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Brownian yet non-Gaussian diffusion of a light particle in heavy gas: Lorentz-gas-based analysis
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Non-Gaussian diffusion was recently observed in a gas mixture with mass and fraction contrast [F. Nakai et al,
Phys. Rev. E 107, 014605 (2023)]. The mean-square displacement of a minor gas particle with a small mass is
linear in time, while the displacement distribution deviates from the Gaussian distribution, which is called the
Brownian yet non-Gaussian diffusion. In this work, we theoretically analyze this case where the mass contrast
is sufficiently large. Major heavy particles can be interpreted as immobile obstacles, and a minor light particle
behaves like a Lorentz gas particle within an intermediate timescale. Despite the similarity between the gas
mixture and the conventional Lorentz gas system, the Lorentz gas description cannot fully describe the Brownian
yet non-Gaussian diffusion. A successful description can be achieved through a canonical ensemble average of
the statistical quantities of the Lorentz gas over the initial speed. Furhter, we show that the van Hove correlation
function has a nonexponential tail, which is contrary to the exponential tail observed in various systems.
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I. INTRODUCTION

Gas diffusion is a classical problem [1–4], and it may be
considered to be fully understood nowadays. However, recent
work revealed that gas diffusion is not that simple nor fully
understood [5]. The authors [5] numerically investigated the
diffusion of a light gas particle in gas mixtures with mass and
fraction contrast and found that the minor light molecule ex-
hibits Brownin yet non-Gaussian diffusion: The mean-square
displacement (MSD) is linear in time MSD ∼ t1, while the
displacement distribution deviates from the Gaussian distribu-
tion. (We do not consider the anomalous diffusion MSD ∼ t δ

(δ �= 1) accompanied by a non-Gaussian displacement dis-
tribution, in what follows. Such diffusion is non-Brownian
and non-Gaussian, while it is often observed in glassy liquids
[6], polymeric liquids [7], or some complex systems.) The
Brownian yet non-Gaussian diffusion has been widely ob-
served in complex systems with heterogeneous environments
and/or conformational degrees of freedom, such as glass-
forming liquids [6,8,9], polymeric fluids [10,11], colloidal
suspensions [12,13], confined systems [14], biological sys-
tems [15–17], and active matters [18,19]. In contrast to these
complex systems, there is no heterogeneity nor internal de-
grees of freedom in the gas mixture. In the previous work [5],
the origin of the non-Gaussian behavior was attributed to the
fluctuating diffusivity which arises from a separation of two
relaxation timescales of the minor light particle velocity. The
relaxation timescale for speed (the magnitude of the velocity)
can be much longer than that for the direction of the veloc-
ity. Namely, when the velocity is described in the spherical
coordinates, the polar and azimuthal angle components
rapidly relax at the timescale where the radial component
almost remains unchanged.

The dynamics of a light particle in heavier particles have
often been approximated as the Lorentz gas [4,20–22], which
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is composed of a mobile particle and immobile particles.
Although Lorentz gas was originally constructed for the
dynamics of an electron in metal, later, the model has been re-
garded as the simple model for the transport phenomena of gas
[21] and also for some classical dynamical systems [23,24].
Various transport properties of the Lorentz gas including the
diffusion coefficient [20,25] or the relaxation of the velocity
[20,21] are analyzed even for dense cases [26–29]. Diverse
extended models [23,24,30,31] including the experimental
systems [32–34] and glass forming liquids [35,36] have also
been extensively studied. Naively, we expect that the diffu-
sion of a light gas particle in the heavy gas particles can
be described using Lorentz gas. To the best of the authors’
knowledge, the relation between the simple dilute Lorentz
gas and diffusion of a light particle in a matrix of heavy gas
particles is not clear, and whether the non-Gaussian behavior
can be described by the Lorentz gas is not clear either.

In the current work, we theoretically analyze the diffusion
of a light gas particle in heavy gas particles. We employ
the dilute random Lorentz gas to describe the Brownian
yet non-Gaussian diffusion of a light particle in heavy gas.
We first derive analytical expressions for the MSD and the
non-Gaussian parameter of the Lorentz gas using the point
process [37]. (One can also calculate these correlation func-
tions using the Boltzmann equation [38–40] and will reach
the same results.) Afterward, we calculate the canonical en-
semble average of them over the initial speed, which obeys the
Maxwell-Boltzmann distribution. The averaged result quanti-
tatively reproduces the Brownian yet non-Gaussian diffusion
of a light and minor gas particle in binary gas mixtures within
an intermediate timescale.

