetting behaving differently for
small and large times. Moreover, Appendix C considers the
optimal search for the Mittag-Leffler resetting.

V. CONCLUSIONS

Single molecular imaging of G proteins and coupled re-
ceptors [46] as they diffuse and interact on the surface of
a living cell shows many diffusion modes with frequent
switching between them. Confined segments of their trajec-
tories are typical for the interaction of individual coupled
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receptors and G proteins. Their behavior resembles the
stochastic resetting. The coupled receptors have to “find” and
interact with G proteins on the cell membrane in order to initi-
ate and regulate intracellular processes [47]. The processes are
highly heterogeneous and complex. The interaction between
G proteins and coupled receptors occurs multiple times, and
the time interval between activation and deactivation turns
out to be random. The stochastic resetting makes this process
optimal. If the stochastic resetting happens with the exponen-
tially distributed times, then the confined motion obeys the
Laplace distribution, but power-law distributed times generate
the Linnik distribution in confined modes. We analyzed the
segmented experimental data with random trajectories of cou-
pled receptors and G proteins. Among the set of segments, by
using special tests, we found confined ones with the Laplace
and Linnik statistics. Our analysis to confined trajectories and
fragments can serve as a filter to identify the interaction of G
proteins and coupled receptors at power-law times.

Finally, we can summarize the following conclusions.

(i) The binding of G proteins and coupled receptors [48]
causes their confinement.

(i1) The resetting corresponds to rebinding events. If this
is the case, it means that the confined segments actually
correspond to binding-unbinding-rebinding events where the
unbinding step has not been detected.

(iii) If the time spent unbound is short (the DC-MSS can-
not detect segments shorter than 20 steps), then assuming
that between two consecutive binding events the G proteins
undergo Brownian motion, the Linnik/Laplace statistics might
just be the result of the mixing due to the suboptimal seg-
mentation or the presence of unbinding events shorter than
the minimum detectable duration.
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APPENDIX A: CONFINEMENT RADIUS
AND LOCALIZATION PRECISION

In the main text, we consider the classification of segments
in trajectories of G proteins and coupled receptors. Many seg-
ments are confined. Their statistics belong to three different
types: Gaussian, Laplace, and Linnik. Moreover, there are also
many immobile segments. Confined segments have a typical
radius, while the localization precision characterizes immo-
bile segments. We found them for G proteins and coupled
receptors separately. Histograms of the values are shown in
Fig. 3. It consists of four panels for both G proteins and
coupled receptors.

APPENDIX B: GENERALIZED
MITTAG-LEFFLER RESETTING

The three-parameter Mittag-Leffler function E;’ p(¥) is a
generalization of the two-parameter Mittag-Leffler function
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FIG. 3. Histograms of the localization precision and the confine-
ment radius from the segment analysis of G proteins [red bars in (a)]
and coupled receptors [blue bars in (b)].

E, g(y) mentioned in Sec. IV. It was first introduced by Prab-
hakar [49] who defined it as

o
EY = _ Bl
«.s0) gk!l‘(ak+ﬂ) B
where k € N, and (y); :=T'(k+ y)/T'(y) is the Pochham-
mer symbol. A random variable Y has a generalized Mittag-
Leffler distribution [50-52] if its probability density function
is

pr(y) = AV TIED o (=), (B2)
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withy > 0, v € (0, 1], shape § € R, and rate A > 0. Then the
first renewal equation (15) reads

Pas(x, thxg) = (1 — (r)*ES 5 [—(r)* DG (x, t]x0)
+ r/ (ro)* ' EL 5 [—(rO)*1 G (x, TIX, ) dT.
0
(B3)

In a stationary state of Eq. (B3), the PDF p, s(x, t|xo) is easier
to find through its characteristic function, namely

o0
Pa.s(x, 00|x0) €** dx

Bus (ks 00lx0) = /

—0oQ
kX
= (B4)
1+ Dak2a/ro:)5

As aresult, we obtain the characteristic function of the gener-
alized Linnik PDF [23]. When § = 1, the PDF p, 5(x, co|xo)
simplifies to the ordinary Linnik form (see Sec. IV). If « = 1,
then the stationary PDF p; s5(x, co|xp) can be found explicitly
in the form (5) that is the same for the coupled Langevin
equations mentioned in Sec. I B.

