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Soft, quasilocalized excitations (QLEs) are known to generically emerge in a broad class of disordered
solids and to govern many facets of the physics of glasses, from wave attenuation to plastic instabilities.
In view of this key role of QLEs, shedding light upon several open questions in glass physics depends on
the availability of computational tools that allow one to study QLEs’ statistical mechanics. The latter is a
formidable task since harmonic analyses are typically contaminated by hybridizations of QLEs with phononic
excitations at low frequencies, obscuring a clear picture of QLEs’ abundance, typical frequencies, and other
important micromechanical properties. Here we present an efficient algorithm to detect the field of quasilocalized
excitations in structural computer glasses. The algorithm introduced takes a computer-glass sample as input and
outputs a library of QLEs embedded in that sample. We demonstrate the power of the algorithm by reporting
the spectrum of glassy excitations in two-dimensional computer glasses featuring a huge range of mechanical
stability, which is inaccessible using conventional harmonic analyses due to phonon hybridizations. Future
applications are discussed.
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I. INTRODUCTION

Understanding the manners in which amorphous solids de-
form when subjected to mechanical stresses is a long-standing
challenge in condensed matter physics [1,2]. Key to achieving
progress in solving this problem relies on the development of
new, efficient computational tools that are able to character-
ize amorphous structures at the microscopic level—that are
believed to govern glasses’ mechanical response—in a useful
manner [3]. Many numerical developments have been put for-
ward in this context, including novel bond-order-parameters
[4–6], machine-learning based tools [7–13], approaches based
on the potential energy landscape (PEL) [14,15], and others
[16–19].

Recently it has been shown that glassy defects generically
take the form of soft quasilocalized excitations (QLEs) that
are defined as displacement fields composed of a core of
few tens of particles decorated by a long-range algebraic
Eshelby-like decay [20]; see some visual representations in
Fig. 1. QLEs assume the form of harmonic vibrations under
certain conditions; in situations in which QLEs hybridize
with phonons or other QLEs, they can be observed and
their properties can be measured via the nonlinear excita-
tions framework. In the low-frequency limit ω → 0, QLEs are
known to abide by a universal nonphononic density of states
D(ω) = Agω

4, where Ag has dimensions of [frequency]−5 and
controls the abundance of soft glassy defects in the system
[20–27]. Soft QLEs control the magnitude of the nonaffine
response that enters in calculation of the bulk shear modulus
[28,29]. As such the depletion of excitations can reduce the
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fluctuations of shear moduli [30]. The latter is known to cor-
relate well with the change in the attenuation rate of sound
waves in structural glasses [30–32]. Finally, the abundance
of soft QLEs has shown to correlate well with the tough-
ness of different glass formers prepared with various cooling
histories [33].

One of the main difficulties in studying these excitations
within the harmonic approximation of the potential energy
is that they hybridize with the overwhelming population of
low-frequency phonons [34], present in any solid featuring a
translationally invariant Hamiltonian. Due to said hybridiza-
tions, harmonic analyses do not allow one to systematically
study QLE’s individual dynamics, i.e., how a specific excita-
tion will soften or stiffen upon mechanical loading [35], nor
how QLEs interact with each other, i.e., how the softening or
thermal activation of one excitation can affect the dynamics of
remote excitations.

To circumvent the aforementioned hybridization issues,
novel computational frameworks have been put forward,
which offer various micromechanical definitions of soft QLEs
[35–38] by incorporating anharmonic properties of the PEL.
Within these nonlinear frameworks, a cost function associ-
ated with an arbitrary displacement field (referred to simply
as a “mode”) is constructed; these cost functions assume
local minima at modes that simultaneously minimize the
mode’s energy, while maximizing its spatial localization. As
demonstrated in [35,37,38], these frameworks allow one to
filter out the phononic background from hybridized phonon-
QLEs harmonic modes without having to modify particle
interactions [39]. Furthermore, it has been demonstrated that
the mechanics and spatial structure of quasilocalized excita-
tions emerging from these nonlinear frameworks converge to
those of harmonic excitations when hybridizations are absent
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[37,38], establishing the validity and usefulness of the nonlin-
ear frameworks.

These nonlinear excitation frameworks were helpful in
establishing several results and insights [38,40–42]. In the
asymptotic low-frequency regime ω → 0, a link was found
between the nonlinear mode frequency ωπ , the barrier height
�, and the strain distance to a plastic instability x, as � ∼ ω4

π

and x ∼ ω3
π , respectively [38]. This result was corroborated

by investigating thermal activation in viscous liquids [43].
We thus expect soft QLEs to control short timescale thermal
activations in viscous liquids [44] and imminent plastic insta-
bilities in driven solids [3,14,15]. Moreover, it was recently
demonstrated that harmonic excitations present in the Boson
peak as excess modes from the Debye theory can be recon-
structed from a linear combination of stiff QLEs [42]. Yet an
exhaustive detection and extraction of the entire population of
QLEs from a given computer-glass sample is still missing.

In this work we address this issue and present an algorithm
that builds on the same aforementioned nonlinear excitation
frameworks; it takes as input a computer-glass sample and
outputs a library of the (nonlinear) QLEs embedded in that
glass. We demonstrate the usefulness of our algorithm by
applying it to study the effect of thermal annealing on the
abundance of QLEs in model glasses, and discuss further
research directions that the algorithm may open up.

