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Approaching the perfect diode limit through a nonlinear interface
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We consider a system formed by two different segments of particles, coupled to thermal baths, one at each
end, modeled by Langevin thermostats. The particles in each segment interact harmonically and are subject to an
on-site potential for which three different types are considered, namely, harmonic, φ4, and Frenkel-Kontorova.
The two segments are nonlinearly coupled, between interfacial particles, by means of a power-law potential with
exponent μ, which we vary, scanning from subharmonic to superharmonic potentials, up to the infinite-square-
well limit (μ → ∞). Thermal rectification is investigated by integrating the equations of motion and computing
the heat fluxes. As a measure of rectification, we use the difference of the currents, resulting from the interchange
of the baths, divided by their average (all quantities taken in absolute value). We find that rectification can be
optimized by a given value of μ that depends on the bath temperatures and details of the chains. But, regardless of
the type of on-site potential considered, the interfacial potential that produces maximal rectification approaches
the infinite square well (μ → ∞) when reducing the average temperature of the baths. Our analysis of thermal
rectification focuses on this regime, for which we complement numerical results with heuristic considerations.
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I. INTRODUCTION

A thermal diode is a material whose thermal conductivity
along a given axis changes depending on the direction of the
heat flux. After a period of little activity in the area since the
pioneering works [1,2], the interest in thermal rectification
was boosted [2], both theoretically [3–7] and experimentally
[8–14], focusing mainly on the conditions to improve the
efficiency of thermal rectification.

Asymmetry and temperature dependence of the conductiv-
ity are required to break the symmetry of inversion in flux
direction (see, for instance, Refs. [15–18]). Asymmetry can
be achieved in several ways, for instance, by mass-graded
chains [7,19], homogeneous chains with asymmetric interac-
tions [20], simply by the presence of impurities or defects
[21,22], or coupling two or more different segments [4]. Tem-
perature dependence of the conductivity can be intrinsic [16]
or produced by anharmonic interactions between particles or
with the substrate [15].

On the other hand, the interface can play a crucial role
in thermal conduction, as observed experimentally [23,24]
and in simulations [15,21,25–28]. The interface can affect
the overlap of the phonon bands of each segment, which
selects the conducting modes. In the case of two segments,
the phonon bands of each decoupled segment are differ-
ent due to the asymmetry or distinct characteristics of each
segment, and the nonlinear interactions make the spectra
temperature dependent. Then the band overlap can change
under flux inversion, giving rise to a preferential direction
for heat conduction. If the coupling is weak and linear, we
expect that similar overlaps to those obtained for isolated
segments will hold for the coupled chain. As the communica-
tion between segments (controlled by the interfacial stiffness)

increases, band overlap will be affected and differences
related to temperature inversion blurred [4], reducing rectifi-
cation. However, if the coupling were nonlinear, band overlap
might become more complex [29], with strong interference of
bands even for weak coupling strength, and efficiency opti-
mization may appear under certain nontrivial conditions.

In this context we address the following questions. Which
is the effect of a nonlinear interface in two-segment systems
subject to thermal baths at the ends? Under which conditions
can this nonlinearity improve the performance of the thermal
diode? To find insights about the answers to these questions,
we consider two-segment chains of particles that are harmon-
ically coupled and subject to a local (on-site) potential (either
harmonic, φ4, or Frenkel-Kontorova), while the segments are
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FIG. 1. Schematic representation of the system formed by two
different segments nonlinearly coupled and subject to thermal baths
at the ends, producing rectification under flux inversion.
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coupled through a power-law potential Vμ, with exponent μ,
between interfacial particles. Additionally, we consider
Langevin baths connected at the ends and fixed boundary
conditions. A schematic representation of the studied family
of systems is given in Fig. 1.

From the integration of the equations of motion, we obtain
the heat currents and a quantifier of rectification and explore
the effects of the nonlinear junction. The paper is organized
as follows. We define the model in Sec. II and the methods
in Sec. III. Results of numerical simulations and theoretical
considerations, when varying the interfacial nonlinearity, with
focus on the infinite-square-well limit at low temperatures, are
presented in Sec. IV and in the Appendix. A discussion and
concluding remarks are presented in Sec. V.