APPENDIX C: MEAN TIME TO ABSORPTION

For the non-Poissonian resetting there is a convenient way
to connect the survival probability with resetting, denoted as
Q,, while one without resetting as Q; [19]. It is based on the
last renewal equation written as

O (x0, 1)
= \Ij(t)Ql(XOat)'f'/(; Y (7) Q1(Xy, T)Qr(x0, 1 — T)dT
(ChH

in the shorthand Q, (xo, #|X,) = Q,(xo, t) and similarly for Q;.
Taking the Laplace transform in time and setting xo = X,., we
have

f2 e W) Qi (X, 1) d1
- fooo e Y (t) Q1 (X, t)dt

0,(X,, ) = (C2)

Then the mean time to absorption is obtained by setting s = 0
in Eq. (C2), i.e.,

Joo W) Q1(X,, 1) dt

T(X,)) = _ .
) 1— [ v (@) 01X, t)dt

(C3)

The survival probability of a diffusive particle starting from xg
without resetting is written as

01 (x0, 1) = erf(#), (C4)

where erf(z) = \/L;? foz e~ dz is the Gauss error function [29].

In Eq. (C3) only the functions W and ¥ depend on r. There-
fore, by changing variables r# — ¢ it is convenient to collect

e
3
:

\

r

Mean time <Tx >
w

n
[
:

!

r

FIG. 4. Mean time to absorption as a function of r with the
generalized Mittag-Leffler resetting (D = 1, x =X, = 1, « = 0.85,
and § = 0.5).

all parameters (r, X,, and D) in Q1(X,, t), i.e.,

4
01X, 1) = erf(W) (C5)
where y = X,+/r/D, taking ¥(t,r = 1) and ¢ (¢t,r = 1) for
the fixed r. Consequently, Eq. (C3) yields

L [, r=1)0i(X,,0)dt
T =7 5 . (C6
e (l—fo w(t’rzl)Ql(Xr,l)dt> (Co)

,
Since erf(z) ~ 2z/+/m for z tending to zero, the value of
(T (X)) diverges as r — 0 as (T(X,)) ~ r~'/2. Tt is clear that
in the absence of resetting, the mean time is infinity. On
the other hand, when r — oo, the survival probability with-
out resetting Q1(X,, ) is limited to one. Then [;° ¥ (r,r =
1)dt — 1, and the asymptotic behavior of the denominator
in Eq. (C6) is determined by 1 — erf(z) ~ e’zz/(ﬁz) for
z — 00. Therefore, (T (X,)) also diverges as r — oo. This is
not surprising. The higher the reset rate, the shorter the time
between resets to reach the origin. These two divergences can
surround one minimum of (7T (X,)).

However, this will be the case if the numerator of
Eq. (C6) is finite. Note that [~ v (r,r = 1) Qi (X, t)dt < 1
for r < co. Taking W(t,r = 1) = E, (—t*), the improper
integral in the numerator of Eq. (C6) converges, when
o > 1/2. Here the convergence problem arises at the
upper limit of the integral. For ¢t — oo the integrand
W, r=1)01(X,,t)dependson E, ; (—t%) ~t7*/T'(1 — «),
having 0 <« < 1, and Q;(X,,t) ~ y/+/mt. This leads to
the convergence of the numerator of Eq. (C6) just as in
the case of 1/2 <a < 1. When W(t,r = 1) corresponds
to the generalized Mittag-Leffler resetting, we observe the
same convergence condition of this numerator, i.e., for
1/2 < a < 1. If the numerator of Eq. (C6) is finite, between
two divergences (r — 0 and r — 00), there is a single
minimum. Such an example (related to the generalized
Mittag-Leffler resetting) is shown in Fig. 4. In this case
the minimal mean time is achieved when the ratio of the
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distance X, (from the resetting position to the target) to the
typical diffusion length between resets is y = 1.5124....
Finally, the Mittag-Leffler (generalized and ordinary)

resetting with 0 < o < 1/2 is characterized by divergence,
and the mean time for a diffusive particle to reach the origin
becomes infinite for any r.
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