This paper is structured as follows; we first provide the
reader with a brief theoretical background of the nonlinear
excitations framework, followed by a detailed presentation of
our developed QLE-detection tools in Sec. II. In Sec. III we
investigate the impact of some of the input parameters of our
algorithm and of the choice of the particular nonlinear cost
function employed on the extracted nonphononic spectrum of
a model glass, and compare it directly with the harmonic vi-
brational density of states (vDOS) in three-dimensional (3D)
systems. In Sec. IV we employ the presented algorithm to
examine the effect of thermal annealing on the statistics of
QLEs in both two-dimensional (2D) and 3D computer glasses.
Finally, in Sec. V we discuss the perspectives of our algorithm
to study viscous dynamics of supercooled liquids, in addition
to the mechanical response of amorphous solids.

II. THEORETICAL AND NUMERICAL FRAMEWORK

In this section, we spell out an important theoretical
background, which forms the basis of our QLE-detection
algorithm. We also describe key features and caveats of our
detection algorithm.

A. Cost functions

We consider a system composed of N particles in d̄ spatial
dimensions with volume V , number density ρ = N/V , and
shear modulus μ. As shown in Ref. [20] and visualized in
Fig. 1, soft spots in a glass can be realized as Nd̄ -dimensional
displacement fields z that are composed of a localized core
of a few tens of particles, decorated by a long-range field
that decays as r−(d̄−1) at distance r away from the core.
Various nonlinear frameworks introduced [35–38] that enable
the extraction of such excitations are all based on finding dis-
placement fields π at which a high-dimensional cost function

FIG. 1. Different realizations of the same nonlinear mode ex-
tracted from the cubic (a), quartic (b), and PHM (c) cost function.
Mode energies are κcubic = 0.428, κquartic = 0.347, and κPHM =
0.357, respectively.

C(z) assumes local minima:

∂C
∂z

∣
∣
∣
∣
z=π

= 0. (1)

Here C(z) is constructed in order to penalize both high-
energy and delocalized (spatially extended) displacement
fields. As such, plane waves—which are inherently present in
the harmonic approximation of any solid and are generically
spatially extended—are suppressed and do not form solutions
to Eq. (1). As presented in detail in Refs. [35–38], there are
different ways to construct cost functions C(z) that can be
practical [35] and/or physically motivated [36]. We next re-
view the three cost functions ones used throughout this work,
namely, the cubic [36], quartic [37], and pseudoharmonic cost
functions [35], distinguished in our notation by the subscript
of C(z).

In the cubic cost-function framework, Ccubic(z) is the “bar-
rier function” that follows from a third-order expansion of the
energy with respect to displacements; it reads

Ccubic(z) = κ3

τ 2
, (2)

where κ (z) ≡ H : zz is the mode energy, and τ (z) ≡ T : · zzz
is the mode asymmetry, where T ≡ ∂3U/∂x∂x∂x is the tensor
of third-order derivatives of the energy with respect to particle
coordinates. Here and in what follows, single, double, triple,
and quadruple contractions over Cartesian components and
particle indices are denoted by ·, :, : · , and ::, respectively.

The quartic cost function follows from an analogy with
Ccubic; here the third-order contraction τ is replaced with
the fourth-order contraction χ (z) ≡ M :: zzzz, where M =
∂4U/∂x∂x∂x∂x is the fourth-order derivative of the energy
with respect to particle coordinates, giving [37]

Cquartic(z) = κ4

χ2
. (3)

We note that χ has been shown to be inversely proportional
to the mode participation ratio e ≡ [N

∑
i(zi · zi )2]

−1
[37],

hence the denominator of Cquartic will promote localization
upon minimization.

It is typically cumbersome to compute the contractions τ

and χ in systems employing many body interactions, or even
ill-defined in cases that the employed interaction potentials
are not smooth enough, e.g., Hertzian spheres. To overcome
these difficulties, we have recently introduced a framework
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for extracting QLEs that solely utilizes the harmonic approx-
imation of the potential energy [35]. The excitations that
emerged from this framework were coined pseudoharmonic
modes (PHMs) since they require access only to the harmonic
approximation of the energy. The associated cost function
reads

CPHM(z) = κ2

∑
〈i, j〉(zi j · zi j )2

, (4)

where i, j are particle indices, zi j ≡ z j − zi, and the sum in
Eq. (4) runs over all pairs 〈i, j〉 of interacting particles. For
systems with long-ranged interactions, one can run the sum
over close neighbors defined, e.g., by a Voronoi analysis. Spa-
tially extended, low-frequency plane waves have inherently
small displacement gradients, i.e., small local zi j , and thus
increase the cost function in favor of QLEs with larger zi j

components at the mode’s core.
In Fig. 1 we show the same realization of a soft mode

as a solution of Eq. (1) for the three different cost func-
tions Ccubic(z), Cquartic(z), and CPHM(z) described above. As
already discussed more quantitatively in Ref. [38], we find a
similar mode geometry with a nearly perfect mode overlap:
πcubic · πquartic � 0.974, πcubic · πPHM � 0.965, and πquartic ·
πPHM � 0.999. Note that subtle but important differences
exist between cubic and quartic/PHM modes as the former
includes anharmonic information about the potential energy
landscape. As a result, cubic modes provide a better esti-
mation (compared to the other considered cost functions) of
configuration-space directions that tend to move the system
across saddle points, at the cost of a slightly higher mode
energy [38]. This point is further discussed in Sec. III. A
more detailed comparison between the properties of nonlinear
modes extracted from the different cost functions can be found
in Refs. [35,37,38].

