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Lattice models for ballistic aggregation: Cluster-shape-dependent exponents
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We study ballistic aggregation on a two-dimensional square lattice, where particles move ballistically in
between momentum and mass conserving coalescing collisions. Three models are studied based on the shapes
of the aggregates: In the first the aggregates remain point particles, in the second they retain the fractal shape at
the time of collision, and in the third they assume a spherical shape. The exponents describing the power-law
temporal decay of number of particles and energy as well as dependence of velocity correlations on mass are
determined using large-scale Monte Carlo simulations. It is shown that the exponents are universal only for
the point-particle model. In the other two cases, the exponents are dependent on the initial number density and
correlations vanish at high number densities. The fractal dimension for the second model is close to 1.49.
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I. INTRODUCTION

There is a wide variety of physical phenomena at different
length scales in which aggregation of particles and clusters
to form larger particles is the predominant dynamical pro-
cess [1]. Examples include aerosols [2,3], agglomeration of
soot [4,5], gelation [6], cloud formation [7], colloidal agr-
regates [8], astrophysical problems [9], aggregation of dust
particles in planetary discs [10–12], dynamics of Saturn’s
rings [11,13], polyelectrolytes [14,15], networks [16], etc. A
minimal model that focuses only on the effects of aggrega-
tion is the cluster-cluster aggregation (CCA) model in which
particles that come into contact undergo mass-conserving coa-
lescence (reviews may be found in Refs. [17–19]). In addition
to its relevance for different physical phenomena, CCA has
also been studied as a nonequilibrium system undergoing
scale-invariant dynamics that is described by exponents that
depend only on very generic features of the transport pro-
cess. This universal feature allows applications of results for
CCA in seemingly unrelated systems like Burgers turbulence
[20–24], Kolmogorov self-similar scaling [25–27], granular
systems [28–31], hydrodynamics of run and tumble particles
[32], evolution of planetesimals [33], geophysical flows [34],
etc.

Among the different transport processes, ballistic transport
is of particular importance and the resultant CCA is known as
the ballistic aggregation (BA) model, the focus of this paper.
In the BA model, momentum is additionally conserved in
collisions. The BA model with spherical particles has been
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studied using mean-field theory, large-scale simulations in
two and three dimensions, and is exactly solvable in one
dimension. It is found that the number of particles, n(t ), and
energy, e(t ), decrease with time, t , as power laws: n(t ) ∝ t−θn ,
e(t ) ∝ t−θe . These exponents have been determined in d di-
mensions within a mean-field approximation which assumes
that the particle density is small, that the particles are compact
spherical clusters of equal density, and that the velocities of
the particles constituting a cluster are uncorrelated. Within
these assumptions, scaling arguments predict the existence of
a growing length scale Lt ∼ t1/zmf

with zmf = (d + 2)/2d and
mean-field exponents, θmf

n = 2d/(d + 2) and θmf
e = θmf

n [35].
The correlations in the initial velocities of the constituents
of a cluster is characterized by an exponent η: 〈v2

m〉 ∼ m−η,
where 〈v2

m〉 is the mean-square velocity of a particle of mass
m. In the mean-field approximation, by assumption, ηmf =
1. The mean-field results for the exponents are of partic-
ular significance to the study of the unrelated problem of
freely cooling granular gas in which ballistic particles undergo
energy-dissipating, momentum conserving binary collisions.
It has been shown that an exponent characterizing the energy
decay in the granular gas is equal to θmf

e in dimensions up to
three [28,30,36].

In one dimension, BA is exactly solvable and the exponents
match with the mean-field exponents [21,37–39]. However,
in two and three dimensions, it has been shown that the
exponents for BA with spherical particles depend on the
initial number density n0. In two dimensions and for dilute
systems (n0 → 0), it has been shown that the numerically
obtained θn is 17% larger than θmf

n because of strong velocity
correlations between colliding aggregates, with η decreasing
from η ≈ 1.33 for low densities to η ≈ 1 = ηmf for high
densities [30,40–43]. In three dimensions, it is found that
as n0 increases from 0.005 to 0.208, θe decreases from θe =
1.283 to 1.206 and appears to converge to the θmf

e = 1.2 with
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increasing n0, and η decreases from η ≈ 1.23 for low densities
to η ≈ 1 = ηmf for high densities [30,43]. It is remarkable
that the mean-field results describe well only the systems
with large n0, while its derivation assumes the limit n0 → 0.
This counterintuitive result has been argued to be due to the
randomization of the velocities at higher densities due to an
avalanche of coagulation events that occur due to the overlap
of a newly created spherical particle with already existing
particles as the number density is increased.

While the kinetics of BA with spherical particles are
reasonably understood, much less is known for the expo-
nents when clusters have nonspherical shapes. The scaling
analysis can be extended to the case when the mass scales
with radius with a fractal dimension d f [41] (also see
Sec. III, where we review scaling theory). The scaling the-
ory leads to hyperscaling relations between the different
exponents independent of the mean-field assumptions. Frac-
tal shapes are of particular importance in the case of the
experiments on aggregates of soot [5,44], mammary ep-
ithelial cells [45,46], spray flames [47], etc., where the
aggregates have a fractal dimension different from those
of compact structures (d f = 2, 3). While the fractal di-
mensions seen in experiments [5,45] are sometimes close
to that for diffusion-limited aggregation (DLA) (d f ≈ 1.7),
there are many examples for which it is very different (for
instance, 1.54 for sprays [47], 1.5 for cells [46], or 2.4 for
soot [44]). The fractal dimension of aggregates formed by
ballistic motion is not known to the best of our knowledge.
In addition, it is also not known how the exponents for BA
change when the shape of the clusters deviates from spherical.
Neither is it known whether the mean-field limit is reached
for any particular limit of number density when the clusters
are fractal. Finally, in the characterization of mass distribu-
tion, a relevant exponent is the scaling of mass distribution
with small mass, namely, N (m) ∼ mζ [also see definition in
Eq. (6)]. The exponent ζ is an independent exponent and
cannot be obtained from scaling theory, and is not known even
for BA with spherical particles.