II. MODEL

We consider a system that consists of the mobile particle
with mass m and size 0 (point mass) in the fixed spherical
obstacles with radius σ . Note that we introduce the mass m
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FIG. 1. Binary gas mixture as a Lorentz gas, which consists of a
single mobile particle (point mass) in immobile spherical particles.
vi denotes the mobile particle velocity after ith collision, and ui is
the unit vector from the mobile particle to the colliding immobile
particle.

to analyze the binary gas mixture, although the conventional
Lorentz gas model is independent of m. We limit ourselves
to the case where the fixed obstacles are dilute. The fixed
obstacles are randomly distributed in space, and there is no
statistical correlation between different obstacles. We describe
the number density of the obstacles as ρ. The mobile particle
ballistically moves until it collides with an immobile obsta-
cle. When the mobile particle collides with the obstacle, the
velocity of the mobile particle instantaneously changes via the
hard-core repulsion potential [4]. If we describe the velocities
of the mobile particle before and after the ith collision as vi

and vi+1, then they are related as

vi+1 = (1 − 2uiui ) · vi, (1)

where ui is the unit vector connecting the mobile particle
to the colliding immobile particle, and 1 is the unit tensor.
See Fig. 1 for a schematic representation of our model. From
Eq. (1), the speed of the mobile particle v remains unchanged:
v = |vi| (for any i). Here we assume that the stochastic pro-
cess of the mobile particle obeys the Markovian process;
the successive collisions are uncorrelated. This assumption is
sufficient to describe the Brownian yet non-Gaussian diffu-
sion that emerges in the binary gas mixture [5]. (Due to this
Markovian assumption, our model cannot reproduce so-called
the long-time tail, which is caused by correlated collisions
[41–44].) If we choose m, v, and 1/ρσ 2 to define the di-
mensionless units, then there are no parameters in the random
dilute Lorentz gas.

The model explained above can be interpreted as an ap-
proximate description for a minor and light particle in binary
gas mixtures with sufficiently large mass and fraction contrast.
In such a binary gas mixture, the heavy particles are not
entirely immobile but can move very slowly. This means that
the speed of the mobile particle is not exactly constant but

just approximately constant at a specific timescale. In this
sense, Eq. (1) is not exact for a light particle but it should
be interpreted as an approximation. Later, we will discuss a
relation between the Lorentz gas and the minor light molecule
in the binary gas mixture.

III. THEORY AND DISCUSSIONS

A. Lorentz gas

The dynamics of the mobile particle are described using vi

and ti, where ti is the collision time at the ith collision. Using
vi and ti, the position of the mobile particle at the time t after
the nth collision, r(n, t ), can be described as

r(n, t ) = (t − tn)vn +
n−1∑
i=0

(ti+1 − ti )vi. (2)

To describe the dynamics, we require the collision statistics
between successive collisions. In the current case, the colli-
sion frequency density f (u) for a collision with a direction
vector u thoroughly characterizes the collision statistics. f (u)
is obtained from the collision statistics for the binary gas
mixture [3,5] by setting the surrounding gas velocity to be 0:

f (ui ) = ρσ 2vi · ui�(vi · ui ), (3)

where �(x) is the Heaviside step function. Equation (3)
can be rewritten into a simple form in the spherical coordi-
nates. Without loss of generality, we can take the Cartesian
coordinates for vi as vi = (0, 0, v) and express ui as ui =
(sin θi cos φi, sin θi sin φi, cos θi ) with θi ∈ [0, π/2) and φi ∈
[0, 2π ]. Then Eq. (3) reduces to

f (ui ) = ρσ 2v cos θi. (4)

By integrating Eq. (4) over ui, we obtain the collision fre-
quency as ∫

f (ui )dui = v

λ
, (5)

where λ = 1/πρσ 2 is the mean free path. Combining Eqs. (4)
and (5), we obtain the probability density where the mobile
particle collides at ui at the time interval ti+1 − ti for a given
v, P(ti+1 − ti, ui; v) as [5]

P(ti+1 − ti, ui; v) = f (ui ) exp
[
−(ti+1 − ti )

v

λ

]
. (6)

The probability density at time t with the number of colli-
sions n and the speed v can be calculated using Eq. (6):

P(r, {ui}, {ti}; n, t, v) = δ[r − r(n, t )]
n∏

i=0

P(ti+1 − ti, ui, v).

