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Metastability due to a branching-merging structure in a simple network of an exclusion process
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We investigate a simple network, which has a branching-merging structure, using the totally asymmetric
simple exclusion process, considering conflicts at the merging point. For both periodic and open boundary
conditions, the system exhibits metastability. Specifically, for open boundary conditions, we observe two types of
metastability: hysteresis and a nonergodic phase. We analytically determine the tipping points, that is, the critical
conditions under which a small disturbance can lead to the collapse of metastability. Our findings provide insights
into metastability induced by branching-merging structures, which exist in all network systems in various fields.
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I. INTRODUCTION

In many systems, such as ecological networks, climates,
politics, financial markets, and traffic networks, multiple
states, which are either undesired or positive, have been iden-
tified [1–3]. Understanding the transition between states is
essential to anticipating undesired or positive changes. Var-
ious indicators have been proposed to detect tipping points,
where a small perturbation can induce a drastic change be-
tween states. An example of a tipping point in physics is the
phase transition point.

The totally asymmetric simple exclusion process (TASEP)
is a paradigmatic model in the field of nonequilibrium statis-
tical physics that has been investigated in various fields [4–6]
since being introduced by MacDonald and Gibbs [7,8]. The
TASEP exhibits a phase transition between low-density (LD)
and high-density (HD) phases with a jump in density. This
transition occurs when the input probability (or rate) α is equal
to output probability (or rate) β; that is, α = β is considered as
a tipping point. However, during the phase transition, the flow,
which is a significant performance measure, does not change
discontinuously.

Thus far, in the extensions of the TASEP and related mod-
els [9–25] exhibiting metastability, a jump in flow has been
observed. The metastable states observed in these studies were
dependent on the initial conditions; therefore, metastability in
the TASEP can also be interpreted as nonergodicity [26–28].
Metastability (nonergodicity) can lead to hysteresis. The crit-
ical point of collapse of metastability can also be considered
a tipping point.

However, to the best of our knowledge, most previous
studies used slow-to-start rules [29–31], which consider the
delay in restarting a blocked particle, and other similar rules
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to represent metastability. In addition, these studies consid-
ered periodic boundary conditions (PBCs), not open boundary
conditions (OBCs).

To date, only few OBC models have succeeded in pre-
senting metastability with relatively complex rules. This is
because the stochastic elements (α, β ) associated with OBCs
make it difficult to maintain metastable states. Reference [26]
identified a phase transition between two different long-lived
metastable states in the TASEP with Langmuir kinetics for
OBCs. Similar phenomena were also observed in Ref. [27].
Reference [28] revealed the dependence of the system length
on the initial length using a queuing model incorporating
excluded volume effects and Langmuir kinetics. In addition,
Refs. [24,25] investigated a dilemma game at a bottle-
neck and succeeded in reproducing a metastable phase for
OBCs.

In this paper, we investigate metastability in a TASEP with
a branching-merging structure. The main difference between
the present model and previous similar models [32–40] is
the consideration of conflicts at the merging point. Surpris-
ingly, we observe metastability for both PBCs and OBCs.
In particular, two phenomena related to metastability are ob-
served for OBCs: hysteresis induced by metastability and a
nonergodic phase. This phase exhibits dependence on initial
conditions under the same input and output probabilities. It
should be emphasized that the metastability observed in the
present model is unique in that it arises simply from the
presence of a branching-merging structure, which is a typical
structure in network models, and a conflict at the merging
point.

II. MODEL

We study a TASEP-based simple network, as illustrated in
Fig. 1. The system has four parts: a head subsystem (sub-
system 1), middle subsystems (subsystems 2 and 3), and a

2470-0045/2023/108(4)/044121(15) 044121-1 ©2023 American Physical Society

https://orcid.org/0000-0001-8433-1373
https://orcid.org/0000-0001-7497-8413
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.044121&domain=pdf&date_stamp=2023-10-10
https://doi.org/10.1103/PhysRevE.108.044121


YAMAMOTO, YANAGISAWA, AND NISHINARI PHYSICAL REVIEW E 108, 044121 (2023)

