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Application of Cairns-Tsallis distribution to the dipole-type Hamiltonian mean-field model
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We found that the rare distribution of velocities in quasisteady states of the dipole-type Hamiltonian mean-field
model can be explained by the Cairns-Tsallis distribution, which has been used to describe nonthermal electron
populations of some plasmas. This distribution gives us two interesting parameters which allow an adequate
interpretation of the output data obtained through molecular dynamics simulations, namely, the characteristic
parameter q of the so-called nonextensive systems and the α parameter, which can be seen as an indicator of
the number of particles with nonequilibrium behavior in the distribution. Our analysis shows that fit parameters
obtained for the dipole-type Hamiltonian mean-field simulated system are ad hoc with some nonthermality and
nonextensivity constraints found by different authors for plasma systems described through the Cairns-Tsallis
distribution.
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I. INTRODUCTION

Since the emergence of statistical mechanics and kinetic
theory, we have been able to study systems composed of
a large number of constituent elements using the statistical
description of macroscopic observable quantities related to
thermodynamics from the classical microscopic study (first
principles), i.e., the knowledge of the positions and velocities
of particles that form the system (Hamiltonian and initial
conditions), or equivalently the knowledge of probabilities
[microcanonical ensemble with equiprobable states, canonical
ensemble (i.e., states with a canonical probability associated
with the thermal reservoir), etc.]. The success of this descrip-
tion is widely known in the early works of Einstein on the
specific heat of a solid and the Brownian motion. Since then,
various theoretical models (Debye, Ising, Drude, Heisenberg,
etc.) have been proposed to try to capture natural phenomena
present in materials, such as phase transitions. Although the
assumptions made in theoretical models are often absurd or
grotesque, these considerations end up capturing part of the
reality observed in nature, such as the two-dimensional (2D)
Ising model, which exhibits a paramagnetic-ferromagnetic-
type phase transition. Over time, improvements were made
to this model, such as the Heisenberg model. However, the
interactions present in the systems are often largely combina-
tions of short- and long-range interactions. When long-range
interactions are considered, conventional statistical mechanics
fails since several of the considerations that define equilibrium
and probability distributions rely on a property known as
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additivity, which is not satisfied in long-range systems. This
property is associated with macroscopic quantities such as
energy or entropy. If the energy (entropy) of a system is
additive, it can be separated into the sum of the ener-
gies (entropies) of the subsystems, UT = UA + UB, S(UT ) =
S(UA) + S(UB). This allows the establishment of equilibrium
conditions widely known as the equalization of inverse tem-
peratures βI = βII, pressures pI = pII, or chemical potentials
μI = μII. When this property fails, there is a possibility that
another property known as extensivity [namely, the property
that the energy (entropy) of the system scales proportion-
ally to the number of particles] can be recovered through
a Kac’s prescription (in terms of theoretical models). When
extensivity is satisfied, we can recover the entire Duhem-
Gibbs structure of the Legendre transforms and guarantee the
correct description of thermodynamics. In the pursuit of a
statistical explanation for the behavior of complex or long-
range interacting nonequilibrium systems, various formalisms
have been proposed to elucidate the non-Boltzmannian behav-
ior. These formalisms include the kappa distribution [1], the
Lynden-Bell formalism [2], the Tsallis formalism [3], super-
statistics [4], and the maximum caliber formalism [5], among
others. It is noteworthy that these approaches have sparked
discussions and diverse perspectives among researchers [6–8].
Such formalisms have contributed to building a framework
of nonequilibrium statistical mechanics. In this paper we
focus on the description of a kind of quasistationary state
involved in the nonequilibrium dynamics that previously it
had not been possible to describe by means of the Tsallis
distribution, Lynden-Bell statistics, or Tsallis-like Vlasov so-
lutions [6,9,10]. This paper is organized as follows. In Sec. II
we present the dipole-type Hamiltonian mean-field (d-HMF)
model that is used to study the quasistationary states (QSSs)
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present in nonequilibrium dynamics. Section III presents the
Cairns-Tsallis distribution (CTD) used to describe the QSSs
present in the d-HMF model. In Sec. IV we present the results
obtained.

II. THE d-HMF MODEL

This study focuses on a specific kind of nonequilibrium
system known as the d-HMF model, which was recently in-
troduced by Atenas and Curilef [11] and Atenas [12]. The
d-HMF is a classical Hamiltonian mean-field model (zero or-
der) inspired by electric dipolar interactions [11,13–15]. The
system under consideration comprises a collection of classical
rotors with long-range interactions. This nonsymmetric model
exhibits a second-order phase transition.