B. Mapping dipole forces

Since the aforementioned cost functions are nonlinear,
finding local minima of these function requires one to pro-
vide an initial guess—denoted in what follows as z0—for the
minimization of the employed cost function; see Ref. [36] for
a visual demonstration. Our algorithm is constructed to pro-
vide spatially distinct initial guesses z0 in order to efficiently
and exhaustively find local minima of the employed cost
function C.

To this aim, we first harvest local force dipoles, as illus-
trated in Fig. 2. We uniformly divide our system to blocks
of linear size ξ ; the latter is chosen to be consistent with the
typical core size of QLEs (usually between 5 and 10 particle
diameters [25]). Next, we consider the responses to local force
dipoles f acting on a pair of particles {i j} centered in each
block; see Fig. 2. These local force dipoles constitute excellent
initial conditions z0 for finding modes π that are also located
at the center of each cell (if such a mode exists); see example
in Fig. 2. In parallel, we have harvested the displacement
response u to the same force dipole as obtained by solving
the the linear equation H · u = f . As shown in Ref. [45],
displacements u will be dominated by soft modes present
in H that project well onto the force f and thus serve as
potential initial guesses to find minima of C. We have found

FIG. 2. Sketch of stage 1 of our algorithm: (1) we probe glassy
heterogeneities on a scale ξ , (2) we pinch two particles with a force f
at the center of each block (here rendered with different colors), and
(3) we map f onto a solution π of a given nonlinear cost function C.

similar results by directly starting our minimization from f ,
thus avoiding the extra cost of solving the aforementioned
linear equation, and by such substantially reducing the com-
putational complexity of our algorithm.

At this point, we have specified stage 1 of our algorithm,
namely:

(1) Partition the system into blocks of linear size ξ .
(2) Pinch a pair of particle with a force f in the center of

each block.
(3) Map the dipole force f onto a mode π.

C. The “halo” effect

In Fig. 3 we present an example in which the first part of
our QLE-detection algorithm described above is applied to
two glass samples prepared by the SWAP Monte Carlo (MC)
scheme [46], which enables one to equilibrate liquids down to
very low temperatures, i.e., at very strong supercooling. Those
equilibrium configurations are then instantaneously quenched
to zero temperature to form an ensemble of glasses labeled
by the equilibrium parent temperature Tp. With this scheme,
we are able to build ensembles of glass samples featuring a
very wide range of mechanical stability. The model’s details
and units employed can be found in Appendix A. Here we
have considered two extreme cases of a very stable, “cold”
glass [Fig. 3(a)] and a poorly annealed “hot” glass [Fig. 3(b)]
prepared at Tp = 0.2 and Tp = 0.7, respectively.

Our main goal is to probe homogeneously excitations on
a scale ξ without redundancies, as well as with a minimum
amount of mapping procedures as the latter constitutes the
computational bottleneck of our method. For the stable, low-
Tp glass, this goal is achieved where each mapping from a
dipole force leads to a distinct solution π associated with a
frequency ωπ ≡ √

H : ππ. In contrast, we find in our poorly
annealed sample that many dipole forces f map (under the
minimization of the CPHM cost function) to the same solution
π, resulting in “empty” regions in the glass where there are
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FIG. 3. First stage of our detection algorithm applied on a very stable (a) and poorly annealed (b) glass prepared at Tp = 0.2 and 0.7,
respectively. Different colors correspond to different dipole forces used to start the mapping procedure, such as shown in Fig. 2. (c) Occurrence
number (red) and density of states (black) as a function of the mode frequency ω for a glass prepared at Tp = 0.7. (d) Example of the halo
effect in a large mildly annealed glass composed of N = 102 400. (e) Example of the halo effect when approaching a plastic instability. The
black curve is the mode frequency as a function of the strain. Insets show our algorithm at different strains marked by colored squares. (f)
Mode radial distribution function gπ (r) for different mode π with frequency ωπ . (g) Halo radius ξH as a function of ωπ for two different box
lengths L. ω0 ≡ cs/a0 with cs and a0 denoting the shear-wave speed cs = √

μ/ρ and typical interparticle distance, respectively. The black line
indicates the scaling ξH ∼ 1/ωπ . (h) Sketch of the cost function landscape C(z) approaching the limit ωπ → 0 as illustrated in (e). Different
colors correspond to different frequencies ωπ of one soft excitation with ω1 < ω2 < ω3. Each star represents a distinct solution associated to
one minimum of C(z). The size of the halo created by the lowest excitation is indicated by horizontal double arrows. All modes are extracted
using CPHM.

presumably no QLEs. This effect, referred to as the “halo
effect” in what follows, is driven by the thermal-history in-
duced changes in the properties of the cost functions C(z)
and is quantified in Fig. 3(c), where we compare the (re-
)occurrence number of modes versus their frequency ωπ with
the density of states D(ωπ ). Here we have used an ensemble
of 200 independent samples with N = 4096 particles prepared
at Tp = 0.7. Here and in what follows, density of states is
normalized by N × d̄ × Ns, with Ns the number of indepen-
dent samples. Note that the same normalization is applied

on the nonlinear spectrum of QLEs. Interestingly, we find
that the lower the frequency, the higher the chance that a
minimizations starting from dipole force f located away from
the mode’s core will be mapped to the exact same mode. In
other words, the direction-space volume of the basins of the
cost function C(z)—that correspond to very low-frequency
modes—increases with decreasing mode frequency. Indeed,
since the spectrum of quasilocalized excitations is gapless
[41], we expect that a similar halo effect will be at play for
glasses of any stability (i.e., including very stable glasses), in
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the large system size limit N → ∞. To illustrate this point we
prepare a large mildly annealed 50-50 binary mixtures with
N = 102 400 equilibrated by conventional molecular dynam-
ics [47], and show in Fig. 3(d) a close-up on one specific soft
mode that reveals an approximated circular halo of radius ξH ,
in which no other solution of CPHM are found.

