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First-passage behavior of the random-barrier model
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The previously proposed transport equation for the random-barrier model, which is the diffusion equation with
resetting to positions visited in the past, is used here to calculate the first-passage times. The results obtained
are compared with those obtained using the normal diffusion equation with an effective diffusion coefficient.
It is shown that, under certain conditions, the equation with the effective diffusion coefficient can greatly
overestimate the time of the first passage. In particular, the rate constant of a bimolecular diffusion-controlled
reaction calculated from this equation can be significantly lower than the actual rate. This result can serve as one
of the possible explanations for the high rates of diffusion-controlled reactions observed in an experiment.
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I. INTRODUCTION

The time it takes for a random walker to reach a target
point is called the first-passage time (FPT). FPTs play an
important role in many physical, chemical, and biological
processes [1–5]. To date, methods have been developed for
finding FPTs and determining their properties. However, the
existing methods are applicable only for Markovian and some
special types of non-Markovian processes [1,3,6–9].

Non-Markovian behavior of stochastic processes usually
takes place in complex disordered environments. The mi-
croscopic mechanisms responsible for non-Markovianity are
varied. One of the widespread mechanisms is static disorder
[10].

Most of the theoretical models describing transport in
media with static disorder use random walks on an ordered
lattice, introducing disorder into the rates of transitions be-
tween lattice sites. Usually only transitions between nearest
neighbors are considered. The two prototypical models are the
random-barrier model and the random-trap model [10–12].
In the random-barrier model, the rates of transitions between
neighboring sites wi j and w ji are symmetric, w ji = wi j . In the
random-trap model, the transition rates wi originating from
the sites are given; they do not depend on the final sites.
The random-barrier model belongs to the class of stationary
models [13]. The diffusion slowdown observed in it is due to
negative correlations between successive jumps. The random-
trap model belongs to the class of nonstationary models [13].
In this model, the diffusion slowdown is due to the slowing
down of the mobility of particles.

In papers [11,14,15], it was shown that averaged over an
ensemble of configurations, the propagator of a disordered
system, Pi, satisfies the generalized master equation

dPi(t )

dt
=

∫ t

0

∑
j

�(t − τ )[p jiPj (τ ) − piiPi(τ )]dτ. (1)

Here, �(t ) is the memory function, which is expressed in
terms of the transition rates wi j ; p ji are the transition prob-
abilities which are translationally invariant: p ji = p j−i. In
the continuum limit, this equation reduces to a generalized

diffusion equation

∂ρ(r, t )

∂t
= h2

∫ t

0
�(t − τ )∇2ρ(r, τ )dτ, (2)

a particular form of which is the fractional diffusion equa-
tion [16]. Here, ∇2 is the Laplace operator and h2 is the
constant.

Equation (2) gives the correct expression for the average
propagator in both the random-trap model and the random-
barrier model. However, it cannot be used to find other
quantities in both models. In particular, the FPTs given by this
equation are consistent with the random-trap model, but not
with the random-barrier model [17]. Since this equation does
not take negative correlations into account, it does not cor-
rectly describe the random-barrier model.

In Ref. [18], Eq. (2) was transformed in such a way that
it takes negative correlations into account. The transformed
equation has the form of a diffusion equation with source and
sink describing the resetting to positions visited in the past:

∂ρ(r, t )

∂t
= D0∇2ρ(r, t ) − rρ(r, t )

+ r
∫ t

0
φ(t − τ )ρ(r, τ )dτ

+ r

[
Q(t ) −

∫ t

0
φ(t − τ )Q(τ )dτ

]
δd (r). (3)

Here, r is the rate of resetting; φ(t ) is the memory func-
tion satisfying the normalization condition

∫ ∞
0 φ(τ )dτ = 1;

δd (r) is the d-dimensional Dirac delta function; and Q(t )
is the survival probability: Q(t ) = ∫

ρ(r, t )dr. Term rρ(r, t )
describes the departure of a particle from point r. Term
r
∫ t

0 φ(t − τ )ρ(r, τ ) describes the arrival of a particle at point
r. The probability of arriving at this point depends on the
probability that the particle was at this point in the past,
ρ(r, τ ), and also on the time difference t − τ . Term r[Q(t ) −∫ t