The Hamiltonian of the d-HMF is given by

H =
N∑

i=1

pi
2

2
+ λ

2N

N∑
i �= j

(cos(θi − θ j ) − 3 cos θi cos θ j + 2),

(1)

where the mass of each particle is equal to 1, pi is the momen-
tum, and θi is the orientation of the dipole i. N is the number
of dipoles and λ is the coupling, which is ferromagnetic when
λ is positive and antiferromagnetic when it is negative. The
equations of motion and the potential energy V of the system
can be expressed in terms of magnetization components,

�M = (mx, my) = 1

N

∑
i

(cos θi, sin θi ); (2)

then,

ṗi = −λ(2mx sin θi + my cos θi ), (3)

V = λN

2

(
2 − 2m2

x + m2
y

)
. (4)

In the thermodynamic limit, whether by counting states in
the microcanonical ensemble or by computing the partition
function in the canonical ensemble, both approaches result in
the equilibrium solution,

ε = 1

2β
+ 1 − m2, (5)

where m is the modulus of the magnetization, and it is the
solution of the equation

x = I1(2βλx)

I0(2βλx)
, (6)

where I1 and I0 are modified Bessel functions of the first kind.
In nonequilibrium, the system is characterized by the pres-

ence of two distinct quasistationary states (QSS-1 and QSS-2)
involved in the dynamics leading to equilibrium (see Fig. 1).
Notably, these states of apparent equilibrium are characterized
by the system’s maintenance of constant average kinetic en-
ergy for a significant duration. Those states are observed when
uniform distributions (water-bag) initial conditions are used in
molecular dynamics simulations [11,13,16,17]. Additionally,
this type of quasiequilibrium is marked by the occurrence
of negative specific heat. Previous studies [11,13–15] have

FIG. 1. Quasistationary states involved in the d-HMF model.
Average kinetic energy per particle as a function of time for dif-
ferent numbers of particles, N = 8000, N = 16 000, N = 32 000,
N = 70 000, and N = 170 000; data were obtained from molecular
dynamics simulations.

revealed anomalous diffusion regimes and established a scal-
ing law for the lifetime of QSSs.

Figure 2 shows the shapes of the first and second QSSs and
equilibrium. Figures 2(a) and 2(b) are from QSS-1, Fig. 2(c)
is from QSS-2, and Fig. 2(d) is from equilibrium. It can be
observed that the distribution of orientations during QSS-2 is
relatively constant (uniform), which is consistent with the fact
that the magnetization during the QSS-2 is near zero, which
responds to an equilibrium of forces from Eq. (2), where my

is also near zero. In contrast, QSS-1 is highly dependent on
the initial conditions; it is observed that the distribution of
orientations continues to be highly localized. This fact was
also observed in Ref. [18]. Figure 3 is a result of previous
work [15]. It depicts the peculiar momentum distribution of

FIG. 2. System phase space snapshots obtained with molecu-
lar dynamics data outputs: (a) and (b) QSS-1, (c) QSS-2, and
(d) equilibrium.
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FIG. 3. Momentum distribution of the d-HMF model and a
Tsallis-Like Vlasov pdf.

QSS-1, where blue circles correspond to molecular dynamics
simulations and the red curve is a Tsallis-like Vlasov solution
given by

f (θ, p) = C(1 − (1 − q′)β ′e(θ, p))
1

1−q′ , (7)

where C is a normalization constant, q′ and β ′ are parameters,
and e(θ, p) is the individual particle energy. It is well known
that stationary solutions must be functions of the individual
energy. In the mentioned paper [15] it was found that is not
possible to describe QSS-1 by a Tsallis-like Vlasov solution
or by a Tsallis distribution. This fact motivated the search
for an alternative distribution in this paper to describe these
states adequately. Such a distribution is the Cairns-Tsallis
distribution, as will be seen below.

III. THE CAIRNS-TSALLIS DISTRIBUTION

A. Background

An ideal plasma can be viewed as a classical system in
thermal equilibrium, where particles show a zero correlation
with a characteristic Maxwellian distribution (MD) of veloci-
ties. On the other hand, we have a nonthermal plasma, which
is not in thermodynamic equilibrium and shows a velocity
distribution compatible with non-Maxwellian superthermal
distributions, such as the Vasyliunas distribution (VD).
This distribution, also known as the kappa distribution, is
given by

p(x) = n

θκ (πκ )1/2

	(κ + 1)

	(κ − 1/2)