II. MATHEMATICAL MODEL

In each of two, left (L) and right (R), segments, parti-
cles of identical mass m interact harmonically with their first
neighbors with stiffness constant kL/R and are subject to an
on-site potential VL/R, representing the interaction with a sub-
strate of negligible thermal conductivity. The two segments
are coupled through a power-law potential. Namely, the full
system is governed by the Hamiltonian

H =
N∑

n=1

1

2

p2
n

m
+

M∑
n=1

kL

2
(xn − xn−1 − a)2 +

M∑
n=1

VL(xn)

+Vμ(xM+1 − xM − a)

+
N∑

n>M

kR

2
(xn+1 − xn − a)2 +

N∑
n>M

VR(xn), (1)

where xn (with n = 1, . . . , N = 2M, indexed from left to
right) is the coordinate of particle n, pn its momentum, a is
the lattice constant, and kL/R are stiffness constants. As on-site
potentials VR/L, we will consider diverse cases defined below.
Moreover, boundary conditions remain fixed, such that x0 = 0
and xN+1 = (N + 1)a, at all times. The end particles 1 and
N are immersed in thermal baths represented by Langevin
thermostats at temperatures TL and TR. Then the equations of
motion are given by

ṗ1 = mẍ1 = −∂H
∂x1

− γ ẋ1 + η1(t ), (2)

ṗn = mẍn = −∂H
∂xn

for n = 2 . . . N − 1, (3)

ṗN = mẍN = − ∂H
∂xN

− γ ẋN + ηN (t ), (4)

where η1 and ηN are uncorrelated stochastic Gaussian white
noises with zero mean and

〈η1(t )η1(t ′)〉 = 2γ kBTL δ(t − t ′),

〈ηN (t )ηN (t ′)〉 = 2γ kBTR δ(t − t ′). (5)

Finally, in order to study the impact of the nonlinearity of the
interfacial interaction, we consider that

Vμ(x) = kμ

μ

( |x|
�

)μ

, (6)

where kμ is a positive constant, � is the characteristic length
of the interaction, and the exponent is μ � 1 (to avoid a diver-
gent force at the origin). The exponent μ �= 2, not necessarily
integer, characterizes a restoring force that can gives rise to
oscillations beyond the simple harmonic case, associated to
nonlinear responses [30–33]. It encompasses two classes of
nonlinearity: for μ > 2 (μ < 2) the force depends super(sub)-
linearly on the deformation or displacement from the
equilibrium position. Vμ ranges from the triangular (μ = 1)
to the infinite-square-well (μ → ∞) potentials, including the
harmonic and quartic potentials. Even though � could be ab-
sorbed into kμ, we keep track of both parameters separately
so that in the limit μ → ∞, which is equivalent to an infinite
square well, we can control the size of the well through �.

With regard to the on-site potential, we analyze different
cases, starting with the harmonic pinning given by

V (xn) = A

2
(xn − na)2. (7)

In such a case the Fourier law does not hold; a flat bulk
temperature profile and conductivity that scales with N is
known to occur due to momentum conservation [34–36].

As substrates that break momentum conservation and allow
Fourier law, we consider the following cases:

(i) A particular case of the φ4 potential, namely,

V (xn) = A

4
(xn − na)4, (8)

where A is a positive constant. This unbounded potential has
been thoroughly studied in the literature of thermal conduc-
tion [36–41].

(ii) The second case is a paradigm of periodic bounded
potential, the Frenkel-Kontorova (FK) potential [42,43], with
period a, given by

V (xn) = A

2π
[1 − cos (2πxn/a)]. (9)

This model has also been studied as paradigm of normal heat
transport [38,39,43–45].

III. METHODS

The equations of motion (2)–(4) were numerically inte-
grated by means of an adaptive Euler-Maruyama method
(N = 2), with a maximum time step 	t = 10−4 or adaptive
stochastic higher-order Runge-Kutta method (N = 20) with
maximum time step 	t = 10−3 [46]. Typically, the total sim-
ulation time is tmax = 105 for a total of 103 samples. In all
cases, each (R/L) segment was characterized by values of the
force amplitudes with the relation AR/AL = 5 and kR/kL = 5
in order to produce significant asymmetry. That is, without
loss of generality, the right-side potential was chosen to have
a larger amplitude than the left side. In numerical experiments,
the parameters AL, kL, m, γ , and a have been assigned a unit
value. For simplicity, we also set kB = 1 and treat temperature
in energy units.