To answer these questions, we study three differently
shaped clusters (named models A, B, C) undergoing BA on
the square lattice. We choose a lattice approach as it allows us
to maintain fractal shapes in a computationally efficient man-
ner. Lattice models are known to reproduce the same results
as the continuum for BA in one dimension [24,48], and we
expect the equivalence to hold true for two and higher dimen-
sions. In model A, the clusters occupy a single site irrespective
of its mass. This limiting model allows us to separate the
dependence of the velocity correlations on the initial density
from the dependence on the mass-dependent shape. In model
B, we study clusters where the clusters maintain the shape
at the time of contact. Such clusters turn out to be fractal.
In model C, we study spherical clusters in which the lattice
approximation to the disk is maintained. This model allows us
to study lattice effects by comparing the results on the lattice
with the continuum results. In addition, we obtain the value of
the exponent ζ for all three models. The results for the three
models are summarized in Table II (model A), Table III and
Fig. 17 (model B), Table IV and Fig. 23 (model C). For model
A, we show that the exponents are universal, in the sense that
it is independent of the initial number density, n0, and it is

TABLE I. Simulation details.

Model L′s simulated Number densities (n0)

A upto 1000 0.01–1.00
B upto 10000 0.001–0.01
C upto 10000 0.0001–0.16

different from the mean-field results. For models B and C, we
find that the exponents are dependent on n0 and approach the
mean-field assumptions of uncorrelated velocities only in the
limit of large n0. The fractal dimension for model B, on the
other hand, is universal, with d f ≈ 1.49.

The remainder of the paper is organized as follows. Sec-
tion II contains a definition of the different models as well
as a description of the simulation methods. We briefly review
the scaling theory for BA with differently shaped particles in
Sec. III. In Sec. IV, for the three models, we describe the
results for the different exponents obtained from large-scale
Monte Carlo simulations. Section V contains a summary and
discussion of the results.

II. MODEL

In this section, we define the three models that we study
in this paper. Consider a square lattice of size L × L with
periodic boundary conditions. Initially, N particles, each of
mass 1, are randomly distributed with a site having utmost
one particle. Each particle is assigned a velocity whose mag-
nitude is drawn from a uniform distribution in [0,1) and whose
direction is chosen uniformly in [0, 2π ). The velocity of the
center of mass is set to be zero by choosing an appropriate
frame of reference. The system evolves stochastically in time
as follows. A particle with velocity (vx, vy) hops in the x
direction with rate |vx| in the positive (negative) direction
depending on whether vx is positive (negative). Likewise, it
hops along the y axis with rate |vy| in the direction determined
by the sign of vy. When two particles collide, they aggregate to
form a new particle. The mass of the new particle is the sum of
the constituent particles while the new velocity is determined
by conservation of linear momentum. The shape of the new
particle is determined based on three different rules, leading
to three different models.

A. Model A: Point particles

In model A, when a particle hops onto a site which is
already occupied, then the two particles coalesce, conserving

TABLE II. Summary of the numerically obtained values of the
exponents for model A. The values are independent of initial density
n0.

Exponent Value

θn 0.633(7)
θe 0.728(5)
η 1.1505(3)
ζ 0.270(5)
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TABLE III. Summary of the numerically obtained values of the
exponents for model B.

θe d f

n0 θn η (=ηθn) df [Eq. (18)] ζ

0.00100 1.01(5) 1.291(4) 1.30(7) 1.49(3) 1.54(17) −0.41(5)
0.00125 1.01(8) 1.293(4) 1.30(10) 1.49(3) 1.54(23) −0.42(1)
0.00250 1.03(4) 1.261(7) 1.30(6) 1.49(3) 1.52(14) −0.46(2)
0.00500 1.08(4) 1.231(2) 1.33(5) 1.49(3) 1.46(12) −0.49(2)
0.01 1.10(2) 1.204(3) 1.32(3) 1.49(3) 1.45(7) −0.54(2)
0.04 1.10
0.08 1.08
0.16 1.05

mass and momentum. The new particle occupies the same
lattice site. We call this model the point-particle model, since
the sizes of all the particles are the same (one lattice site) irre-
spective of their mass. The model is motivated from its similar
counterpart in one dimension as considered in Ref. [24].

B. Model B: Fractal clusters

In model B, the particles, also referred to as clusters, are ex-
tended objects consisting of a collection of sites that are linked
to each other by nearest-neighbor bonds. When a cluster hops,
if any of the lattice sites belonging to it becomes adjacent
to a site belonging to another cluster, then the two clusters
coalesce. The new cluster maintains the shape at the time
of coalescing, till it collides with another cluster at a future
time. The new velocity of the cluster is determined through
momentum conservation. Snapshots of the configuration at
different times are shown in Fig. 1. The clusters are extended
and will be shown to be fractals. Model B is motivated from
the study of aggregation in two dimensions in the continuum
model as considered in Ref. [49].