FIG. 1. Schematic illustration of the TASEP-based simple net-
work. For PBCs, the right and left boundaries are connected. In
contrast, for OBCs, particles enter (leave) the system from the left
(right) boundary with probability α (β). Updating schemes from time
t to t + 1 at the branching (merging) point are illustrated in the lower
left (right) panel. Only situations that include stochastic elements are
depicted.

tail subsystem (subsystem 4). Each subsystem consists of Lh,
Lm, and Lt sites, where each site can be either empty or
occupied by a single particle. The model employs parallel
updating with discrete time, signifying that all particles are
updated simultaneously. In the bulk region, particles move to
the right-neighboring site if that site is empty. If the site is
already occupied, the particles remain at their present site.
In the case of OBCs, particles enter the system from the left
boundary with probability α and exit from the right boundary
with probability β.

At the branching point, which marks the boundary between
subsystem 1 and subsystem 2/3, a particle randomly selects
a subsystem to enter if both of the first sites in the middle
subsystems are empty. If either of these sites are occupied, the
particle proceeds to the empty site. It remains at its present
site if both of these sites are occupied.

At the merging point, which is the boundary between sub-
system 2/3 and subsystem 4, a conflict is considered using
friction parameter μ [41–43]. Specifically, when two particles
exist at the merging point, their movement is prohibited with
probability μ; that is, the particles remain at their site. There-
fore, the conflict is resolved with probability 1 − μ, allowing
one of the particles, which is randomly chosen, to move to
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FIG. 2. Fundamental diagram with μ = 0.8. Circles represent
the simulation results for a nonclustered initial condition (IC), while
crosses represent the simulation results for a clustered IC. Red solid
lines represent the theoretical lines for L → ∞, that is, Eq. (1). All
simulations are conducted with L = 2500.

the next site. We note that particles behave according to the
standard TASEP rules in all other situations.

In the following, we focus on the fundamental case where
Lh = Lm = Lt = L. To obtain the steady-state values, we
evolve the system for 106 time steps and calculate the aver-
ages of 106 time steps in each simulation, unless otherwise
specified.

III. METASTABILITY FOR PBCS

We first investigate the fundamental diagram for PBCs.
The diagram can be divided into three regimes; free-flow (FF),
merge-induced (MI), and jam-flow (JF) regimes. The flow Q
is calculated as the average number of moving particles in one
time step divided by 3L, regarding subsystems 2 and 3 as one
subsystem with the continuity equation.

Based on the theoretical analysis in Appendix A, the flow
in the thermodynamic limit can be summarized as

Q =

⎧⎪⎪⎨
⎪⎪⎩

4
3ρ for 0 � ρ � ρ2

1−μ

2−μ
for ρ1 � ρ � ρ3

4
3 (1 − ρ) for ρ3 � ρ � 1,

(1)

where ρ1 = 3(1−μ)
4(2−μ) , ρ2 = 3

8 , and ρ3 = 1 − 3(1−μ)
4(2−μ) .

Figure 2 presents the fundamental diagram of the system,
comparing the simulation results and the theoretical results
[i.e., Eq. (1)]. The simulation results exhibit excellent agree-
ment with the theoretical results. However, we note that for
finite systems, a large cluster is likely to dissolve due to
fluctuations (see the vicinity of ρ = ρ1 in Fig. 2), as observed
in the slow-to-start model [11].

Surprisingly, for ρ1 < ρ � ρ2, two regimes can exist de-
pending on the initial conditions (for further details, see
Appendix B). The upper regime is a metastable regime. With
a nonclustered initial condition, where all the particles have at
least one empty site ahead, the upper regime can be obtained
because conflicts do not occur. In contrast, with a clustered
initial condition, where all the particles are positioned con-
tinuously behind the merging point, the lower regime can
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FIG. 3. Simulation results (circles and crosses) and theoretical
estimates (curves) of Q for (a) α = 0.1, (b) α = 0.5, (c) β = 0.1,
and (d) β = 0.5, where μ = 0.8. Circles represent the results of
ρini = 0 (i.e., all sites are empty), while crosses represent the results
of ρini = 1 (i.e., all sites are occupied). The values (β1, β2, α1, α2) are
described in the text. All simulations are conducted with L = 500.

be obtained because the particles accumulate at the merging
point. Similar phenomena have been reported in previous
studies [9–25].