In the extreme μ → ∞, the interface potential given by
Eq. (6) tends to an infinite square well, null for x ∈ [−�, �],
infinite otherwise. In this case simulations were performed
replacing the potential in Eq. (6), by elastic collisions.
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We measured the long-time value of the heat current as the
average power (work per unit time) exchanged between the
interfacial particles as

J =
〈

ẋM + ẋM+1

2
V ′

μ(xM+1 − xM − a)

〉
, (10)

where V ′
μ(x) = dVμ/dx, averaged over time and over realiza-

tions, typically N = 103 samples, unless differently specified.
Let us note that with the definition of Eq. (10) we use the
convention that a positive value of J means that the heat flows
from left to right.

As a measure of rectification, we considered the relative
difference

R = |JLR − JRL|
|Jm| , (11)

where JLR and JRL are the absolute values of the currents
in each direction (obtained by inverting the heat baths) and
Jm = (JLR + JRL )/2. Depending on the on-site and interface
potentials, either JLR or JRL turns out to be the largest one [15].

Temperatures were characterized by the average Tm =
(TL + TR)/2, and the relative temperature difference, 	rel =
(TL − TR)/Tm, hence TL/R = Tm(1 ± 	rel/2), and |	rel | � 2.
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FIG. 2. (a) Rectification factor R and (b) corresponding heat cur-
rents JLR and JRL vs 1/μ for the φ4 on-site potential and different
values of Tm. Lines are a guide to the eye. JLR and JRL are plotted
by filled and hollow symbols, joined by solid and dashed lines,
respectively, and correspond to the time average over 103 samples.
We include the outcomes for the infinite square well (1/μ = 0). For
this limit, in the inset of panel (a), R is plotted vs Tm for all the on-site
potentials considered. In all cases kμ = 0.5, � = 1, 	rel = 1.5, and
N = 20.

IV. RESULTS

Figure 2(a) provides a picture of the behavior of the rec-
tification factor R as a function of 1/μ (the inverse of the
exponent that characterizes the interface potential) using a
system of N = 20 particles subject to the φ4 on-site poten-
tial. Each curve corresponds to a fixed average temperature
Tm indicated in the legend. The respective currents are also
presented in Fig. 2(b).

For each chosen value of Tm, the plot of R as a function
of 1/μ follows a smooth curve that presents a single maximal
value. By diminishing the temperature Tm enough, the max-
imum shifts towards smaller 1/μ (larger μ) and approaches
the perfect diode limit R = 2. For the infinite square well, R
tends to its maximal value as Tm decreases, as shown in the
inset of Fig. 2(a). Such trends are common to the other two
types of on-site potentials considered, as can be seen in the
inset of Fig. 2(a), although peculiar features occur in each
case at higher temperatures (see Appendix for more details).
This finding motivates us to have a closer look at the infinite-
square-well potential.

A. Infinite-square-well interface

In order to provide an intuitive understanding of the limit
μ → ∞, we investigate heat conduction through the infinite
square well, with a half width � at the interface. The impact
of the length � on the currents and on the rectification factor
can be visualized in Fig. 3. To facilitate the comparison with
heuristic considerations, we chose the simplest case of two
particles (N = 2) subject to harmonic on-site potentials.

Energy transfer across the interface occurs exclusively by
means of collisions with the potential walls, specifically when
the relative displacement reaches r = x2 − x1 − a = ±�.
Beyond these instantaneous collisions, the interface particles,
and hence the chains, move completely independently of each
other. Since we examine the system under low-temperature
conditions, the rate of collisions ρ, which is defined as the
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FIG. 3. Currents for a harmonic system with two particles (N =
2) as a function of the width � of the infinite-square-well interface.
The inset shows the rectification factor and the dashed horizontal
line refers to the perfect diode effect, nearly attained for � � 1. The
histogram of ρ	T , where ρ is the number of stretches per unit time,
is also shown in the main plot. Tm = 0.05 and 	rel = 1. In this case,
since N = 2, we set kL = kR = 0.
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number of collisions divided by the observation time, is
relatively low. Then, the intercollision time is sufficiently
long to allow the particles to nearly reach thermal equilibrium
with their respective heat baths. During a single collision,
the particles, having equal masses, exchange their kinetic
energies, resulting in 	K = m〈v2

1〉 − m〈v2
2〉 ≈ 	T . Therefore

the current can be approximated as the product of the collision
rate ρ and the kinetic energy exchange given by J ≈ ρ	T .
The effectiveness of this approximation is demonstrated in
Fig. 3.