C. Model C: Spherical clusters

In model C, like in model B, particles are extended clusters.
However, the shape of these particles is constrained to be
spherical. When two particles come into contact, they are
replaced by a new spherical particle. The center of mass of the
new particle is chosen to be the lattice site closest to the center
of mass of the constituent particles. To construct a spherical
cluster on the square lattice, we fill all lattice sites within
circles of increasing radius. The sites in the outermost shell, if
not fully occupied, are chosen at random. This rearrangement
of sites to form a spherical shape will, at times, lead to the new

TABLE IV. Summary of the numerically obtained values of the
exponents for model C.

n0 θn η θe(=ηθn) ζ

0.0001 0.83(4) 1.283(13) 1.06(6) −0.248(26)
0.00125 0.84(5) 1.275(10) 1.07(7) −0.350(27)
0.01 0.85(5) 1.241(2) 1.05(6) −0.364(6)
0.04 0.87(6) 1.174(3) 1.02(7) −0.403(4)
0.16 0.93(5) 1.114(2) 1.04(6) −0.563(10)

(c) (d)

(a) (b)

FIG. 1. Snapshots of the configurations at different times t for
model B (fractal clusters), where the number of clusters decrease
with time. The different panels correspond to (a) t = 50, (b) t = 500,
(c) t = 5000, and (d) t = 25790. The data are for system size L =
200 and initial number of N = 2000 particles (n0 = 0.05).

cluster overlapping with other nearby clusters, triggering an
avalanche of coalescence events. Model C is motivated from
its similar counterpart in the continuum model as considered
in Refs. [30,40–43]. Snapshots of a typical time evolution are
shown in Fig. 2.

D. Details of simulation

The models are simulated using standard Monte Carlo
methods. In all the models, the rates of hopping are modified
when the mass of particles change during aggregation. In

(a) (b)

FIG. 2. Snapshots of the configurations at different times t for
model C (spherical clusters), where the number of clusters decrease
with time. The different panels correspond to (a) t = 100 and (b)
t = 500. The data are for system size L = 200 and initial number of
N = 4000 particles (n0 = 0.1).
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addition, the number of particles decrease with aggregation.
To make the simulations efficient, we use a variable time step
that changes according to the total rate of hopping of all the
particles. In particular, we choose a time step such that the
probability of one of the particles hopping is exactly equal to
1. This makes the simulations rejection-free.

In models B and C, where extended clusters hop as a single
unit, we identify the different clusters and their merging using
the well-known Hoshen-Kopelman algorithm [50]. Simula-
tions were carried out for different system sizes varying from
L = 100 up to L = 10000 for all three models and a wide
range of number densities n0. The simulation is continued
till all the clusters aggregate together to form the final single
cluster. The details of the densities and the lattice sizes used
for simulations of the three models are given in Table I.

III. REVIEW OF SCALING THEORY

In this section, we review the scaling theory for BA, de-
scribed initially in Ref. [35]. Here, we give a scaling argument
based on the Smoluchowski equation for aggregation (see
Refs. [17,18] for reviews). Different scaling arguments, lead-
ing to the same results, may be found in Refs. [41,42]. Let
N (m, t ) denote the average density of clusters of mass m at
time t . N (m, t ) evolves in time as

dN (m, t )

dt
= −N (m, t )

∫ ∞

0
dm1K (m, m1)N (m1, t )

+ 1

2

∫ m

0
dmK (m1, m − m1)N (m, t )N (m − m1, t ),

(1)

where the kernel K (m1, m2) is the rate at which particles of
masses m1 and m2 collide. The first term on the right-hand
side of Eq. (1) describes a loss term where a particle of mass m
collides with another particle, while the second term describes
a gain term where two particles collide to form a particle of
mass m.

We restrict ourselves to homogeneous kernels, which are
known to describe many physical systems, examples of which
may be found in Refs. [17,18]. Homogeneous kernels have the
property

K (hm1, hm2) = hλK (m1, m2), h > 0, (2)

where λ is called the homogeneity exponent. For λ < 1, and
for large masses and times, it can be shown that Eq. (1) is
solved by a N (m, t ) which has the scaling form

N (m, t ) 
 1

t2θn
�

(
m

t θn

)
. (3)

For x � 1, �(x) vanishes exponentially. For x � 1, �(x) is a
power law:

�(x) ∼ xζ , x � 1. (4)

Thus, there are two exponents θn and ζ characterizing the
mass distribution N (m, t ).

The exponent θn describes how the mean density of par-
ticles n(t ) = ∫

m N (m, t )dm decreases with time. Integrating
Eq. (3), we obtain

n(t ) ∼ t−θn . (5)

The exponent ζ describes the power-law dependence of
N (m, t ) on mass for small masses:

N (m, t ) ∼ mζ

t θn(2+ζ )
, m � t θn . (6)

The dependence of θn on the homogeneity exponent λ can
be obtained by substituting Eq. (3) into Eq. (1), and is known
to be (for example, see Refs. [17,18])

θn = 1

1 − λ
. (7)

We now focus on the collision kernel that corresponds
to BA. Assuming a homogeneous mixture of clusters of all
masses, the rate of collision between two masses m1 and m2

is proportional to (r1 + r2)d−1| 
v1 − 
v2|, where r1 and r2 are
the radii of the particles, 
v1 and 
v2 the velocities, and d is
the dimension. The relative velocity may be approximated as
| 
v1 − 
v2| ≈

√
v2

1 + v2
2 . Thus, the collision kernel for BA may

be written as

K (m1, m2) ∝ (r1 + r2)d−1
√

v2
1 + v2

2 . (8)

To express the radii and velocities in terms of the masses,
we assume that the typical speed, vm, of particles of mass m,
scales with mass as

v2
m ∼ m−η. (9)

The radii are related to mass though the fractal dimension, d f ,
of a cluster:

r ∝ m1/d f . (10)

Thus, the kernel in Eq. (8) reduces to

K (m1, m2) ∝ [
m

1/d f

1 + m
1/d f

2

]d−1
√

m−η

1 + m−η

2 . (11)

This kernel is homogeneous in its arguments with the ho-
mogeneity exponent given by

λ = d − 1

d f
− η

2
. (12)

From Eq. (7), we then obtain

θn = 2d f

2d f − 2(d − 1) + ηd f
. (13)

Another quantity of interest is the mean kinetic energy e(t ),
defined as

e(t ) 