0 φ(t − τ )Q(τ )dτ ]δd (r) describes the arrival of a particle at
the starting point r = 0. The parameters of this equation are
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linked with the parameters of Eq. (2) by the relations

�(s) = �∞s

s + r[1 − φ(s)]
(4)

and

D0 = h2�∞, (5)

where �(s) and φ(s) are the Laplace transforms of
�(t ) and φ(t ) [the Laplace transform of f (t ) is f (s) =∫ ∞

0 exp(−st ) f (t )dt]; �∞ = lims→∞ �(s).
In the case of diffusion in infinite space, the survival prob-

ability is equal to unity and Eq. (3) is equivalent to Eq. (2)
(this is easy to see in the Laplace domain). On the contrary,
in the case of diffusion in a bounded region with probability
flows across the boundaries, the survival probability is not
equal to unity and the solutions of Eq. (3) differ from the
solutions of Eq. (2). It was shown in [18] that in this case
the solutions of Eq. (3) correctly reflect the effect of negative
correlations on the FPTs and, therefore, qualitatively agree
with the random-barrier model.

This article considers the question of how the results given
by Eqs. (2) and (3) differ in practically interesting cases.
In particular, these equations are used to calculate the rate
constant of a bimolecular diffusion-controlled reaction. The
motivation for this question is as follows. First, in many phys-
ical systems, subdiffusion is due to negative correlations, at
least in part [19–24]. Secondly, this fact is not taken into ac-
count in any way when determining the rate constant. Thirdly,
the standard method for finding the rate constant using the
Smoluchowski formula sometimes gives results that are very
different from reality [25,26]. [The standard method is based
on the normal diffusion equation. But in the case of transient
subdiffusion, Eq. (2) gives the same results as the normal dif-
fusion equation with an effective diffusion coefficient D∞ =
h2�(s)|s=0.] It is natural to ask whether the discrepancies
between the calculated rate constant and the real one are the
result of using Eq. (2) corresponding to subdiffusion due to
mobility slowing down in such cases when subdiffusion is
actually due to negative correlations.

The main result of this article is as follows. If diffusion
in some medium is slowing down, so that the diffusion coeffi-
cient decreases from a value of D0 at times close to 0 to a value
of D∞ at large times, then the rate constant of a bimolecular
diffusion-controlled reaction will depend on the mechanism
that slows down diffusion. If the reason for slowing down
diffusion is a mobility decrease, then the rate constant will
be equal to 4πaD∞, and if the reason is negative correlations,
then it will be equal to 4πaD0. These two values differ by the
ratio of the diffusion coefficients D0/D∞. Since this ratio can
be very large [27], the value of the calculated rate constant
can significantly depend on the assumptions regarding the
diffusion slowing down mechanism.

The article is organized as follows. In Sec. II, we reproduce
those results of work [18], which shows that Eq. (3) qualita-
tively correctly reflects the impact of negative correlations on
FPTs. In this section, anomalous subdiffusion is considered,
since relevant data are available for comparison. In Sec. III,
using Eq. (3), we calculate the Laplace transform of the sur-
vival probability of a fixed spherical absorbing target (or trap)
in the presence of a single diffusing particle and analyze the

long-time asymptotics of the survival probability. In this and
the next section, we focus on transient subdiffusion because
we are interested in the rate constant of the stationary process.
Anomalous subdiffusion is of no interest in this case, because
Eq. (2) predicts the complete immobilization of particles. In
Sec. IV, we consider many diffusive particles in the presence
of a single trap and study the behavior of the survival proba-
bility of the trap. In Sec. V, we discuss the application of the
results obtained to finding the rate constant of a bimolecular
diffusion-controlled reaction.

II. MODEL TESTING

In this section, we demonstrate the suitability of Eq. (3)
for modeling diffusion processes with negative correlations.
To do this, we consider one-dimensional anomalous subdiffu-
sion. In this case, the memory function �(s) behaves at small
s as ∝s1−α with the parameter α ranging from 0 to 1. Since
the propagators given by Eqs. (2) and (3) are the same, the
mean-square displacement (MSD) corresponding to Eq. (3)
behaves as ∝ tα .