We also expect the emergence of the halo effect in mechan-
ically driven solids, as the frequency of destabilizing modes
on the brink of plastic instabilities can be arbitrary low, poten-
tially giving rise to a large halo effect. This second situation
is illustrated in Fig. 3(e), where we plot the frequency ωπ of a
destabilizing mode as a function of the strain γ upon a simple
shear deformation. The insets of Fig. 3(e) show the catalog
of modes at different strain distance [indicated by colored
squares in ωπ = f (γ )] to a mechanical (plastic) instability.
At the onset of the plastic instability, CPHM exhibits only one
minimum, which corresponds to the critical mode (shown as
a red blob of particles).

Next we want to quantitatively measure the relation be-
tween ξH and the frequency ωπ of the underlying soft mode.
Here we compute the averaged radial distribution function
gπ (r) between a mode of frequency ωπ and all other solutions
found with our algorithm; see Fig. 3(f). gπ (r) is normalized by
the ideal gas distribution, with the number density computed
from the total number of different solutions π found for a
given glass realization. At large distances, gπ goes to unity
indicating that QLEs are randomly distributed with a uniform
density. At small distances, we observe a gap that grows as ωπ

decreases. We extract an estimate for ξH at which gπ (r) > 0.9
and plot it in Fig. 3(g) against ωπ . We find that the two are
inversely related, namely, ξH ∼ ω−1

π , confirming that in the
low-frequency limit the halo effect will be system spanning.
In Fig. 3(h) we sketch how the landscape of C changes in the
limit ωπ → 0. The size ξH of the metabasin diverges until
C exhibits progressively only a single minimum. The same
behavior is observed for all three cost functions C(z) described
in Sec. II. Together, we can expect the “halo” effect to always
be at play in the thermodynamic limit, independent of glass
stability. However, for finite systems, as the population of
low-frequency QLEs decreases drastically with cooling, the
volume of basins associated with minima of the cost func-
tion C will remain small, as illustrated by the blue example
(ωπ = ω3) in Fig. 3(h).

D. Biasing procedure

To circumvent the halo effect described in the previous
subsection—namely, to find QLEs in regions of the glass
that seem “empty”—we propose to bias the employed cost
function by systematically and artificially stiffening modes.
In practice, this is done by connecting by a Hookean spring
with stiffness κb two particles residing at the center of the
to-be-stiffened soft mode. In order to avoid overstiffening the
system, we choose κb to be equal to the median of the inter-
action stiffness distribution. As a natural choice, we choose
to stiffen the pair {i j} corresponding to the largest relative
longitudinal displacement between particles. The procedure is
spelled out as follows; after mapping the force f onto a mode
π, we check whether or not this mode resides within its box
of size ξ . If the resulting mode π does not reside in the box

FIG. 4. Example of our detection algorithm on a glassy config-
uration at the onset of a plastic instability with critical mode πc

(ωπc/ω0 � 0.02) rendered in red. Each blob of particles colored in
cyan corresponds to the core of a distinct mode.

associated with f , we add a Hookean spring to the core of π

and repeat the mapping of f until a successful detection of a
mode within the box is made.

As an extreme test case, we quasistatically shear a stable
glass sample up to the first encountered plastic instability (up
to strain γc � 0.07), as previously shown in Fig. 3(e). Recall
that, upon approaching γc, we find that all dipole forces f are
mapped onto a single mode π—the destabilizing mode πc—
rendered in red in Fig. 4. We now apply our biasing procedure
and connect a Hookean spring of stiffness κb between a pair of
particles at the core of πc. Repeating stage 1 of the algorithm,
we are able to recover excitations in the entire system, includ-
ing ones in close spatial proximity to πc. We note, importantly,
that each mode’s frequency ωπ ≡ √

H : ππ is computed after
removing all biasing (stiffening) springs.

We have now completed the description of stage 2 of our
QLE-detection algorithm, namely:

(4) If a mapping of f results in a mode π residing outside
the block associated with f , we stiffen it with a spring of
stiffness κb.

(5) Repeat step 4 until the detected mode π resides within
the block associated with f .

Combining stages 1 and 2 of the algorithm allows the
extraction of the entire library of QLEs of a glass sample.
The algorithm time talgo needed to build a catalog for a fixed ξ

scales as N2.4, as shown in Appendix B. The scaling is explain
by (1) the linear extensive nature of the catalog size for a fixed
ξ , (2) the extra linear complexity with N of solving linear
equations for a given mode π, and (3) that the “halo” effect is
more pronounced in larger systems, hence one needs to repeat
step 4 more often. Importantly, we note that the QLE catalog
obtained with our algorithm does not depend on the sequence
of blocks inspected and therefore can be trivially parallelized
to investigate large system sizes.
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FIG. 5. (a) Comparison between the harmonic and PHM vDOS
in mildly annealed 3D glasses composed of N = 2000 with ξ = 5.
The arrow indicates the first shear wave. The inset shows eight
modes detected in a sample composed of N = 16 000 with ξ = 10.
(b) Effect of partitioning length ξ on the PHM spectrum. (c) PHM
spectrum for different cost function with ξ = 5. The system is a 3D
polydisperse glass prepared at Tp = 0.6.