(
1 + v2

κθ2
κ

)−κ

, (8)

here in the one-dimensional representation (as can be seen in
Ref. [19]), where n is the particle number density and θκ =
[(2κ − 3)/κ]1/2(T/m)1/2 is the thermal velocity, with T being
the particle temperature. The VD function was proposed in
Ref. [1] to investigate the population of low-energy electrons
in the satellite-observed magnetosphere. The spectral index κ

accounts for the observed superthermal particles. When κ de-
creases, we have more superthermal particles in the tail of the
distribution function, and when κ → ∞, we have the system

in a thermal equilibrium, with velocities described by a MD
function. With the VD function, many naturally occurring and
artificial plasmas have been described, and its connection with
the Tsallis nonextensive statistical mechanics was established
later. In-depth analysis of the relationship between the nonex-
tensive q-exponential and VD functions has been provided
in several papers, such as in Refs. [20–22]. In those papers
we can verify that for the VD function, given by Eq. (8),
transformation κ = 1/(q − 1) provides us the nonextensive
Tsallis distribution (TD)

pq(v) ∝
[

1 + (q − 1)
v2

θ2
q

]− 1
q−1

. (9)

When q → 1, we have the thermal Maxwellian distribution.
On the other hand, there is another known function to de-

scribe populations of high-energy particles. We also have the
(one-dimensional) Cairns distribution (CD), which showed
that nonthermal distribution of electrons has an impact on ion
sound solitary structures [23]. It is given by

p(x) = n

(3α + 1)
√

2πθ2

(
1 + αv4

θ4

)
exp

(
− v2

2θ2

)
. (10)

θ = (T/m)1/2, and α is the nonthermality parameter, which is
a measure of the deviation from a Maxwellian distribution. A
value of α = 0 corresponds to the MD function, while a value
of α > 0 corresponds to a non-Maxwellian distribution with a
heavier tail, which suggests that electrons are not in thermal
equilibrium with the surrounding plasma. The nonthermality
parameter can also be used to study the effects of nonthermal
particles on plasma waves.

Other new proposals have emerged more recently. These
include the skew-kappa model [24] and the generalized (r, q)
distribution [25], among others. However, we will place our
attention on Ref. [26], where a nonextensive nonthermal ve-
locity distribution was presented. This is the Cairns-Tsallis
distribution (CTD) given by

p(x) ∝
(

1 + αv4

θ4

)[
1 + (q − 1)

v2

θ2
q

]− 1
q−1

. (11)

From this, we have the TD function for α = 0, the CD
function for q → 1, and the MD function for α = 0
and q → 1 simultaneously. Many authors have applied this
function, showing that a superadditive regime (q < 1) can de-
scribe some nonthermal plasmas. This class of Tsallis velocity
distribution with nonextensive q parameter smaller than unity
has already been analyzed and commented upon by different
plasma researchers [27–29]. The great flexibility of this func-
tion can be seen in Fig. 4 when α = 0.50 and q takes different
values. For other values of α and q, significant effects can be
observed in the shoulder and/or the tail of the distribution
curve. Because of this, the CTD function can be fitted to
data distributions with unusual appearances on the respective
plots, unattainable by many proposed models in the literature.
This function has been extensively studied by other authors,
performing linear and nonlinear analysis to see the effect on
electron-acoustic wave propagation [30–33] as well as the
effect of the dust grain charging process in a non-Maxwellian
dusty plasma [34,35].
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FIG. 4. The Cairns-Tsallis distribution. Fit curves for α = 0.50
and q = 1.40 (solid red curve), q = 1.25 (dashed black curve), and
q = 0.85 (dotted blue curve).

B. Superstatistical framework

Let us present a brief summary of the superstatistics theory
presented in Ref. [4] and then show that the CD and TD
functions can arise from it. It is a generalization of the nonex-
tensive statistical mechanics based on the superposition of
two different statistics prevailing in a driven nonequilibrium
system with a stationary state. Superstatistics is compatible
with systems characterized by a superposition of several dy-
namics on separated time scales. The corresponding evolution
is characterized by spatiotemporal fluctuations of an intensive
parameter β, according to the probability density g(β ). From
this, a more general statistics arises to describe the energy
E distribution of those systems, namely, the superstatistical
distribution

p(E ) =
∫

e−βE g(β )dβ, (12)

which is seen as a generalized Boltzmann factor. It can be
written as B(E ) = 〈e−βE 〉, with β ≡ 1/T . A long list of pa-
pers dealing with plasma systems through the superstatistical
perspective can be found in the most recent literature, such
as Refs. [36–39]. However, we will focus on Ref. [40], since
results in that paper are intimately connected with the CTD
function, as will be seen below. So far we have not found a
function g(β ) such that the integral (12) provides the CTD
function as a solution; however, it is possible to obtain each
of the factors that compose it, that is, the TD and CD func-
tions. In this way we could interpret both distributions as
a consequence of temperature fluctuations, as suggested in
the mentioned paper [40]. For the one-dimensional case, the
above can arise from (12): Taking a Maxwellian distribution
f (v|β ) instead of the Boltzmann distribution, with

f (v|β ) =
√

β

2π
e− βv2

2 (13)

and assuming that β is χ2 distributed

g(β ) =
(

n

2β0

) n
2 βn/2−1

	(n/2)
e− nβ

2β0 , (14)

we obtain that the un-normalized Eq. (12) is

p(v) =
(

1 + β0

n
v2

)− n
2 − 1

2

. (15)