(7)
Integrating Eq. (7) over {ui} and {ti}, we have the probability
density for r under given n, t , and v:

P(r; n, t, v) =
∫

dv0

∫ ∞

t
dtn+1

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1

∫
dun · · ·

∫
du0P(r, {ui}, {ti}; n, t, v)P(v0)

= e−vt/λ
∫

dv0

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1

∫
dun−1 · · ·

∫
du0δ[r − r(n, t )]

n−1∏
i=0

f (ui )P(v0; v), (8)
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where P(v0; v) = δ(|v0| − v)/4πv2 is the initial velocity dis-
tribution of the mobile particle.

To proceed with the calculation, we introduce the char-
acteristic function, C(k; n, t, v) = ∫

dreik·rP(r; n, t, v). From
Eq. (8), we can calculate C(k; n, t, v) as

C(k; n, t, v) = e−vt/λ
∫

dv0

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1

×
∫

dun−1 · · ·
∫

du0

n−1∏
i=0

f (ui )P(v0; v)

× exp

{
ik ·

[
vn(t − tn) +

n−1∑
i=0

vi(ti+1 − ti )

]}
.

(9)

Here we consider the Laplace transform of Eq. (9):
Ĉ(k; n, s, v) = L[C(k; n, ·, v)](s) = ∫∞

0 dt e−tsC(k; n, t, v).
Then we have

Ĉ(k; n, s, v) =
∫

dv0
P(v0; v)

s − ik · v0 + v/λ

×
n−1∏
i=0

∫
dui

f (ui )

s − ik · vi+1 + v/λ
. (10)

The integrals over v0 and {ui} in Eq. (10) can be analytically
calculated. The result is

Ĉ(k; n, s, v) = λ

v

[
1

kλ
arctan

(
kv

s + v/λ

)]n+1

, (11)

where k = |k|. To obtain the probability density for r under
given s and v, we need to consider all the contributions from
different n. This can be easily calculated by taking the sum-
mation over n: Ĉ(k; s, v) = ∑∞

n=0 Ĉ(k; n, s, v). From Eq. (11),
we have

Ĉ(k; s, v) =
arctan

(
kv

s+v/λ

)
(v/λ)

[
kλ − arctan

(
kv

s+v/λ

)] . (12)

Equation (12) corresponds to the Fourier-Laplace transform
of the self part of the van Hove correlation function, and
thus any quantities which characterize the diffusion behavior
can be calculated from Eq. (12). Note that Eq. (12) satis-
fies the normalization condition of the probability density:
Ĉ(k; s, v) = s−1 at k = 0.

The MSD is calculated as the second-order moment for the
van Hove correlation function. From Eq. (12), we have the
Laplace transform of the MSD under a given v as follows:

L[〈r2(·)〉v](s) = − ∂2

∂k2 Ĉ(k; s, v)

∣∣∣∣
k=0

= 2v2

s2(s + v/λ)
, (13)

where 〈· · · 〉v denotes the statistical average under a given v.
Similarly, the Laplace transform of the fourth-order moment
becomes

L[〈r4(·)〉v](s) = ∂2

∂k2

∂2

∂k2 Ĉ(k; s, v)
∣∣
k=0 = 8v4(9s + 5v/λ)

3s3(s + v/λ)3
.

(14)

FIG. 2. Theoretical predictions of the scaled mean-square dis-
placement [Eq. (15)] and non-Gaussian parameter [Eq. (17)] against
reduced time vt/λ for the dilute random Lorentz gas.

The inverse Laplace transforms of Eqs. (13) and (14) give

〈r2(t )〉v
λ2

= 2(−1 + vt/λ + e−vt/λ), (15)

〈r4(t )〉v
λ4

= 4v2t2

3λ2
(5 + 4e−vt/λ) − 8vt

λ
(2 − e−vt/λ)

+ 8(1 − e−vt/λ). (16)

It is straightforward to show that at the short-time limit
(t → 0) Eqs. (15) and (16) approach 〈r2(t )〉v → v2t2 and
〈r4(t )〉v → v4t4. These reflect the ballistic motion. At the
long-time limit t → ∞, the MSD approaches 〈r2(t )〉v →
2vλt , which corresponds to the normal diffusion. The dif-
fusion coefficient, D, defined as 〈r2(t ; v)〉 = 6Dt , becomes
D = vλ/3, which is consistent with the well-established re-
sult [4] in the gas kinetic theory. From Eqs. (15) and (16),
the analytic expression of the non-Gaussian parameter (NGP)
under a given v, α(t ; v), is calculated to be

α(t ; v)

= 3〈r4(t )〉v
5〈r2(t )〉2

v

− 1

= 4e−vt/λ(v2t2/λ2 − vt/λ + 1) + 1 − 2vt/λ − 5e−2vt/λ

5(−1 + vt/λ + e−vt/λ)2
.