III. VALIDATION OF THE ALGORITHM

As a validation benchmark, we directly compare the har-
monic vDOS of computer glasses with the spectrum of
pseudoharmonic modes (PHMs) extracted using the QLE-
detection algorithm spelled out above. Without compromising
generality, we perform this comparison using mildly annealed
3D glasses with N = 2000 particles (see Appendix A for
details). The motivation for this choice is to consider computer
glasses featuring a relatively high abundance of QLEs that can
be easily measured using a conventional harmonic spectral
analysis.

In Fig. 5(a) we report the PHM spectrum for the par-
titioning length ξ = 5 (expressed in terms of the typical
interparticle distance a0). The inset shows eight modes ex-
tracted using our algorithm in a 3D sample. We find a good
agreement between the harmonic and PHM vDOS below the
first phonon (indicated by a small arrow): We find a gapless
distribution at low frequencies that displays the same ∼ω4

scaling as seen for the harmonic modes vDOS. At higher
frequencies, the PHM vDOS exhibits a maximum before de-
creasing and vanish at a characteristic upper cutoff frequency.

We next vary ξ from four to eight; see Fig. 5(b). In a system
of N = 2000 this corresponds to extracting between one and
eight modes per sample. For ξ = 8, we already recover a large
fraction of nonlinear modes that populate the low-frequency
tail of the harmonic vDOS. As ξ decreases, we progressively
pick up stiffer modes that extend well above the first shear
wave. Decreasing further ξ will thus result in the detection of

high-frequency excitations. To illustrate this point, we present
in Fig. 6 a 2D example that display the location of PHM
excitations for a different level of coarse graining with ξ

ranging from 5 to 20. We render PHMs that populate the quar-
tic regime (ωπ/ω0 < 0.2) and stiffer nonlinear modes as red
displacement fields and cyan blobs, respectively. The majority
of excitations populating the quartic regime are recovered
with ξ � 10–20. Moreover, we find the spatial location of the
softest excitations to be the same for different ξ .

Finally, we set ξ = 5 and investigate the nonphononic
spectrum obtained using different cost functions. In Fig. 5(c)
we compare results obtained using the PHM-cost function
with those obtained using the cubic and quartic cost functions,
detailed in Sec. II. At low frequencies we find that PHMs and
quartic modes have the lowest energy and produce the same
low-frequency tail as the conventional harmonic vDOS.

In contrast, the excitations obtained using the cubic cost
function (referred to as cubic modes) are found to be slightly
stiffer (as also pointed out in Ref. [37]). This slightly higher
energy of cubic modes is explained by the need of maximizing
the mode asymmetry when minimizing Ccubic. However, cubic
modes still exhibit the correct quartic scaling D(ω) ∼ ω4.

At high frequencies, we find for the cubic and quartic
modes a second peak in their respective spectra. The same
double-peak distribution is observed in 2D glasses, as shown
in Appendix C. Inspecting modes populating the first and
second peak, we find that stiff modes show a less quadrupolar
anisotropy compared with their low-frequency counterpart;
see Fig. 7. We link this second population to the presence of
large pairwise forces that increases the denominator of Ccubic

and Cquartic, the force magnitude being absent in CPHM. The
resulting mode geometry corresponds to two particles being
pushed away from each other. We note that a similar behavior
of the excitation distribution was observed when investigating
the statistical mechanics of dipole responses [45].

IV. APPLICATIONS

A. Nonphononic spectrum of 2D structural glasses

Recently it has been debated whether or not 2D computer
solids feature the same ∼ω4 scaling of their nonphononic
vDOS as 3D solids do [48–52]. One of the difficulties to
investigate the QLE statistics in two dimensions is that one
needs to employ large enough samples to avoid finite-size
effects [51,53], typically of a few thousand of particles in size.
The lateral box length L for such system sizes is typically on
the order 50–100 particle diameters. The frequency of the first
shear wave decreases as ωph ∼ L−1, and the onset of QLEs
scales as ∼L−2/5 [21]. As a consequence, most of the QLEs
that populate the low-frequency, harmonic nonphononic spec-
trum are hybridized with plane waves. More details can be
found in Ref. [34]. This limiting issue is even more pro-
nounced for very stable glasses, since in those systems the
population of QLEs is both stiffened and depleted [25,40,45].
So far, due to the aforementioned difficulties and in contrast to
3D solids, there have been no reports on how the nonphononic
prefactor Ag varies as a function of the parent temperature Tp

in two dimensions. Below we show that our QLE-detection
algorithm is able to provide this information.
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FIG. 6. Location of PHM excitations extracted from our biasing algorithm with different coarse-graining length ξ . PHMs that populate the
quartic scaling (ωπ/ω0 < 0.2) are rendered as red displacement fields. Stiffer excitations are rendered as cyan blobs.

Additionally, due to the QLE-detection algorithm we are
now able to also identify the upper frequency limit up to
which QLEs exist and observe its variability with changing
glass stability. Our results are shown in Fig. 8; in Fig. 8(a) we
compare the 2D harmonic vDOS with the PHM spectrum of a
poorly annealed (Tp = 1.0) and very stable (Tp = 0.2) glasses
(see Appendix A for details about the model and its units). We
observe a strong suppression of the prefactor of ω4 tail as well
as a shift of the QLM spectrum towards larger frequencies.