We can readily see that TD function of the nonextensive sta-
tistical mechanics appears when n = 2

q−1 − 1 and β0 = β̃

n+1
(in addition to the cited paper [40], this procedure can also
be seen in Ref. [41]). When n → ∞ (q → 1), the MD equa-
tion (13) is recovered.

On the other hand, if E = v2/2, c = n+1
2 , and β0 = b(c −

1/2) in Eq. (15), we have B(E ) = (1 + bE )−c as is shown by
the authors of Ref. [4], which is equivalent to exp ( − c ln(1 +
bE )). Just as they did, we too can take from Eq. (15) an ex-
pansion, in such a way that we are left with the un-normalized
CD function

pc(v) = e− 1
2 β0v

2

(
1 + 1

8
σ 2β2

0v4

)
, (16)

with σ 2 variance of f (β ), as is shown in Ref. [42]. So, from
these results the CTD function can arise, obtaining

pCT (v) = Cq,α

(
1 + αβ2

0v4

)(
1 + (q − 1)

β0v
2

2

)− 1
q−1

, (17)

where Cq,α is the constant of normalization.

IV. RESULTS

A. Molecular dynamics simulation

Atypical distribution of velocities in QSSs of the d-HMF
model can be seen when the molecular dynamics simulation
is performed. We take a symplectic integrator and water-bag
initial conditions applied to N = 16 384 identical coupled par-
ticles (mass equal to 1 and energy U = 1.38). The graphical
results presented later in this section are derived from a set
consisting of the average of 100 independent simulations per-
formed for that particular energy level. This method based on
averaging over multiple similar realizations not only provides
a more robust and reliable representation of the data, but also
mitigates the influence of stochastic fluctuations inherent in
the underlying process. In this way, a more complete and
precise view of the trends and behaviors observed in the study
is achieved.

B. Application of the Cairns-Tsallis distribution

Let us start by observing the time evolution plots of the
average kinetic energy and magnetization, which have been
shown by different authors to highlight peculiar characteris-
tics of HMF and d-HMF models. We can readily observe in
Fig. 5 two quasistationary states experienced by the system,
which are reflected in transitions both in the average kinetic
energy and the magnetization. The first of them, QSS-1,
occurs at the beginning of the simulation, extending up to
roughly t = 1000, while QSS-2 persists approximately be-
tween t = 30 000 and t = 900 000. After this, a transition
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FIG. 5. Average kinetic energy 〈2K/N〉 and magnetization M
evolution for N = 16 384, showing two quasistationary states ap-
pearing during the d-HMF simulation.

to the equilibrium state occurs. We note that the QSSs can
be observed in different thermodynamic quantities. These
quantities exhibit the same behavior during the transition to
equilibrium. We can observe the emergence of plateaus for
both QSSs.

In the following we analyze fit parameters q and α obtained
with the CTD function, to check if they show characteristic
values for each quasistationary state, in addition to the already
known values for the equilibrium state, namely, q → 1 and
α → 0. We found by proceeding that the obtained fit curves
(and therefore the fit parameters) for the corresponding ve-
locity distributions show different dynamic behaviors during
the QSS-1 and QSS-2 periods. It is possible to see in Fig. 6,
as an example, that the fit curves show more pronounced
“shoulders” during QSS-1 than during QSS-2, represented
by t = 100 and t = 600 in the first case and by t = 500 000
and t = 800 000 in the second one. Such a feature allows
us to characterize the system with clear differences in the
corresponding fit parameters. To better visualize the effect on
the fit values of the q and α parameters, we present Figs. 7
and 8, obtained at 60 time points arbitrarily chosen throughout
the entire simulation.

FIG. 6. Four representative instants of time in the d-HMF sim-
ulation, t = 100 and t = 600 (both in QSS-1) and t = 500 000 and
t = 800 000 (both in QSS-2), showing the respective fit curves ob-
tained with the CTD function.

FIG. 7. Evolution of the fit parameter q, the values of which were
obtained in 60 instants of time during the d-HMF simulation (for
reference, we draw a baseline with the average of the data set).