With a small disturbance in the initial condition, when
the system presents the metastable FF regime at ρ ∈ (ρ1, ρ2]
(i.e., the upper regime), the system can transition to the MI
regime (i.e., the lower regime). Therefore, ∀ρ ∈ (ρ1, ρ2] can
be regarded as a critical density for collapse of metastability
for PBCs.

We summarize the results for various μ and confirm the
same phenomena in Appendix C.

IV. METASTABILITY FOR OBCS

For OBCs, the system has three potentially rate-limiting
points: the left boundary, the merging point, and the right
boundary. Therefore, the system exhibits a phase determined
by these three points.

We first consider the case with fixed α > 1 − μ(= α1),
corresponding to Fig. 3(b). With a small β, the system is
governed by the right boundary; therefore, the flow QR [44]
is given by

QR = β

1 + β
. (2)

When β exceeds a certain value β1 and β < α, particles ac-
cumulate behind the merging point, indicating that the system
is governed by the merging point. Thus, the flow QM can be
expressed as

QM = 1 − μ

2 − μ
, (3)

which corresponds to the middle equation in Eq. (1) with the
same discussion for PBCs. Accordingly, β1 can be calculated
as

QR(β1) = QM ⇔ β1 = 1 − μ. (4)

FIG. 4. Hysteresis plots for (a) α = 0.5 and (b) β = 0.5, where
μ = 0.8. The black lines start from β = 0 for (a) and α = 0 for
(b), while the red lines start form β = 1 for (a) and α = 1 for (b),
respectively. All simulations are conducted with L = 500.

In the case of β > α(= β2), surprisingly, the flow can ex-
hibit two different values. For relatively low initial densities,
conflicts can be neatly avoided, and the system is ultimately
governed by the left boundary. Therefore, the flow QL [44] is
given by

QL = α

1 + α
. (5)

In contrast with relatively high initial densities, which cause
the accumulation of particles behind the merging point, the
system is ultimately governed by the merging point and the
flow is given as Eq. (3).

When α is fixed below α1, corresponding to Fig. 3(a),
the phase governed by the merging point does not appear;
therefore, the flow for β > α is given by Eq. (5).

We then consider the case with a fixed β > β1, correspond-
ing to Fig. 3(d). With a small α, the flow is given by Eq. (5).
When α exceeds a certain value α1 and α < β, the flow can
exhibit two different values, Eq. (3) or (5), depending on
the initial conditions. Finally, when α > β(= α2), the flow is
given by Eq. (2). When β is fixed below β1, corresponding to
Fig. 3(c), the phase governed by the merging point does not
appear; therefore, the flow for α > β is given by Eq. (2).

Figure 3 compares the simulation results and our estimates
of the flow for various (α, β) with the initial global density
ρini ∈ {0, 1}. The figure indicates that the simulation results
are in excellent agreement with our estimates.

In addition, hysteresis can be observed by measuring the
space-averaged flow Q̄ when changing β (α) with fixed α

(β). Specifically, we increase β (α) by 10−3 and calculate
Q̄ every 104 time steps. Then, we decrease β (α) by 10−3.
The detailed calculation scheme is discussed in Appendix E.
Figure 4 presents the hysteresis plots. In Fig. 4(a), Q̄ changes
continuously when β increases from 0 to 1; however, a drastic
change in Q̄ is observed at β ≈ β2 when β decreases from 1
to 0. In contrast, Q̄ changes continuously when α decreases
from 1 to 0; however, a drastic change is observed at α ≈ α2

when α increases from 0 to 1, as illustrated in Fig. 4(b). There-
fore, the boundary condition α = β(> 1 − μ) corresponds to
a critical condition for metastability collapse. We summarize
the results for various μ and confirm the same phenomena in
Appendix D.