To grasp the influence of asymmetry, we examine a sce-
nario analogous to that depicted in Fig. 3, namely, a system
with N = 2 particles experiencing harmonic on-site poten-
tials, where AL = 1, AR = 5, Tm = 0.05, 	rel = ±1, and kL =
kR = 0. Since we are considering the rare-collision regime,
we can assume that each particle reaches thermal equilib-
rium with its corresponding bath; in such case the variance
of the relative motion is 〈r2〉 = TL/AL + TR/AR. Notably, this
variance exhibits clear asymmetry upon exchange of thermal
bath temperatures. Specifically, for the case of TL > TR the
variance is 0.08, whereas for TR > TL the variance is 0.04.
As a consequence, the probability of observing |r| > � is
approximately 700 times higher in the former compared to
the latter case. This estimate is in agreement with our numer-
ical outcomes, where the typical time interval between two
successive collisions is also roughly 700 times longer when
comparing TL > TR with TL < TR. Such significant disparity is
explained by the fact that both probabilities are dominated by
rare events. As a result, even a slight alteration in the variance
can lead to an enormous consequence. We have observed that
our theoretical estimate remains valid for higher values of Tm

(not shown).
When � → 0, the relative coordinate tends to be confined

near zero; therefore fluctuations, and hence the asymmetry,
are suppressed. In this limit the dominant motion is that of the
center of mass, and the currents in each direction coincide.
In the opposite limit of large �, at low enough temperature a
maximal efficiency close to R = 2 (perfect diode) is attained
when μ → ∞. For instance, in the case of Fig. 3, � = 1 is
enough to achieve the perfect diode within 0.5% tolerance
(R = 1.992). In what follows we will set � = 1.
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FIG. 4. Heat flux vs 	rel ≡ 	T/Tm for different values of μ,
setting N = 20, kμ = 0.5, Tm = 0.05, and the φ4 model. The inset
shows the corresponding rectification factor.
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FIG. 5. Size effects. Rectification and corresponding heat fluxes
vs N for the φ4 on-site potential, and interface with μ = 10, in the
following cases: (kμ, 	rel ) = (0.5,1.0),(0.5,1.5), (0.2,1.5), with Tm =
0.05.

B. Effect of other parameters

In this section we inspect the effects of 	rel , kμ, and N ,
at low Tm. As paradigmatic on-site potential, we use the φ4

model.
Relative temperature difference 	rel . The effect of 	rel at

Tm = 0.05 and kμ = 0.5 is illustrated in Fig. 4 for the case of
N = 20 particles subject to φ4 on-site potential, considering
different values of the interface exponent μ approaching the
infinite-μ limit. In the inset we observe that the corresponding
rectification is enhanced when increasing |	rel |, approaching
the perfect diode when the relative temperature difference is
maximal. The effect of |	rel | is also illustrated in Fig. 5, for
μ = 10 and different values of the chain length N .

Stiffness constant kμ. Diminishing kμ can enhance rectifica-
tion, as can be observed in Fig. 5 for μ = 10. In fact, accord-
ing to the definition of the potential Eq. (6), diminishing kμ

is directly related to increasing �, which favors rectification as
discussed in Sec. IV.

System size N. The effect of system size is illustrated in
Fig. 5, where we have plotted the rectification factor as a
function of N for μ = 10 using different values of (kμ,	rel ).
Increasing the system size from N = 2, we observe an initial
decrease of the rectification, and further decay is expected, as
the system size is known to reduce rectification [4]. At the
same time, the figure illustrates the consequences of dimin-
ishing kμ and augmenting 	rel , both contributing to improve
rectification.

V. CONCLUSIONS

We studied the diode effect connecting Langevin thermal
baths at the ends of one-dimensional chains formed by two
different segments, with interfacial particles coupled through
the nonlinear force derived from Eq. (6). This type of nonlin-
ear response means a deformation-dependent stiffness k̄(x) =
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kμ|x|μ−2, where x is the deformation, which is constant in
the harmonic case μ = 2 but increases (μ > 2) or decreases
(1 � μ < 2) with the deformation otherwise. We inspected
the full range of μ, at different temperatures, but focused
on the rectification performance near the infinite-square-well
limit (μ → ∞) under low-temperature conditions.