In Fig. 8(b) we show the complete PHM spectrum rescaled
by ω4 for various Tp. We find a plateau at low frequency
confirming that the nonphononic statistics in two dimensions
follows D(ω) = Agω

4 for ω → 0. We note that small devi-
ations from the ω4 scaling are observed for hyperquenched
glasses (Tp > 0.5), fully consistent with the known finite-size
effects [51,53]. We show in Appendix D that we recover the
scaling ω4 for N = 102 400. In addition, one can read the
values of Ag off the ω → 0 plateau values of D(ω)/ω4; we
find a similar variability of Ag compared to 3D observations
[25,54]—of over three decades—with a drop of about three
orders of magnitude when decreasing Tp.

Collecting from our catalog the lowest mode in each glassy
configuration, we can compute the average of the square of
the mode amplitude decay |π |2 that populate the ω4 scaling.
As shown in Ref. [25], one can rescale |π |2 by its algebraic

FIG. 7. Low- (left) and high-frequency (right) cubic modes ex-
tracted in a mildly annealed 2D polydisperse glass prepared at
Tp = 0.6. Modes have been shifted to the center of the simulation
box for the sake of visibility.

decay, ∼r−2, and extract an estimate for the typical core
size ξπ at which r2|π |2 shows a maximum; see Fig. 8(c).
We clearly observe a decrease of ξπ for very stable glasses.
This result is in line with previous numerical studies for 3D
amorphous solids [25,54].

B. Robustness and caveats

We now discuss the robustness and caveats of our algo-
rithm in regard to the extraction of Ag and ωπ as a function
of Tp. As already pointed out in Fig. 5(b), decreasing ξ results
in the detection of stiffer modes. In Fig. 9(a) we show the
2D PHM spectra for ξ = 5 and ξ = 10 measured in glassy
samples ranging from poorly annealed (Tp = 1.0) to very sta-
ble (Tp = 0.2). As observed in 3D glasses the low-frequency
spectrum is unchanged upon decreasing ξ . As a consequence,
the range of Ag vs Tp does not vary with ξ , as shown in
Fig. 9(b).

For stable glasses, we also observe that the typical fre-
quency scale 〈ωπ 〉 remains constant under variations of ξ .
This is not the case for poorly annealed samples, where 〈ωπ 〉
slowly increases with decreasing ξ ; see arrows in Fig. 9(a).
As a result, the relative stiffening of 〈ωπ 〉/〈ω∞〉 with thermal
annealing decreases with ξ ; see Fig. 9(c). Interestingly, we
find that when ξ approaches the typical QLM core size ξπ

(about three to five particle diameters), 〈ωπ 〉/〈ω∞〉 exhibits
the same range as previously found when extracting an energy
scale from the dipole response statistics [45]. We have found
similar results in our 3D glassy solids.

C. Effect of thermal 2D vs 3D annealing

In what follows, we define the typical mode frequency
〈ωπ 〉 as the average frequency of the full QLE spectrum.
We are now in position to extract both the abundance of
soft excitations through the dimensionless prefactor Ag, the
characteristic mode frequency 〈ωπ 〉, and the core size ξπ .
Additional data for 3D glasses are provided in Appendix E.
Here we propose a comparison of 2D and 3D solids as a func-
tion of glass stability controlled by Tp. Note that this direct
comparison is meaningful as both our 2D and 3D systems
share the same onset temperature Tonset � 0.6.

In Fig. 10(a) we plot Ag as a function of Tp normal-
ized by the high-temperature plateau value A∞. As discussed
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FIG. 8. (a) Comparison between the full harmonic (solid lines)
and PHM (empty circles) vDOS for 2D glasses with N = 4096
quenched from parent temperatures Tp as indicated by the legend.
PHM spectra are computed using ξ = 5. The dashed vertical lines
indicate the shift of the average mode frequency ωπ between our
most stable glassy configurations (blue) and hyperquenched glasses
(red). (b) Rescaled PHM vDOS for various parent temperature Tp

with ξ = 5. The horizontal lines indicate Ag. (c) Rescaled square of
the mode amplitude decay |π |2 by r2. Vertical dashed lines indicate
the reduced core size ξπ when decreasing Tp.

previously, we find the same qualitative behavior in two and
three dimensions. Below Tonset, Ag drops by more than three
orders of magnitude between the high-temperature plateau
and the lowest temperature accessible by SWAP Monte Carlo,
such as found in Ref. [25]. Moreover, the suppression of
modes is postponed to slightly lower temperature in 2D com-
pared to 3D solids.

As discussed extensively in Refs. [25,40], Ag is of units of
an inverse frequency to the fifth power. Accordingly, a drop in

FIG. 9. (a) Comparison between the PHM vDOS extracted with
ξ = 10 (empty circles) and ξ = 5 (solid lines) for different parent
temperatures. (b) The prefactors Ag plotted vs the parent tempera-
ture Tp for various ξ . (c) The normalized characteristic frequency
〈ωπ 〉/〈ω∞〉 of quasilocalized modes for various ξ . Filled black cir-
cles are the normalized characteristic frequency of dipole responses
taken from Ref. [45].