(17)

Figure 2 displays the MSD [Eq. (15)] and the absolute
value of the NGP [Eq. (17)] [the NGP by Eq. (17) is always
negative] of the Lorentz gas. MSD shows simple ballistic
and diffusive behaviors at the short and long timescales, re-
spectively. The crossover time is approximately equal to the
mean free time, vt/λ ≈ 1. NGP becomes −2/5 at the short
timescale and approaches 0 at the long timescale. The decay
of −α(t ; v) starts around vt/λ ≈ 1, where the MSD switches
from ballistic motion to normal diffusion. The result that the
NGP approaches zero at the long timescale means that the dy-
namics of Lorentz gas can be reasonably described by the
Gaussian process for t � λ/v. The non-Gaussianity at t = 0
originates from the energy conservation of the Lorentz gas.
At the short timescale, the mobile particle ballistically moves,
and thus NGP reflects the non-Gausianity of the velocity
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distribution. We can easily evaluate the NGP at the short-time
limit:

α(t ; v) = 3〈v4t4〉v
5〈v2t2〉2

v

− 1 = −2

5
, (18)

which is consistent with the theoretical prediction at the short
timescale in Fig. 2.

Before proceeding to the next section, we should mention
the long-time tails, although they are beyond the scope of
this work. In general, molecules in matrices exhibit long-time
correlated dynamics [41–44] and exhibit long-time tails at a
long timescale. This means that the history of collisions (or
called ring collisions) cannot be strictly ignored even in any
long timescale. Such a correlation leads to some characteristic
power laws in time correlation functions [43,44]. The current
system does not show such long-time tails because of the
Markovian process assumption.

B. Binary gas mixture

The Lorentz gas has often been regarded as the model that
describes a light particle in heavy particles. Thus, one may
expect that the Brownian yet non-Gaussian diffusion, which
is observed for a minor light particle in heavy gas [5], can
be predicted from the Lorentz gas model. However, the the-
oretical result of the random dilute Lorentz gas (Fig. 2) does
not exhibit the non-Gaussian diffusion in the normal diffusion
regime (MSD ∝ t).

This apparent inconsistency between the Lorentz gas
model and a binary gas mixture comes from the fact that the
speed (or kinetic energy) of a light gas particle in a binary
gas mixture fluctuates at a very long timescale. (We may
interpret the results based on the Lorentz gas model are for
the microcanonical ensemble, and we should use the canon-
ical ensemble for the binary gas mixture.) Within a certain
timescale shorter than the relaxation timescale of the speed
of the light particle, we can interpret the self-part of the
van Hove correlation function of the light particle in the gas
mixture G(r, t ) as the canonical ensemble average of that for
the Lorentz gas model. Using Eq. (8), G(r, t ) is described as

G(r, t ) =
∞∑

n=0

∫
dvP(r; n, t, v)P(v), (19)

where P(v) is the Maxwell-Boltzmann distribution for the
speed:

P(v) = 4πv2

(
m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
. (20)

Here kB is the Boltzmann constant. While the calculation of
Eq. (19) itself is difficult, some moments for the displacement
can be analytically obtained. From Eqs. (15) and (20), the
second moment of G(r, t ) is

〈r2(t )〉
λ2

=
∫ 〈r2(t )〉v

λ2
P(v)dv

= 2

[
−1 + 2γ t√

π
+ (1 + 2γ 2t2)eγ 2t2

erfc(γ t )

]
, (21)

where γ is a characteristic frequency defined as γ =√
kBT/2m/λ. Figure 3 displays the prediction for the MSD

FIG. 3. Theoretical prediction for MSD of binary gas mixtures
with different mass ratios. The red curve is the theoretical prediction
by Eq. (21), and symbols are the results of KMC simulations [5].

of a light particle in a binary gas mixture by Eq. (21). For
comparison, the mean-square displacements of the light par-
ticle in heavier particles, calculated from the kinetic Monte
Carlo (KMC) simulations [5], are also presented with various
mass ratios μ = m/M, where M is the mass of the major gas
particle. Our theoretical prediction quantitatively agrees with
the MSD from the KMC simulations when μ is sufficiently
small (μ � 1).