∫

dm
1

2
mv2

mN (m, t ). (14)

The energy density decreases in time as a power law e(t ) ∼
t−θe . Substituting v2

m ∼ m−η, we obtain the scaling relation:

θe = ηθn. (15)

We now reproduce the results obtained for BA in Ref. [35],
which we refer to as the mean-field BA exponents. Here,
it is assumed that the clusters that are formed are spherical
(d f = d) and that the velocities of the constituent particles of
a given cluster are uncorrelated, implying that η = 1. Sub-
stituting these values into Eqs. (13) and (15), we reproduce
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the results,

θmf
n = θmf

e = 2d

d + 2
, (16)

where the superscript mf denotes mean field. Note that the
main simplifying assumption is that η = 1. In one dimension,
η continues to be 1 as the order of particles is maintained and
a cluster made up of m initial neighboring particles will have
uncorrelated velocities. However, η need not be 1 in higher
dimensions.

We now summarize the scaling theory predictions for the
models studied in this paper. For model A, since particles are
pointlike objects, we have r ∼ m0 or d f = ∞. Similarly, in
model C, since clusters are spherical, d f = d , which is spatial
dimension itself. We thus obtain

θn =

⎧⎪⎪⎨
⎪⎪⎩

2
2+η

, model A
2d f

2d f −2+ηd f
, model B

2
1+η

, model C,

(17)

with θe = ηθn.
It is useful to have a relation between θn and θe that does not

involve η. This will enable us to verify scaling theory without
having to numerically measure the different exponents. Elim-
inating η, we obtain

2θn + θe = 2, model A

2θn

2θn + θe − 2
= d f , model B (18)

θn + θe = 2, model C.

IV. RESULTS

In this section, we describe the results, obtained from ex-
tensive Monte Carlo simulations, for models A, B, and C.
For all three models, we will independently determine the
exponents θn, θe, η, and ζ . For model B, the fractal dimension
d f is also measured. Their dependence on number density, the
scaling relations between them, as well as deviation from the
mean field results, are determined.

A. Model A: Point particles

We first determine θn from the power-law decay of the
mean density of particles, n, with time t . The data for different
initial number density n0 and initial mean speed v0 collapse
onto one curve when scaled, based on dimensional analysis,
according to

n(t, n0) 
 n0 f (tn0v0), (19)

as shown in Fig. 3. After an initial crossover time tc ∼ n−1
0 ,

n(t ) decreases as a power law. From the excellent collapse
of the data for different n0 onto one curve, we conclude that
the power-law exponent is independent of the initial number
density. From fitting a power law to the data, we obtain θn =
0.633(7), which describes the data well over five decades. In
the inset of Fig. 3, the compensated curve t θn n(t ) is shown for
n0 = 1. The mean slope of the curve changes from negative to
positive as θn varies from 0.626 to 0.640, consistent with our
estimate of θn from direct measurement.

FIG. 3. The data (model A) for mean number density of particles,
n(t ), for different initial number densities n0 collapse onto a single
curve when n(t ) and t are scaled as in Eq. (19). The solid line is
a power law t−0.633. Inset: The compensated data n(t )t θn is shown
for three different choices of θn differing by 0.007 for n0 = 1.0. The
curve is flat for θn = 0.633. The data are obtained for L = 1000. All
data have been averaged over 300 different initial conditions.

We now numerically determine θn using different analyses,
both for the sake of consistency as well as for benchmarking
different methods that will be more useful in determining
exponents for models B and C.

First, we check that the measured value of θn is consistent
with the mass distribution N (m, t ) and then we use finite-size
scaling for large times. The dependence of N (m, t ) on time
and mass are shown in the inset of Fig. 4. When scaled as in
Eq. (3) with θn = 0.633, the data for different times, that span
three decades, collapse onto a single curve (see Fig. 4).

Finally, we examine finite-size effects. For very large
times, when the number of clusters is order one, we expect that
n(t ) ∼ L−2, where L is the system size. Assuming finite-size
scaling, we can write

n(t ) 
 1

L2
fn

(
t

L2/θn

)
, (20)

where the scaling function fn(x) ∼ x−θn for x � 1, and
fn(x) ∼ const for x � 1. The data for n(t ) for different L,

FIG. 4. The mass distribution N (m, t ) for different times collapse
onto a single curve when scaled as in Eq. (3), with θn = 0.633. The
data are for model A, with initial number density n0 = 1.0, and
system size L = 1000 lattice. Inset: The unscaled data for N (m, t )
for different times t .
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FIG. 5. The number density n(t ) for different system sizes L col-
lapse onto a single curve when scaled as in Eq. (20), with θn = 0.633.
The data are for model A and initial number density n0 = 1.0.

when scaled as in Eq. (20) with θn = 0.633, collapse onto a
single curve, as shown in Fig. 5. For models B and C, we will
find the analysis of the data based on N (m, t ) and finite-size
scaling very useful for determining the exponents.

We now determine θe from the power-law decay of the
mean energy density e with time t . The data for energy for
different initial number density n0, initial speed v0, and initial
mean energy e0 collapse onto one curve when scaled, based
on dimensional analysis, as e(t ) 
 e0 fe(tn0v0), as can be seen
in Fig. 6. After an initial crossover time tc ∼ n−1

0 , e(t ) de-
creases as a power law. From the excellent data collapse, we
conclude that the power-law exponent is independent of the
initial number density. From fitting a power law to the data,
we obtain θe = 0.728(5), which describes the data well over
five decades. In the inset of Fig. 6, the compensated curve
t θe e(t ) is shown for n0 = 1.0. The mean slope of the curve
changes from negative to positive as θn varies from 0.723 to
0.733, consistent with our direct measurement of θe.