Let us find the survival probability of a particle on a semi-
infinite interval x > 0. The particle starts at the point x0 > 0
at time t = 0. When it hits point x0 = 0, it is absorbed. In the
Laplace domain, one-dimensional Eq. (3) has the form

sρ(x, s) − δ(x) = D0
∂2ρ(x, s)

∂x2
− κρ(x, s) + κQ(s)δ(x),

(6)

where

κ = r[1 − φ(s)] = s

[
�∞
�(s)

− 1

]
. (7)

This equation coincides in form with the equation describing
diffusion with resetting [28]. In our case, the “resetting rate” κ

depends on the Laplace variable s; however, in the calculation
of the survival probability, this dependence has no effect, so
we can directly use the result of [28]. In [28], the following
expression for the Laplace transform of the survival probabil-
ity is obtained:

Q(s) =
1 − exp

( − x0

√
s+κ
D0

)
s + κ exp

( − x0

√
s+κ
D0

) . (8)

Substituting D0 = h2�∞ and κ = s[ �∞
�(s) − 1], we get

Q(s) =
1 − exp

(−x0

√
s

h2�(s)

)
s + s

[
�∞
�(s) − 1

]
exp

(−x0

√
s

h2�(s)

) . (9)

If the memory function �(s) behaves at small s as ∝s1−α ,
then Q(s) calculated by this formula will behave as ∝s−α/2,
and the real-time survival probability Q(t ) behaves at large
time as ∝ t (α/2)−1. At the same time, the survival probability
for normal diffusion behaves as ∝ t−1/2, i.e., decreases more
slowly. Thus, Eq. (3) predicts an acceleration of the decrease
of the survival probability by negative correlations. The valid-
ity of this prediction can be seen from the following reasoning.
Negative correlations make it difficult for the particle to move
away from the starting point. Therefore, at long times, the
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particle will be in some finite region containing the sink with a
higher probability than in the absence of negative correlations.
At the same time, in the presence of negative correlations,
the particle mobility remains constant, the same as in their
absence [29]. Therefore, all points in this region, including
the sink, will be visited more often than in the case of normal
diffusion, and the probability for a particle to survive at long
times will be lower.

As is known, in the model of fractional Brownian motion
(fBm) with MSD growing as ∝ tα , the survival probability
decreases according to the same law as predicted by Eq. (3):
Q(t ) ∝ t (α/2)−1 [30]. Since, in the fBm model, diffusion slows
down due to negative correlations, we can conclude that, in
the example under consideration, Eq. (3) correctly reflects the
effect of negative correlations on the FPT.

Recall that in the case of subdiffusion described by Eq. (2),
the survival probability is determined by the formula

Q(s) =
1 − exp

(−x0

√
s

h2�(s)

)
s

. (10)

If the memory function �(s) behaves at small s as ∝s1−α ,
then survival probability Q(t ) calculated by this formula will
behave as ∝ t−α/2, i.e., it decreases more slowly than in the
case of normal diffusion.

Now we calculate the mean first-passage time for a particle
starting at the point x0 on the interval (a, b) with absorbing
boundaries. Here we can also use the result for diffusion with
resetting. In [31], the following expression was obtained for
the Laplace transform of the survival probability:

Q(s) = 1 − g(x0, s)

s + κg(x0, s)
, (11)

where

g(x0, s) =
exp

[
(b − x0)

√
s+κ

D

] + exp
[
(x0 − a)

√
s+κ

D

]
1 + exp

[
(b − a)

√
s+κ

D

] .

(12)

The mean first-passage time is calculated by the formula T =
lims→0 Q(s). Substituting the expressions D = h2�∞ and κ =
s[ �∞

�(s) − 1] into (11) and (12) and letting s tend to zero, we get
a finite value for T :

T = (b − x0)(x0 − a)

2h2�∞
. (13)

As is known, Eq. (2) gives an infinite value of the mean
first-passage time in the case under consideration [6]. The fact
that for subdiffusion due to negative correlations the mean
first-passage time should be finite, is confirmed by the cor-
responding result of the fBm model [32].

Thus, in the two considered cases, Eq. (3) gives qualita-
tively correct results. Therefore, it can be used to study the
influence of negative correlations on the qualitative behavior
of the FPTs.