In a similar manner, the NGP for a binary gas mixture
can be analytically calculated. The ensemble average of the
fourth-order moment is obtained using Eqs. (16) and (20) as

〈r4(t )〉
λ4

=
∫ 〈r4(t )〉v

λ4
P(v)dv

= 4

3

[
6 − 12γ t√

π
+ 30γ 2t2 − 56γ 3t3

√
π

− 32γ 5t5

√
π

− (6 + 24γ 2t2 − 72γ 4t4 − 32γ 6t6)eγ 2t2
erfc(γ t )

]
.

(22)

Figure 4 displays the NGP α(t ) calculated from Eqs. (21) and
(22). For comparison, the NGPs from the KMC simulations
[5] are also shown with various μ. Our theoretical prediction
successfully describes the non-Gaussian parameter from the
KMC simulation for sufficiently small μ except for the decay
of the NGP at the very long timescale. We will discuss this
discrepancy later. The NGP by Eqs. (21) and (22) approaches
0 at t → 0, unlike the case of the Lorentz gas. This reflects
the fact that the probability density of the speed of the mobile
particle obeys the Maxwell-Boltzmann distribution, which is
a Gaussian distribution. At the long-time limit (t → ∞), the
NGP approaches 3π/8 − 1, and this quantity corresponds to
the plateau of the NGP from the KMC simulations.

At last, we discuss the self part of the van Hove correlation
function Gs(r, t ) at the limit of the long timescale which
is sufficiently larger than the mean free time, based on the
Lorentz gas model. At the long-time limit in the Lorentz gas
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FIG. 4. Theoretical prediction for NGP of binary gas mixtures
with different mass ratios. The red curve is the theoretical prediction
by Eqs. (21) and (22), and symbols are the results from the KMC
simulations [5].

(s � v/λ), Eq. (12) reduces to

Ĉ(k; s, v) ≈
arctan(kλ) − ks

k2v+v/λ2

(v/λ)
[
kλ − arctan(kλ) + ks

k2v+v/λ2

] . (23)

Its inverse-Laplace transform is

C(k; t, v) ≈ (1 + k2λ2)

× exp

[
− (1 + k2λ2)[kλ − arctan(kλ)]

kλ

tv

λ

]
.

(24)

Here we should note that Eq. (24) is valid for the long
timescale, t  λ/v. In this timescale, we expect that only the
small wavelength component (kλ � 1) becomes dominant.
Then Eq. (24) can be reduced to

C(k; t, v) ≈ exp

(
−vtλk2

3

)
. (25)

Equation (25) is nothing but the characteristic function of the
Gaussian distribution. Thus, the van Hove correlation function
of the Lorentz gas for a given speed v at the long-time limit is

G(x; t, v) ≈
√

3

4πvλt
exp

(
− 3x2

4vλt

)
. (26)

From Eqs. (20) and (26), we obtain the van Hove correlation
function for a light gas particle in a binary gas mixture as

G(x; t ) =
∫ ∞

0
G(x; t, v)P(v)dv. (27)

Although Eq. (27) can be analytically calculated, the result
is rather complex. Because the Brownian yet non-Gaussian
diffusion often has striking features in tails in the van Hove
correlation function [17,45,46], we attempt to obtain the ap-
proximate form for the tail for the large displacement region.
The saddle point approximation for Eq. (27) gives

G(x; t ) ≈
√

3m

4πkBT

|x|
λt

exp

⎡
⎢⎣−3

4

⎛
⎝
√

9m

2kBT

x2

λt

⎞
⎠

2
3

⎤
⎥⎦

× (for x2  λt
√

kBT/m). (28)

Equation (28) is the same as the form obtained phenomeno-
logically in our previous work [5]. It would be worth stressing
here that Eq. (28) is not exponential nor stretched Gaus-
sian distribution. The van Hove correlation function is often
reported to exhibit an exponential tail for Brownian yet
non-Gaussian diffusion. Although one may consider that the
exponential tail is essential, as noted in Ref. [13], different
forms for the tail may be associated to Brownian yet non-
Gaussian diffusion. The binary gas mixture is an example
which exhibits such a nonexponential tail [5].