The exponent θe can also be determined from finite-size
scaling. As for number density, e(t ) is expected to obey

FIG. 6. The data for mean energy density, e(t ), at time t for
different initial number densities n0 in model A collapse onto a single
curve when e(t ) and t are scaled as shown in figure. The solid line
is a power law t−0.728. Inset: The compensated data n(t )t θe is shown
for three different choices of θe differing by 0.005 for n0 = 1.0. The
curve is flat for θe = 0.728. The data are obtained for L = 1000. All
data have been averaged over 300 different initial conditions.

FIG. 7. The mean energy e(t ) for different system sizes L col-
lapse onto a single curve when scaled as in Eq. (21), with θn = 0.633
and θe = 0.728. The data are for model A and initial number density
n0 = 1.0.

finite-size scaling of the form

e(t ) 
 1

L2θe/θn
fe

(
t

L2/θn

)
, (21)

where the scaling function fe(x) ∼ x−θe for x � 1, and
fe(x) ∼ const for x � 1. The simulation data for different L
collapse onto a single curve (see Fig. 7) when e(t ) and t are
scaled as in Eq. (21) with θn = 0.633 and θe = 0.728. The
power law extends over four decades.

We now determine the exponent η relating the scaling of
velocity with mass as v2

m ∼ m−η [see Eq. (9)]. As seen from
Fig. 8, 〈v2〉 for a fixed mass scales as a power law with m. We
obtain η = 1.1505(3).

Note that η is not an independent exponent, but related to θn

and θe through scaling theory, to be η = θe/θn [see Eq. (17)].
From the measured values of θe = 0.728 and θn = 0.633,
we obtain η = 1.15, consistent with the value from direct
measurement η = 1.1505(3), thus providing support for the
correctness of scaling theory.

We now provide a more direct evidence of scaling the-
ory being correct. From Eqs. (17) and (15), we obtain, by

FIG. 8. The variation of the mean-square velocity 〈v2〉 with mass
m. The solid line is power law t−η with η = −1.1505. The data are
for model A, with n0 = 1.0 and system size L = 1000.
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FIG. 9. The variation of t an2(t )e(t ) with time t for three different
values of a close to 2. The compensated curve is horizontal for a =
2.0, validating the scaling relation in Eq. (18). The data are for model
A, with initial number density n0 = 1.0 and system size L = 1000.

eliminating η, a relation between θe and θn as given in
Eq. (18). If this relation is true, it implies that t2n2(t )e(t )
should not depend on time t . In Fig. 9, we show the variation
of t an2(t )e(t ) with a = 1.98, 2.00, 2.02. It is clear that only
for a = 2.0 is the curve horizontal. This gives us a way of
validating the scaling relations without the need to measure
any exponent directly.

Finally, we determine the exponent ζ defined in Eq. (6)
for small masses: N (m, t ) ∼ mζ t−θn (2+ζ ). Note that ζ is not
related to θn or θe and is an independent exponent. To deter-
mine ζ , we study the temporal behavior of N (m, t ) for fixed
mass m = 2, 4, 8, 12, 16. As shown in Fig. 10, the data for
the different masses for large times collapse onto one curve
when N (m, t ) is scaled as N (m, t )/mζ , with ζ = 0.270(5). We
additionally check that the scaled data are consistent with the
power law t−θn(2+ζ ) for large times.

The numerically obtained values of the exponents for
model A are summarized in Table II.

B. Model B: Fractal clusters

In this subsection, we determine the exponents θn, θe, η,
and ζ for model B. We first show that the clusters in model

FIG. 10. The data for N (m, t ) for different masses for large
times collapse onto one curve when the number density is scaled as
N (m, t )/mζ with ζ = 0.270. The solid line is a power law t−θn (2+ζ )

with θn = 0.633. The data are for model A, with initial number
density n0 = 1.0.

FIG. 11. Determination of the fractal dimension of the largest
cluster in model B using the box-counting method. The number of
nonempty boxes, M, varies with the size � of the boxes used to tile
the lattice as M ∼ �−d f . We find df ≈ 1.49(3) (power law shown
by solid line) irrespective of the initial density. The data are for
L = 5000.

B are fractal with a fractal dimension, d f , that lies between 1
and 2. To determine d f , we consider the final cluster in each
of the simulations for a given initial number density n0. d f of
this cluster is measured using the box-counting method [51].
In this method, the lattice is tiled with square boxes of length
�. Let M be the number of nonempty boxes. Then M ∼ �−d f .
The results for three different n0 are shown in Fig. 11. The
data for different n0 fall on top of each other for intermediate
box sizes. The same is true for other n0 and we conclude that
d f is independent of n0. We estimate d f to be 1.49(3).

Consider now the decay of the density of particles n(t )
with time t . We find that for model B, it is difficult to ac-
curately determine θn directly from the data for n(t ) because
of strong crossover effects. This can be seen from Fig. 12
where the variation of n(t ) with t is shown for two different
initial densities n0 = 0.00125 and n0 = 0.01. The data for the
two densities overlap for short times but deviate for larger

FIG. 12. The variation of the mean density of clusters n(t ) in
model B with time t is shown for two different initial densities. The
exponents for the power laws, shown by solid lines, have been ob-
tained from finite-size scaling. Inset: The time-dependent exponent
θn obtained from θn = −d ln n(t )/d ln t is shown. θn saturates for the
larger initial densities only at late times. Data are for L = 2000 and
averaged over 300 different initial conditions.
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FIG. 13. Finite-size scaling of n(t ) for model B: The number
density n(t ) for different system sizes L collapse onto a single curve
when scaled as in Eq. (20), with θn = 1.01 and θn = 1.10 for the
initial densities n0 = 0.00125 and n0 = 0.01, respectively. The data
for n0 = 0.01 has been shifted for clarity.

times. The solid lines, which are the estimates for θn from
finite-size scaling (to be discussed below) match with the data
only for late times. The convergence to the asymptotic an-
swer can also be seen from measuring the instantaneous slope
θn = −d ln n(t )/d ln t for each time (see inset of Fig. 12). We
find that the exponent θn saturates only at late times for the
larger initial densities. We find that the same issue is present
for the temporal decay of energy e(t ), making it difficult to
also measure θe directly.