Ag as a function of Tp is not necessarily caused by a decrease
in the number density of QLEs populating the ω4 scaling, but
could be attributed to an overall mode stiffening. As such,
we first need to quantify the characteristic frequency 〈ωπ 〉
of QLEs. In Fig. 10(b) we plot 〈ωπ 〉 normalized by the high
parent temperature plateau 〈ω∞〉 as a function of Tp. We find
a stiffening of about a factor of two for both our 2D and 3D
glasses. Consistent with the variability of Ag, the stiffening
is weaker for 2D solids (about 25%–30%). This result is
consistent with what has been found using the statistics of
dipole responses [45]. One should, however, keep in mind
that, strictly speaking, QLE’s typical frequency 〈ωπ 〉 in two
dimensions features a logarithmic dependence on system size
L [20,40,51]. Here we have kept L fixed and consider the
relative variability.

We now can compute the QLEs density as N = Ag〈ωπ 〉5

and plot it against the inverse parent temperature 1/Tp; see
Fig. 10(c). As seen for Ag, N plateaus at high Tp but shows
a weaker decrease with a drop of about two to three orders
of magnitude when decreasing Tp. In both two and three di-
mensions, we observe an Arrhenius behavior where the QLEs
depletion follows N ∼ e−Eqlm/kBTp , with Eqlm a formation en-
ergy such as that found in Ref. [25].

Finally, we report in Fig. 10(d) the core size ξπ as a
function of Tp. For hyperquenched glasses (high Tp), the core
size is about five to six particle diameters. This result is con-
sistent with the typical coarse graining length scale used to
quantitatively parametrized mesoscale elasto-plastic models
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FIG. 10. (a) The prefactors Ag plotted vs the parent temperature
Tp for both 2D and 3D glasses with ξ = 5. Ag is normalized by the
high-temperature value A∞ = Ag(Tp = 1). (b) The normalized char-
acteristic frequency 〈ωπ 〉/〈ω∞〉 of quasilocalized modes for ξ = 3.
The orange data represent the characteristic frequency scale of dipole
responses, taken from Ref. [45]. (c) The density N of QLEs, plotted
as a function of 1/Tp. Solid lines are linear regressions. (d) Core size
ξπ vs Tp.

from microscopic simulations [55,56]. We observe a factor
two decrease of ξπ when lowering Tp. This result is consistent
with Ref. [25], where authors argued that the core size and
the characteristic frequency scale are inversely proportional
〈ωπ 〉 ∼ 1/ωπ . Accordingly, we find a slightly weaker de-
crease of ξπ vs Tp in 2D compared with 3D glasses.

V. DISCUSSION AND CONCLUSION

In this paper we have presented a novel and efficient algo-
rithm to detect the field of soft glassy excitations in structural
glasses. Utilizing dipole forces as local probes, we have shown
that one can construct the map of soft excitations in both two
and three dimensions. We have highlighted that our detection
algorithm suffers from a “halo” effect (see Sec. II C) created
by the softest excitations present in the system: Once a mode
with vanishing frequency exists in a given system, the mini-
mization of the cost function C(z) will only converge to the
same low-frequency solution. In other words, extremely soft
modes result in cost functions C(z) featuring a single basin,
which corresponds to the soft mode.

To circumvent this issue, we have put forward an easy bias-
ing procedure where soft modes in the system are being stiffen
by harmonic springs. This enables us to find soft excitations
even for a system driven towards a plastic instability, during
which the frequency of the destabilizing mode vanishes. We
have benchmarked our algorithm with the harmonic spectrum

FIG. 11. Average time talgo to build a catalog of QLEs in a glass
composed of N particles with a block length ξ = 20. The solid line
indicates the scaling talgo ∼ N2.4.

of 3D glasses and have explored the influence of the algorithm
parameters as well as the nonlinear cost function used. We
have demonstrated that one can recover the correct asymptotic
low-frequency nonphononic tail.

Using our algorithm, we have extracted the complete spec-
trum of localized soft excitations in 2D solids featuring a
wide range of mechanical stability (generated using SWAP
Monte Carlo). We have confirmed that the low-frequency
limit of nonphononic excitations follows D(ω) = Agω

4, sup-
porting recent claims [51,52]. Finally, we have reported how
the dimensionless prefactor Agω

5
0 and the characteristic mode

frequency 〈ωπ 〉 change with thermal annealing. The same
qualitative behavior is seen between 2D and 3D solids. We
find a drop in the number density of QLEs N = Ag〈ωπ 〉5 of
about two to three orders of magnitude, a mode stiffening 〈ωπ 〉
of a factor two, and a factor two decrease of the core size
ξπ . This result confirms the previously established relation
〈ωπ 〉 ∼ cs/ξπ between the QLE’s characteristic frequency
and the glassy length scale. Moreover, a 25%–30% weaker
stiffening is observed in 2D glasses compared with their
3D counterpart. One could be tempted to draw an analogy
between a stronger elastic stiffening mechanism in three di-
mensions, and the possible occurrence of a finite-temperature
random first-order transition, which is likely to be absent in
two dimensions [57].

This work opens avenues to understand elastic hetero-
geneities in amorphous solids. In particular, one can use
nonlinear modes to access information on distributions of
activation barriers, strain distances to instability [38], and
tensorial information such that the softest shear direction.
With our method, one will be able to monitor how these
distributions change upon aging or mechanical deformation.