III. THE SINGLE-PARTICLE PROBLEM

We consider an immobile target of radius a centered at the
origin r = 0 and a point particle performing random walks

described by Eq. (3). If the particle ever hits the surface of the
target both the particle and the target disappear. In the Laplace
domain, Eq. (3) is written as

sρ(r, s) − δd (r − r0)

= D0∇2ρ(r, s) − κρ(r, s) + κQ(s)δd (r − r0). (14)

The boundary conditions at the surface of a spherical target
and at infinity are

ρ(r, s)|r|=a = 0, (15)

ρ(r, s)|r|→∞ = 0. (16)

Note that the survival probability of the particle (as well as
target) Q(r0, s) = ∫

|r|>a ρ(r, s)dr depends only on the initial
distance r0 between the target center and the particle because
of the spherical symmetry of the target. (Since we are consid-
ering an exterior problem, the condition r0 > a is satisfied.)

It is straightforward to show that the survival probability
obeys the equation

sQ(r, s) − 1 = D0∇2Q(r, s) − κQ(r, s) + κQ(r0, s) (17)

and the boundary conditions

Q(a, s) = 0, (18)

Q(r, s)r→∞ = 1. (19)

In Eq. (17), the variable r is assumed to be different from the
initial position r0. The equation is solved for arbitrary r and
r0 and eventually r = r0 is assumed [28]. This problem was
solved in work [33] and we can use the solution found there.
Given the expressions for D0 (5) and κ (7), the solution is
written as

Q(r0, s) = aνKν (αa) − rν
0 Kν (αr0)

saνKν (αa) + s
(

�∞
�(s) − 1

)
rν

0 Kν (αr0)
, (20)

where Kν is the modified Bessel function of the second kind,

ν = 1 − d
2 , α =

√
s

h2�(s) .
Equation (2) is usually used to describe slowing diffusion

in media with static disorder. The solutions of this equa-
tion differ from the solutions of the normal diffusion equation,
in the Laplace domain, in that the diffusion coefficient is not
a constant, but a function of the Laplace variable s. When
finding from these solutions the quantities related to large
times, i.e., to small s, the same expressions are obtained as
in the case of normal diffusion with a diffusion coefficient
D∞ = limt→∞ D(t ) = lims→0 h2�(s) = h2�0. From this it is
concluded that, at long times, transient subdiffusion can be
described by the normal diffusion equation with the diffusion
coefficient D∞. If this is done, then expression

Q1(r0, s) = aνKν (βa) − rν
0 Kν (βr0)

saνKν (βa)
(21)

is obtained for the survival probability, where β =
√

s
h2�0

[27]. This expression can be obtained from (20) by substitut-
ing �∞ = �0 and �(s) = �0.

Our further goal is to compare the results obtained by
formulas (20) and (21). Since the explicit inversion of the
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Laplace transforms (20) and (21) seems difficult, we will con-
sider only the asymptotic behavior of the survival probability
at long times.

A. d = 1

In the one-dimensional case, we can put a = 0. Given that
K1/2(x) = √

π
2x exp(−x), we have

Q(r0, s) = 1 − exp(−αr0)

s
[
1 + (

�∞
�(s) − 1

)
exp(−αr0)

] . (22)

The long-time behavior of time-dependent quantities corre-
sponds to the limit s → 0 for their Laplace transforms. In this
limit we get

Q(r0, s) � �0

�∞

1 − exp
(−r0

√
s

h2�0

)
s

. (23)

The inverse Laplace transform of this expression is

Q(r0, t ) � �0

�∞
erf

{
r0

(4h2�0t )1/2

}
. (24)

This result differs from the result given by formula (21),

Q1(r0, t ) � erf

{
r0

(4h2�0t )1/2

}
, (25)

by the factor �0
�∞

.

B. d = 2

In two dimensions, we use the approximation K0(x)x→0 �
ln 1

x . The leading term of expansion of (20) in the limit s → 0
is

Q(r0, s) � �0

�∞
ln

(
r0

a

)
2

s ln
( h2�0

s

) . (26)

Using the Tauberian theorem, we get

Q(r0, t ) � �0

�∞
ln

(
r0

a

)
2

ln(h2�0t )
. (27)

In this case also, the result differs from the result given by
formula (21),

Q1(r0, t ) � ln

(
r0

a

)
2

ln(h2�0t )
, (28)

by the factor �0
�∞

.