V. FINAL REMARKS

As seen in Sec. IV, the time evolution of the average kinetic
energy and magnetization, obtained with data outputs from
the d-HMF simulation, has shown two quasistationary states,
QSS-1 and QSS-2 (different from each other), and a final
evolution towards the equilibrium state (Fig. 5). The nature
of both QSSs involved in the dynamics towards equilibrium is
shown in Fig. 2. QSS-1 is depicted in Figs. 2(a) and 2(b). It
can be observed how this state still has a strong correlation
with the initial conditions, where most of the dipoles are
oriented in a parallel manner, i.e., θi ≈ 0. QSS-2 is illustrated
in Fig. 2(c); here the dipoles describe a uniform distribu-
tion in orientations, implying that the restoring forces are
close to zero, thus keeping the system in a quasiequilibrium
with zero magnetization. Subsequently, the system evolves
towards equilibrium, where the momentum distribution be-
comes Gaussian. Consistent with the above, we also found

FIG. 8. Evolution of the fit parameter α, the values of which were
obtained in 60 instants of time during the d-HMF simulation (for
reference, we draw a baseline with the average of the data set).
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that both states, QSS-1 and QSS-2, are also reflected through
the CTD function when it is fitted in different instants of time
to the corresponding velocity distribution. Values of the q
and α parameters reveal the presence of both quasistationary
states, generating fit curves with a greater widening of shoul-
ders for QSS-1 than for QSS-2 (Fig. 6). The emergence of
shoulders in the momentum distribution of QSS-1 is possibly
because the particles remain strongly tied to the initial condi-
tions, which can be understood as a clustering phenomenon.
Those particular curve fittings achieved by the CTD function
are impossible to achieve with many other models found in
the literature, as can be seen in Sec. II, where a Tsallis-like
function, which is a solution of the Vlasov equation, was
applied to an instant of time of the stationary state during the
corresponding simulation.

We see that fit values for α tend to decrease very slightly
when the simulated system remains in QSS-2, unlike what is
observed in QSS-1. However, we can see a particularity that is
worth mentioning, which refers to the upper limit that seems
to exist for the α values. We can see in Fig. 8 that in QSS-1 and
QSS-2, fit values for α are very close to 0.250 (the closest one
is αmax = 0.237, which occurs at t = 2600) and, on the other
hand, α → 0 when the system tends to equilibrium (αmin =
9 × 10−9 at t = 5 × 106). The above makes sense inside of a
plasma context, due to the fact that the upper limit α = 0.25
has already been found through the normalized electron den-
sity, which was obtained by integrating the Cairns function
(details can be reviewed in Ref. [43]). Many authors estimate
that for α < 0.25 the Cairns distribution is properly defined
(e.g., it was found in Ref. [44] that 0.155 < α < 0.25 are rel-
evant values to consider). Since the nonthermality parameter α

is a deviation measure from a Maxwellian distribution (where
α = 0), α values closer to 0.25 imply that the plasma system

is more likely to exhibit instabilities and turbulence, as well as
being affected by nonthermal processes.

On the other hand, the nonextensivity q parameter is further
from q = 1 in QSS-2 than in QSS-1. Then, it seems that in
QSS-2 we have a system subjected to stronger long-range
interactions while transiting through the nonequilibrium state.
In addition, by checking that q → 1 and α → 0 in Figs. 7
and 8, the equilibrium state can be clearly observed from
t = 106, as expected. Here we also have some relevant ad-
ditional remarks to make, since of the total of 60 fit values
obtained for parameter q during the performed simulation
(shown in Fig. 7) we find that all the fit values fall into the
interval [0.628,0.996]. The above makes sense again when
we return to the plasma viewpoint. For example, properties
of the CTD function were investigated in the context of ion
acoustic soliton behavior in plasmas with excess superthermal
particles [31], showing that outside of 0.6 < q � 1 the CTD
function may present drawbacks associated with the distri-
bution itself or the respective normalization (and these are
the reasons why the authors of Ref. [31] warned us about its
severely restricted applicability).

In summary, this research offers a comprehensive and im-
proved description of the QSSs in the d-HMF model. We have
obtained a satisfactory depiction of these states by means of
the Cairns-Tsallis distribution, because the velocity distribu-
tion obtained from the d-HMF model provides us fit values for
the q and α parameters that are ad hoc with values observed
in applications of the CTD function to nonthermal plasmas.
Application of the CTD function in long-range interacting
systems could be of great interest. Hence an approach such
as the one presented in this paper could be explored in other
systems, such as the HMF model, self-gravitating systems,
and the ring model, among others, that could be relevant in
future works.
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