We determine θn from finite-size scaling. For finite sys-
tems, n(t ) has the finite-size scaling form given in Eq. (20),
namely, n(t ) 
 L−2 fn(t/L2/θn ). In Fig. 13, we show the results
for two representative initial densities n0 = 0.00125 and n0 =
0.01. The data for different L, when scaled as in Eq. (20), col-
lapse onto a single curve with θn = 1.01(1) for n0 = 0.00125
and θn = 1.10(1) for n0 = 0.01. The results for the other n0

are listed in Table III, based on which we conclude that θn

depends on n0 and converges to θn = 1 as n0 → 0. We also
check that the same value of θn leads to the collapse of the
data for N (m, t ) for different times when scaled as in Eq. (3).

The limiting value of θn = 1 for n0 → 0 coincides with
θmf

n = 1. However, it is not clear whether the mean-field result
is obtained because correlations vanish. We check for cor-
relations by measuring the exponent η. In Fig. 14, we show
the dependence of the mean-squared velocity on the mass m
for two initial densities. The power-law dependence extends
over three decades and we obtain exponents that depend on
the initial density n0 with η = 1.293(4) for n0 = 0.00125 and
η = 1.204(3) for n0 = 0.01. The results for other n0 are listed
in Table III, based on which we conclude that η also depends
on n0 and differs significantly from one for small n0. However,
as n0 increases, we find that η → 1.

Since it is difficult to measure θe directly from e(t ), we
estimate θe using the scaling relation θe = ηθn [see Eq. (15)].
To check for consistency, we confirm that for this choice
of θe, the data for different system sizes collapse onto one
curve when e(t ) and t are scaled using finite-size scaling as
described in Eq. (21). The data collapse for two different n0,
shown in Fig. 15, is satisfactory. The results of θe for different
n0 are listed in Table III.

FIG. 14. The variation of the mean-square velocity 〈v2〉 with
mass m for different initial densities. The solid lines are power
laws m−η with η = 1.293(4) for n0 = 0.00125 and η = 1.204(3) for
n0 = 0.01. The data are for model B with system sizes L = 10000 for
n0 = 0.00125 and L = 5000 for n0 = 0.01. The data for n0 = 0.01
has been shifted for clarity.

Finally, we determine the exponent ζ defined in Eq. (6)
for small masses. Similar to model A, to determine ζ ,
we study the temporal behavior of N (m, t ) for fixed mass
m = 2, 4, 8, 12, 16. Here, we illustrate the behavior of ζ for
two different initial densities. As shown in Fig. 16, the data for
the different masses collapse onto one curve for the respective
initial densities when N (m, t ) is scaled as N (m, t )/mζ , with
ζ = −0.4229(6) for n0 = 0.00125 and ζ = −0.538(24)
for n0 = 0.01. As an additional check, the scaled data are
consistent with the power law with an exponent t−θn (2+ζ ).
Thus, the exponent ζ is dependent on the initial density n0.
Also, they are negative, as compared to model A where the
exponent is positive.

The results for the exponents θn, θe, η, d f , and ζ are
summarized in Table III and their dependence on number
density n0 is shown in Fig. 17. For higher densities, it is
difficult to get the exponents θn and hence θe due to increasing
finite-size effects. However, the exponent η can be calculated

FIG. 15. Finite-size scaling of e(t ) for model B: The mean en-
ergy e(t ) for different system sizes L collapse onto a single curve
when scaled as in Eq. (21). Results for two different densities n0 =
0.00125 and n0 = 0.01 (vertically shifted for visualization) is shown
with θn obtained using finite-size scaling [Eq. (20)] whereas θe is
obtained using the hyperscaling relation [Eq. (15)].
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FIG. 16. The data for N (m, t ) in model B for fixed masses
collapse onto one curve when the number density is scaled as
N (m, t )/mζ with ζ = −0.422(6) for n0 = 0.00125 whereas ζ =
−0.538(24) for n0 = 0.01. The solid line is a power law t−θn (2+ζ ),
with θn taking values 1.01 and 1.10 for the initial densities 0.00125
and 0.01 (vertically shifted for visualization), respectively.

for the densities larger than 0.01. From Table III, we observe
that, when n0 → 0, the exponents tend to the limiting values
θn → 1, η → 1.3, and θe → 1.3. When the density increases,
we find that η → 1, thus approaching its mean-field value
ηmf = 1. We conclude that velocity correlations vanish as den-
sity increases. We note that in model B, there is no avalanche
of coalescence events caused due to two clusters colliding.
We also verify that the exponents satisfy the hyperscaling
relation given by Eq. (18). In Table III, the fractal dimension
determined numerically is compared with that obtained by
Eq. (18) [see columns 5 and 6]. For all densities, the values are
equal within error bars, thus consistent with the scaling theory.

C. Model C: Spherical clusters

We now determine the exponents θn, θe, η, and ζ for
model C. We first show that the exponent θn depends on
initial densities n0. Figure 18 shows the variation of n(t ) with
time t for two different initial densities, one small and one
large. The time-dependent θn = −d ln n(t )/d ln t , shown in

FIG. 17. The variation of the exponents θn, θe, and η are shown
as function of the initial density n0. The data are for model B. θn

and θe approach an asymptotic limit 1.0 and 1.3, respectively, for
lowest densities. The exponent η ≈ 1.3 in the low density limit and
approaches the mean-field result (η = 1) for higher density.