C. d = 3

Given that K−1/2(x) = K1/2(x) = √
π
2x exp(−x), we have

Q(r0, s) =
1 − a

r0
exp

{−(r0 − a)
√

s
h2�(s)

}
s
[
1 + (

�∞
�(s) − 1

)
a
r0

exp
{−(r0 − a)

√
s

h2�(s)

}] .

(29)

In this case, the ultimate survival probability Q(r0, t → ∞) =
lims→0 sQ(r0, s) is nonzero:

Q(r0, t → ∞) = 1 − a
r0

1 + (
�∞
�0

− 1
)

a
r0

. (30)

As is known [34], formula (21) yields

Q1(r0, t → ∞) = 1 − a

r0
. (31)

The factor 1
1+( �∞

�0
−1) a

r0

in (30) takes values ranging from 1 to

�0
�∞

depending on the ratio a
r0

.
The result of this section is formulas (24), (27), and (30),

giving the dependence of the survival probability on time for
d = 1, 2, 3 in a model with negative correlations. A compar-
ison of these formulas with the corresponding formulas for
the model with the slowing down of the mobility of parti-
cles [formulas (25), (28), and (31)] shows that the survival
probability always decreases faster in the model with negative
correlations (in transient subdiffusion the ratio �0/�∞ is
always less than 1).

IV. THE MANY-PARTICLE PROBLEM

Consider now the problem of many independent particles
and the survival probability Q(t ) of the target. If N particles
are uniformly distributed in volume V of , then

Q(t ) =
{

1

V

∫


Q(r, t )dr
}N

. (32)

In the thermodynamic limit N → ∞, V → ∞ at fixed particle
density ρ = N/V , the survival probability becomes [35]

Q(t ) = exp[−ρad f (t )], (33)

where

f (t ) = 1

ad

∫
|r|>a

[1 − Q(r, t )]dr. (34)

The Laplace transform of (34) can be determined using (20):

f (s) = Sd

ad

�∞
s�(s)

∫ ∞

a

rd−1+νKν (αr)

aνKν (αa) + (
�∞
�(s) − 1

)
rνKν (αr)

dr.

(35)

Here α is equal to
√

s
h2�(s) , as before, and

Sd = 2πd/2

�(d/2)
(36)

is the surface area of a d-dimensional unit sphere. Passing to
the variable z = αr, we get

f (s) = Sd

(αa)d

�∞
s�(s)

×
∫ ∞

αa

zd−1+νKν (z)

(αa)νKν (αa) + (
�∞
�(s) − 1

)
zνKν (z)

dz. (37)

A. d = 1

In the one-dimensional case, expression (37) takes the form

f (s) = 2

αa

�∞
s�(s)

∫ ∞

αa

exp(−z)

exp(−αa) + (
�∞
�(s) − 1

)
exp(−z)

dz.

(38)
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Calculating the integral, we obtain the leading term of expan-
sion of (38) in the limit s → 0:

f (s) � 2

a

√
h2�0

s3

�∞
�∞ − �0

ln

(
�∞
�0

)
. (39)

The inverse Laplace transform of this expression is

f (t ) � 4

a

√
h2�0t

π

�∞
�∞ − �0

ln

(
�∞
�0

)
. (40)

The expression corresponding to formula (21) is obtained
from here at �∞ → �0:

f (t ) � 4

a

√
h2�0t

π
. (41)

The factor �∞
�∞−�0

ln( �∞
�0

) in (40) takes values ranging from 1

to ln( �∞
�0

), depending on the ratio �∞
�0

.

B. d = 2

In the two-dimensional case, expression (37) takes the form

f (s) = 2π

(αa)2K0(αa)

�∞
s�(s)

∫ ∞

αa

zK0(z)

1 + (
�∞
�(s) − 1

) K0(z)
K0(αa)

dz.