We observed that for all the on-site potentials considered,
thermal rectification is maximal at a value of μ that increases
when Tm is decreased. This suggests that to optimize rec-
tification at low temperatures, the effective stiffness of the
interfacial restoring force must have a rapidly increasing de-
pendency on the deformation. Moreover, the perfect-diode
effect can be approached when μ → ∞, within a desired
accuracy, not only lowering Tm but also increasing 	rel , or
diminishing kμ. We highlight that the temperature scale is
directly related to the choice of parameters. However, the
behavior observed in the infinite-square-well limit under low-
temperature conditions is still expected to hold.

Beyond low-temperature conditions, the optimal rectifica-
tion can be achieved at a finite value of μ. High values of R
can also emerge in this regime, but the optimization conditions
are dominated not only by the interface characterized by μ but
also by the type of on-site potential, and hence vary depending
on the values of system and bath parameters. Particularly, de-
pending on the on-site potential, the optimal μ can correspond
to a stiffness with superlinear (μ > 2) or sublinear (μ < 2)
dependency on the deformation, as observed from the position
of the maxima in Fig. 2 (for the �4 potential) and in the
Appendix (for the harmonic and FK potentials). Regarding
the interplay of the interface with the on-site potential, let us
note that for harmonic segments the interfacial nonlinearity is
enough to produce temperature dependency and allows one to
optimize rectification. Remarkable features are observed for
the FK chains, where the exponent μ has the additional role of
inducing the inversion of the preferential direction, (see results
for FK potentials in the Appendix).

We adopted a particular form of producing asymmetry,
namely, we used chains with a unique type of on-site potential,
with different values of parameters for each segment. But,
of course, there is a plethora of other possibilities to inves-
tigate, such as different on-site potentials for each segment,
identical potentials but different masses [15], and asymmetric
potentials [21], among many other combinations, which can
motivate future continuations. It could be also interesting to
perform a systematic study using different bath models and
coupling schemes under the light of Ref. [47].
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APPENDIX: RECTIFICATION FOR OTHER ON-SITE
POTENTIALS

The rectification and corresponding currents for chains
with N = 20 particles subject to the harmonic and FK on-site
potentials are respectively shown in Figs. 6, 7 for different
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FIG. 6. (a) Rectification factor R and (b) corresponding heat cur-
rents JLR and JRL vs 1/μ for harmonic on-site potential and different
values of Tm. Other details and values of the parameters are the same
used in Fig. 2.
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FIG. 7. (a) Rectification factor R and (b) corresponding heat cur-
rents JLR and JRL vs 1/μ for FK on-site potential and different values
of Tm. Other details and values of the parameters are the same used
in Fig. 2. R = 0 was attributed to the values of μ at which inversion
of the preferential direction occurs.
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temperatures Tm. In both cases, for small enough 1/μ we
observe a behavior similar to that shown for the φ4 potential in
Fig. 2. Indeed, when Tm decreases the rectification R attains a
maximal level at values of μ that approach the infinite-square-
well limit. For the infinite square well, the rectification R vs
Tm was shown in the inset of Fig. 2 for all three studied on-site
potentials.

In contrast, for not too large μ, there are details specific
to each potential. In the harmonic case (Fig. 6), R abruptly
vanishes (within the standard deviation) at μ = 2, where the
system becomes fully harmonic and hence the currents in both
directions are identical.

The FK potential, which has the distinctive feature of being
bounded, presents a more complex behavior (Fig. 7), where

more than one value of μ for inversion of the preferential
direction and more than one maximal value of R can occur.
It is interesting to note that at fixed Tm, current inversion
can be switched by μ in the FK chain. Another remarkable
feature is that a high level of rectification can be attained at
relatively high temperatures for the φ4 and FK chains, as can
be observed in Figs. 2 and 7.

In the φ4 model, when the temperature increases the
maximal efficiency shifts towards the triangular potential
(μ = 1), but such an effect is not observed for the har-
monic chains and certainly not for the FK chains, where
the bounded on-site potential will become irrelevant at high
temperatures, with the consequent decrease of the diode
effect.
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