FIG. 18. The variation of the mean density of clusters n(t ) in
model C with time t is shown for two different initial densities. The
exponents for the power laws, shown by solid lines, have been ob-
tained from finite-size scaling. Inset: The time-dependent exponent
θn obtained from θn = −d ln n(t )/d ln t is shown. θn saturates for the
larger initial densities only at late times. The dashed lines are the
reference for the exponents 0.83 and 0.93. Data are for L = 2000
and averaged over 300 different initial conditions.

the inset, saturates at different values for the different initial
densities. Like for model B, it is difficult to measure θn di-
rectly as n(t ) shows strong crossover effects. For this reason,
we determine θn from finite-size scaling (see below) following
which we obtain θn = 0.83 for n0 = 0.0001 and θn = 0.93 for
n0 = 0.16. The exponents obtained from finite-size scaling are
shown in Fig. 18 for comparison and they describe the data for
large times well.

We determine the exponent θn using the finite-size scal-
ing n(t ) 
 L−2 fn(t/L2/θn ) [see Eq. (20)]. Two representative
cases are shown in Fig. 19. The data of n(t ) for different L,
when scaled as in Eq. (20) collapse onto a single curve for
θn = 0.83 for n0 = 0.001 and θn = 0.93 for n0 = 0.16. The
results for other n0 are listed in Table IV, based on which we
conclude that θn depends on n0 and increases to the mean-field
result θmf

n = 1 with increasing n0. We also check that the same
value of θn leads to the collapse of the data for N (m, t ) for
different times when scaled as in Eq. (3).

FIG. 19. Finite size scaling of n(t ) for model C: The number
density n(t ) for different system sizes L collapse onto a single curve
when scaled as in Eq. (20), with θn = 0.83(4) and θn = 0.93(5) for
the initial densities n0 = 0.0001 and n0 = 0.16, respectively. The
data for n0 = 0.16 has been shifted for clarity.

044127-9



PUTHALATH, BISWAS, PRASAD, AND RAJESH PHYSICAL REVIEW E 108, 044127 (2023)

FIG. 20. The variation of the mean-square velocity 〈v2〉 plotted
as function of mass m for different initial densities. The solid lines
are power laws m−η with η = 1.283(13) and η = 1.114(2) for n0 =
0.0001 and n0 = 0.16, respectively. The data are for model C with
system sizes L = 10000 and L = 2000 for the densities n0 = 0.0001
and n0 = 0.16, respectively. The data for n0 = 0.16 has been shifted
for clarity.

It is possible that the mean-field result is obtained at higher
n0 because the correlations vanish. Two representative cases
are shown in Fig. 20. We find that η depends on the initial den-
sity n0 with η = 1.283(13) for n0 = 0.0001 and η = 1.114(2)
for n0 = 0.16. The results for other n0 are listed in Table IV
and show that η decreases to its mean field prediction ηmf = 1
as density increases.

We find that it is difficult to measure θe directly from
the power-law decay of e(t ). Hence, we measure θe using the
scaling relation, θe = ηθn [see Eq. (15)]. To check for the con-
sistency of the result for θe obtained using the scaling relation
[Eq. (15)], we confirm that for this choice of θe, the data for
different system sizes can be collapsed onto one curve using
finite-size scaling e(t ) 
 L−2θe/θn fe(t/L2/θn ) [see Eq. (21)].
The data collapse is satisfactory as shown in Fig. 21 for the
two different n0. The results of θe for different n0 are listed in

FIG. 21. Finite-size scaling of e(t ) for model C: The mean en-
ergy density e(t ) for different system sizes L collapse onto a single
curve when scaled as in Eq. (21). Results for two different densities
n0 = 0.0001 and n0 = 0.16 are shown with θn obtained using finite-
size scaling [Eq. (20)] whereas θe is obtained using the hyperscaling
relation [Eq. (15)]. The data for n0 = 0.0001 has been shifted for
clarity.

FIG. 22. The data for N (m, t ) in model C for fixed masses
collapse onto one curve when the number density is scaled as
N (m, t )/mζ , with ζ = −0.248(26) for n0 = 0.0001 whereas ζ =
−0.563(10) for n0 = 0.16. The solid line is a power law t−θn (2+ζ )

with θn as 0.83 and 0.93 for the initial densities 0.0001 and 0.16,
respectively. The data for n0 = 0.0001 has been shifted for clarity.

Table IV, which shows that θe is close to the mean-field limit,
θmf

e = 1 for all n0.
Finally, we determine the exponent ζ [defined in Eq. (6)]

for small masses. To determine ζ , we study the temporal
behavior of N (m, t ) for fixed mass m = 2, 4, 8, 16. Here, we
illustrate the behavior of ζ for two different initial densi-
ties. As shown in Fig. 22, the data for the different masses
collapse onto one curve for the respective initial densities
when N (m, t ) is scaled as N (m, t )/mζ , with ζ = −0.248(26)
for n0 = 0.0001 and ζ = −0.563(10) for n0 = 0.16. As an
additional check, the scaled data are consistent with the power
law with an exponent t−θn (2+ζ ). The results of ζ for other
densities are listed in Table IV. We conclude that ζ is strongly
dependent on n0.

We find that the exponents θn, θe, η, and ζ are density
dependent [see Table IV and Fig. 23(a)]. θn increases with the
increase in density and approaches the mean-field predictions
θmf

n = 1. An opposite trend is observed in the variation of
exponent η with density where it decreases with the increase
in initial density but, approaches the mean-field prediction
ηmf = 1 with the increase in density. On the other hand, θe

has a rather weak dependence on the initial density and is
always close to the mean-field result θmf

e = 1 irrespective of
the initial density. We compare our results with those for
BA in the continuum [41,43] in Fig. 23(b). We find that the
data are in good agreement, suggesting that the stochasticity
introduced in the temporal evolution of the lattice model is not
relevant.