Furthermore, compared to modes built solely on the Hes-
sian, cubic modes have the advantage to offer better core
direction to move towards the nearby saddle. Thus, one could
harvest the field of cubic modes to efficiently explore the
potential energy landscape of a glass and improve existing
methods such as saddle point sampling [18].
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FIG. 12. Comparison between the 2D harmonic vDOS (solid
black line) and the PHM spectra obtained from different cost
functions: Cubic (purple), quartic (gray), and PHM (orange). The
ensemble employed corresponds to poorly annealed glasses prepared
at Tp = 1 with N = 4096.
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APPENDIX A: GLASS FORMER

Results shown in the main text are for two types of glass
formers, polydisperse soft spheres and a 50–50 binary mix-
ture. In both models, particles interact via a modified r−10

FIG. 13. Normalized cumulative distribution of the nonphonic
vDOS for ξ = 20 and different system sizes. Frequencies are scales
by

√
ln N to account for the log-correction present in 2D solids

[51]. Solid lines are linear regressions, and the inset shows the
corresponding exponents for the asymptotic scaling of the vDOS
D(ω) ∼ ωβ . Solid and dashed black lines indicate β = 4 and β =
3.5, respectively.

FIG. 14. (a) Rescaled PHM vDOS for various parent tempera-
ture Tp with ξ = 5. The horizontal lines indicate Ag. (b) Rescaled
square of the mode amplitude decay |π |2 by r4. Vertical dashed lines
indicate the reduced core size ξπ when decreasing Tp.

inverse power-law potential. A detailed description of these
models is provided in Ref. [47]. Using SWAP Monte Carlo
(MC) [46], we generate 2D and 3D polydisperse glasses with
various degrees of stability. The later is controlled by the
parent temperature Tp of the equilibrium states from which
our glasses were instantaneously quenched. The binary mix-
ture is quenched at a finite rate using conventional molecular
dynamics. For both two and three dimensions, the onset tem-
perature marking the rise of the shear modulus and viscous
slowing down is Tonset = 0.6. All simulations are performed
in the NVT ensemble with number density N/V = 0.65 (2D)
and 0.58 (3D). Finally, we quench our configurations to zero
temperature via an energy minimization using the conjugate
gradient algorithm. All quantities in this paper are reported
in dimensionless microscopic units: Lengths are rescaled by
a0 = (V/N )1/d̄ , frequencies by ω0 = √

μ∞/ρ/a0, where μ∞
is the plateau shear modulus of the high-parent temperature
glasses. In order to convert our reduced units into conventional
simulation units, we provide the high-temperature shear mod-
ulus plateau μ∞ � 10.35 (2D) and μ∞ � 9.22 (3D).

APPENDIX B: ALGORITHM COMPLEXITY

We have checked for the complexity of our algorithm by
computing the average time talgo to build a catalog in a glass
composed of N particles with ξ = 20; see Fig. 11. We find
that talgo scales with N2.4. This result is explained by the
combination of the trivial linear scaling of the number of
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modes in the catalog with a fixed ξ and the additional linear
scaling due to the complexity of solving linear equations for
each mode. Finally, the “halo” effect is slightly pronounced
in larger systems with the more likely presence of very low-
frequency modes and the scaling ξH ∼ 1/ωπ . As a result, one
needs more often to repeat step 4 of our algorithm.

APPENDIX C: COMPARISON OF DIFFERENT COST
FUNCTIONS IN TWO DIMENSIONS

In Fig. 12 we provide the same data as in Fig. 5(c) but for
2D solids. We compare the harmonic vDOS with the spectra
of nonlinear modes obtained with different cost functions. We
find similar behavior as for 3D solids. In the low-frequency
regime, quartic and PHM excitations have the lowest energy
and converge to harmonic modes. At high frequencies, we
observe a second peak for cubic and quartic modes, which
is absent in the PHM spectra.

APPENDIX D: FINITE-SIZE EFFECT: 2D
NONPHONONIC SPECTRUM

As shown in the main text and discussed in Refs. [48–52],
small hyperquenched glasses (high Tp) in two dimensions ex-
hibit a different asymptotic scaling for the nonphonic vDOS,
namely, D(ω) ∼ ωβ with β < 4. Here we apply our algo-
rithm to compute the cumulative distribution I (ω) in poorly
annealed IPL binary mixtures with different system sizes; see

Fig. 13. For a system composed of a few thousand of particles,
I (ω) shows a low-frequency plateau when rescaled by ω4.5

(i.e., β = 3.5). In contrast for the largest system N = 102 400
(L = 320), we find that the rescaled cumulative distribution
dips and scales as ∼ω5, which translates to β = 4 such as
found in mildly annealed 2D glasses (cf. Fig. 8).

APPENDIX E: NONPHONONIC SPECTRUM OF 3D
STRUCTURAL GLASSES

Here we provide additional data for 3D glasses used to ex-
tract the nonphononic prefactor Ag, the mode frequency 〈ωπ 〉,
and the core size ξπ . In Fig. 14(a) we plot the rescaled PHM
vDOS to highlight the range of Ag (low-frequency plateau)
as a function of the parent temperature Tp. Consistent with
Ref. [25], we observe a drop of three orders of magnitude in
Ag from hyperquenched glasses to very stable glasses obtained
via SWAP Monte Carlo.

Extracting the lowest mode of each glassy sample, we
compute the the average of the square of the mode amplitude
decay |π |2. In Fig. 14(b) we plot the rescaled mode decay by
its r−4 asymptotic scaling. The peak in r4|π |2 allows us to
extract an estimate for ξπ . We find a factor two decrease of
the core size of soft glassy of excitations, consistent with the
work done in Ref. [25] and with the factor two increase of the
typical mode frequency 〈ωπ 〉.
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