(42)

As s tends to zero, the expression K0(z)
K0(αa) tends to zero. There-

fore, in the limit s → 0, the integral reduces to
∫ ∞

0 zK0(z)dz =
1. Thus, the leading term of the expansion of (42) in this limit
is

f (s) � 4π

a2

h2�∞
s2 ln

( h2�0
sa2

) . (43)

The inverse Laplace transform of this expression is

f (t ) � 4π

a2

h2�∞t

ln
( h2�0t

a2

) . (44)

This result differs from the result corresponding to formula
(21),

f (t ) � 4π

a2

h2�0t

ln
( h2�0t

a2

) , (45)

by the factor �∞
�0

.

C. d = 3

In the three-dimensional case, expression (37) takes the
form

f (s) = 4π exp(αa)

(αa)2

�∞
s�(s)

∫ ∞

αa

z exp(−z)

1 + (
�∞
�(s) − 1

)
αa exp(−z)
z exp(−αa)

dz.

(46)

As s tends to zero, the expression αa exp(−z)
z exp(−αa) tends to

zero. Therefore, in the limit s → 0, the integral reduces to∫ ∞
0 z exp(−z)dz = 1. Thus, the leading term of the expansion

of (46) in this limit is

f (s) � 4π

a2

h2�∞
s2

. (47)

The inverse Laplace transform of this expression is

f (t ) � 4πh2�∞t

a2
. (48)

This result differs from the result corresponding to formula
(21),

f (t ) � 4πh2�0t

a2
, (49)

by the factor �∞
�0

.
The result of this section is formulas (40), (44), and (48),

giving the dependence of the survival probability on time for
d = 1, 2, 3 in a model with negative correlations. A compar-
ison of these formulas with the corresponding formulas for
the model with the slowing down of the mobility of particles
[formulas (41), (45), and (49)] shows that in the many-particle
problem, as in the single-particle problem, the survival prob-
ability always decreases faster in the model with negative
correlations.

V. DISCUSSION

This article compares the first-passage characteristics for
two models of transient subdiffusion that have the same time
dependence of the diffusion coefficient. In one model, the
slowing down of diffusion is due to the slowing down of the
mobility of particles, and in the other, it is due to negative
correlations. It is shown that the survival probability always
decreases faster in the model with negative correlations. This
result is essentially not new. What is new is that it is ob-
tained from consideration of transient subdiffusion rather than
anomalous subdiffusion. For the case of anomalous subdif-
fusion, this result was known earlier. It is mentioned in the
second section of this article. There, survival probabilities for
the model with the slowing down of the mobility of parti-
cles, described by Eq. (2), and the fBm model, which is a
model with negative correlations, are given. In addition, two
models were compared in [17], for which the first passage
characteristics are calculated directly without the use of a
master equation. Qualitatively the same result was obtained:
the survival probability decreases faster in the model with
negative correlations than in the model with the slowing down
of the mobility of particles.

The formulas obtained here can be used to calculate the
rate constant of a bimolecular diffusion-controlled reaction.
The rate constant k is related to the function f (t ) by the
relation k = ad df (t )

dt [34]. From formulas (48) and (49) we
find in the three-dimensional case k = 4πaD0 for the model
with negative correlations and k = 4πaD∞ for the model
with the slowing down of the mobility of particles. Since the
diffusion coefficient D0 in real physical systems can be several
orders of magnitude greater than D∞ [27], the reaction rate
constant calculated by the Smoluchowski formula using the
coefficient D∞ may be several orders of magnitude smaller
than the real rate constant. Such a situation can arise when
diffusion in the medium under consideration is slowing down
and the slowing down is due to negative correlations. In this
case, in the Smoluchowski formula, it is necessary to use not
the coefficient D∞, which characterizes the expansion of a
cloud of particles at large times in an unlimited space, but
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the coefficient D0, which characterizes the time-independent
mobility of particles.

The result obtained here can potentially find application
in biophysics as an alternative to the Berg–von Hippel model
of facilitated diffusion [36]. The facilitated diffusion model
was proposed just to explain why the real rate constant is
several orders of magnitude higher than that predicted by the
Smoluchowski formula. This model assumes that the increase

in the reaction rate is associated with the presence of other
stochastic search mechanisms besides three-dimensional dif-
fusion. However, this model does not take into account the fact
that three-dimensional diffusion in living cells is, as a rule, not
ordinary diffusion, but transient subdiffusion [27]. Perhaps,
in some cases, taking this fact into account will provide the
desired explanation without using the model of facilitated
diffusion.
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