As we mentioned, our theoretical prediction for the NGP
α(t ) converges to a constant value at the long-time limit.
Therefore, at least in the theoretical framework shown above,
our theory does not predict the Gaussian behavior at the
long-time region observed in the KMC simulations. The dis-
crepancy between the theoretical prediction and the KMC data
at the long-time limit can be attributed to the lack of speed
relaxation in our analysis. The KMC simulations revealed that
there are two characteristic relaxation timescales in a binary
gas mixture: the direction and speed relaxations [5]. In our
analysis, we considered the direction relaxation via hard-core
collisions, while the speed relaxation is not explicitly con-
sidered. We only assumed that the speed relaxation makes
the initial ensemble with the Maxwell-Boltzmann distribution.
The speed relaxation affects the long-time dynamics, but it
is totally ignored. Therefore, the diffusion coefficient for the
particle with a given initial speed v remains constant even at
the long-time limit: D = vλ/3. This means that the long-time
diffusion behavior reflects the initial speed distribution. This
is why the NGP does not approach zero even at the long-time
limit.

The diffusion coefficient of a light particle in a binary gas
mixture fluctuates in time due to speed relaxation. Therefore,
if we describe the diffusion of the light particle at the long
timescale, then we need to incorporate another stochastic
process into the model. The diffusing diffusivity model [46]
in which the diffusion coefficient obeys the Langevin equa-
tion would be employed to incorporate the fluctuation of the
speed. Some analytical results of the gas kinetic theory [47]
can be utilized to design the stochastic process for the speed
of the particle.

IV. CONCLUSION

In this work, we theoretically analyzed the dynamics of
a light particle in heavy gas particles with large mass con-
trast based on the dilute Lorentz gas model. We derived the
analytical expressions for the MSD and NGP of the Lorentz
gas for a given speed v via the point process approach. The
result with constant v does not exhibit the Brownian yet
non-Gaussian diffusion observed in the binary gas mixtures
with mass and fraction contrast. We found that the Brow-
nian yet non-Gaussian diffusion can be reproduced through
the canonical ensemble average of statistical quantities for
the Lorentz gas over the initial speed, except for the very
long-time region. We also evaluated the tail of the van Hove
correlation function and found that it lacks the exponential tail
commonly associated with Brownian yet non-Gaussian diffu-
sion. This work revealed a relation between the conventional
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Lorentz gas and the binary gas mixture, and it will provide
fresh insight into the theoretical modeling for gas diffusion.
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APPENDIX: KINETIC MONTE CARLO SIMULATION

We briefly explain the kinetic Monte Carlo simulation for
the dynamics of a minor particle in the binary gas mixture
with fraction contrast (the details are shown in Ref. [5]). In
this method, we employ the following assumptions:

(1) The minor particles interact with the major particle via
the hard-core potential.

(2) The minor particles are infinitely diluted; the minor
particles interact only with the major ones.

(3) The dynamics of the minor particle obey the Marko-
vian process.

(4) The system is in an equilibrium state; the positions of
the particles are homogeneously distributed, and the
statistics of the velocity obey the Maxwell-Boltzmann
distributions.

These assumptions have often been employed in gas kinet-
ics [4,48]. From Assumption 1, the minor particle velocity v

changes to v′ by a collision with a major one as

v′ = v − 2M

m + M
(v − V ) · uu, (A1)

where u is the direction unit vector connecting the center of
the minor particle to that of the colliding major particle and
V is the velocity of the colliding major particle. On the basis
of Assumptions 2–4, we can calculate the collision statistics.
The probability density where a minor particle collides with a
major particle having V at u and at the time interval τ , for a
given minor particle’s velocity v is

P(V , u, s|v) = ρσ 2(v − V ) · u
(

M

2πkBT

)3/2

exp

(
− MV 2

2kBT

)

× exp[−F (v)s]�[(v − V ) · u], (A2)

where �(x) is the Heaviside function and F (v) is the collision
frequency of the minor particle for a given v [5]:

F (v) = πρσ 2

[(
v + ξ 2

2v

)
erf

(
v

ξ

)
+ ξ√

π
exp

(
−v2

ξ 2

)]
,

(A3)

where we defined the characteristic major particle speed ξ ≡√
2kBT/M. The stochastic process of the minor particle is

fully characterized by Eqs. (A1) and (A2). At the large mass
ratio case (μ = m/M � 1), which is the interest of this work,
Eqs. (A1) and (A2) reduce to Eqs. (1) and (3).
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