V. CONCLUSION

In this paper, we studied the problem of BA in two di-
mensions using three different lattice models. In all three
models, particles move, on an average, in a straight line and
undergo momentum-conserving aggregation on contact. The
three models differ in the shape of the particles. In model A,
the particles are point sized and occupy a single lattice site. In
model B, the shape of the aggregate is the combined shape of
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(a)

(b)

FIG. 23. (a) The variation of the exponents θn, θe, and η with
initial density, n0, for model C. The horizontal dotted line is the
mean-field prediction, θmf

n = θmf
e = ηmf = 1. (b) Comparison of the

exponent θn with results of earlier simulations of BA in the contin-
uum [41,43].

the two aggregating particles at the time of collision, and is a
fractal. In model C, the shape of the particles are spherical,
to the closest lattice approximation. For the three models,
from large-scale Monte Carlo simulations, we determine the
exponents characterizing the power-law decay of the number
density of particles, the mean energy, the fractal dimension,
the correlation between the velocities of the particles con-
stituting an aggregate, and the scaling function for the mass
distribution. The results for the three models are summarized
in Table II (model A), Table III and Fig. 17 (model B), Ta-
ble IV and Fig. 23 (model C).

We find that the values of the exponents are independent of
the initial number density only for model A. For models B and
C, the exponents are weakly dependent on the initial number
density, making them nonuniversal. The fractal dimension in
model B is, however, independent of the initial number den-
sity, within the numerical accuracy that we could achieve. In
model C, the trends in the dependence of the exponents on n0

are consistent with the corresponding simulations for spheri-
cal particles in the continuum [30,40–43]. While the exponent
θn matches closely with the continuum results [see Fig. 23(b)],
we find that the numerical values of the exponent θe are less
than the continuum result [43] and approaches the mean-field
result faster. This discrepancy could be due to difficulties in
measuring θe accurately due to strong crossovers seen in the
data. We have shown that the results for the exponents in
all models, irrespective of its dependence on n0, satisfy the
hyperscaling relations derived from scaling theory.

The fractal dimension of clusters formed by aggregation is
of interest in many experiments (for example, see Refs. [5,44–
47]). While it is to be expected that the exponents θn and
θe will depend on the nature of transport and the shapes
of the clusters, it is not clear whether the fractal dimension
depends on transport. Fractal dimension of the cluster in
two-dimensional DLA models, where clusters grow from a
nucleating center, show d f 
 1.70 [52,53]. However, fractal
dimension of clusters, when there is no nucleating center
but all the aggregates undergo diffusive motion, is different
from that of DLA. In the case when the diffusion constant
of larger masses decreases with mass or is mass independent,
d f has been been shown to be in the range d f 
 1.38 − 1.52
[49,54,55]. This result is close to our result for BA (model B)
for which we found d f 
 1.49. While close, it is not clear
whether the fractal dimension is different for the diffusive
and ballistic models. The value 1.49 is very close to that
observed in sprays (1.54) [47], and cells (1.5) [46]. It would
be interesting to explore this connection further as well as un-
derstand the dependence of the fractal dimension on different
mass-dependent velocities, especially the limit where larger
masses move faster.

The mean-field approximation assumes that the veloci-
ties of the particles forming a cluster are uncorrelated. The
correlations are characterized by the power-law dependence
of the speed on the mass of the aggregate: 〈v2(m)〉 ∼ m−η,
with ηmf = 1. Earlier simulations of spherical particles in the
continuum show that η decreases to η = ηmf as the initial
number density of particles, n0, is increased [30,40–43]. This
lack of correlation was attributed to the increased avalanche
of coagulation events that occur due to the overlap of a
newly created spherical particle with already existing parti-
cles as the number density is increased. In this paper, we
determined η for the three models. For model A, we find
that η ≈ 1.15 is independent of n0 and hence there is no
limit in which velocities become uncorrelated. For models
B and C, we find that η → ηmf with increasing n0 (see Ta-
bles III and IV). However, in model B there is no avalanche
of collisions while model C has an avalanche of collisions.
Thus, contrary to earlier conjecture, the avalanche of colli-
sions cannot be a necessary condition for velocities to become
uncorrelated.

In contrast to BA in the continuum where the dynamics
is deterministic, the temporal evolution in the lattice models
is stochastic. Each particle moves in a straight line only on
an average. In the continuum models, stochasticity enters
only through the initial conditions. However, for BA in one
dimension, it has been shown that the stochasticity in the
dynamics not only does not affect scaling laws, the lattice
models reproduce many details of the trajectory like shock
positions for the same initial conditions [24,48]. For model C,
we find that the results for θn match with the earlier continuum
results in two dimensions for all n0. We thus conclude that
stochasticity in the initial conditions dominate the fluctuations
induced by the dynamics. This is in sharp contrast to diffusive
systems where diffusive fluctuations dominate randomness in
initial conditions.

For all the three models, we measure the exponent ζ

[see definition in Eq. (6)], which characterizes the behavior
of smaller mass aggregates. The exponent ζ is not easily
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obtained from scaling arguments and for the corresponding
diffusive problem requires renormalization group calculations
[56–58]. For model A, we find that ζ is positive, implying
that there is a typical time-dependent mass. This is in contrast
to point particles in one dimension where the mass distribu-
tion is a power law. For models B and C, we find that ζ is
dependent on n0. However, it is negative for all values of n0,
implying that the mass distribution is a power law in mass
for a given time. In addition, it would be interesting to study
the effect of spatial effects and mass-mass correlations on
the exponent ζ by comparing the results obtained from the

Monte Carlo simulations with the results from direct numeri-
cal solution of the Smoluchowski equation, which ignores all
correlations.
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