Next, we investigate the phase diagram using a sim-
ple approximation similar to those used in previous studies
[33–35,38]. Figure 5 presents a schematic of each subsys-
tem. One notable difference between this study and previous
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FIG. 5. Effective entrance and exit probabilities and steady-state
densities at the junctions for each subsystem. The entrance probabil-
ities of subsystems 1–4 are represented as α, αeff,b, αeff,b, and αeff,m,
respectively, while the exit probabilities of subsystems 1–4 are rep-
resented as βef,b, βeff,m, βeff,m, and β, respectively. The steady-state
densities at sites 1, L, L + 1, 2L, 2L + 1, and 3L are represented as
ρ1, ρL , ρL+1, ρ2L , ρ2L+1, and ρ3L , respectively.

studies is the use of different expressions of the effective prob-
abilities at the merging point αeff,m on the phase in subsystem
4. Specifically, αeff,m can be expressed as

αeff,m = 2ρ2L (6)

when subsystems 2 and 3 are in the LD phase, where a conflict
rarely occurs, and as

αeff,m = 1 − μ (7)

when subsystems 2 and 3 are in the HD phase, where a conflict
generally occurs.

Based on the simple approximations of and additional dis-
cussions for the phase boundaries, seven phases ((LD, LD,
LD), (HD, HD, LD), (HD, HD, HD), (MC, LD, MC), (SW,
SW, SW), (SW1, SW1, SW2), and (HD, HD, SW)) are ob-
tained (see details in Appendixes F and G). Figure 6 presents
the phase diagram of the system (see also Appendix H).
Surprisingly, the region where 1 − μ < α < 1 and α < β, or
α = β = 1 exhibits a nonergodic phase. For 1 − μ < α <

1 and α < β, the system yields either of (LD, LD, LD)
with low-initial-density conditions or (HD, HD, LD) with
high-initial-density conditions. In contrast, for α = β = 1, the
phase transitions from (LD, LD, LD) to (MC, LD, MC). This
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FIG. 6. Phase diagram of the system. The red (blue) phase is
obtained with low-initial-density (high-initial-density) conditions.
For the dotted line corresponding to α = 1 − μ and β > 1 − μ,
the system presents the (LD, LD, LD), whereas for the dotted line
corresponding to α = β < 1, the system exhibits the (HD, HD, LD).
The gray zone represents the nonergodic phase.
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FIG. 7. Probability of two steady-state phases (LD, LD, LD)
(blue) or (HD, HD, LD) (orange) as a function of ρini, with the
red line representing the estimated ρini = ρini,cr [i.e., Eq. (8)] for
(μ, α, β ) = (0.8, 0.85, 0.9), with which the system always satisfies
α > 1 − μ and α < β. We calculate the probabilities for each ρini

in increments of 0.01 (black circles) by 10-time simulations with
random configurations. We determine the steady-state phase based
on the flow; for example, if the simulated flow is near the esti-
mated flow of (LD, LD, LD), the steady-state phase is determined as
(LD, LD, LD). All simulations are conducted with L = 2500.

phenomenon can be interpreted as ergodicity breaking. The
density profiles are also discussed in Appendix I.

V. CRITICAL INITIAL DENSITIES
IN THE NONERGODIC PHASE

As discussed above, the phase of the system can vary
depending on initial densities ρini. In this section, we discuss
the critical initial density ρini,cr in the nonergodic phase. The
steady-state transitions to (HD, HD, LD) with ρini < ρini,cr; in
contrast, it transitions to (LD, LD, LD) or (MC, LD, MC) with
ρini > ρini,cr.

Starting from ρini = ρini,cr, Lρini,cr particles initially exist
in each subsystem on average. In the worst-case scenario, all
particles in subsystems 1–3 are involved in a conflict at the
merging point and therefore enter subsystem 4 every 1

QM
time

steps. In this case, ρini,cr can be estimated by ensuring that
the first entering particle arrives at the merging point just
as the conflicts of the initial existing particles are almost
resolved. We therefore can formulate this condition as

3Lρini,cr

QM
≈ 2L

1
⇔ ρini,cr ≈ 2(1 − μ)

3(2 − μ)
. (8)

Figure 7 presents the probabilities of the two steady-state
phases (LD, LD, LD) or (HD, HD, LD) as a function of
ρini, with a line representing the estimated ρini = ρini,cr. We
observe that the probability of the (LD, LD, LD) phase sharply
decreases around ρini = ρini,cr. Despite being a coarse ap-
proximation, Eq. (8) is an excellent estimate of ρini = ρini,cr,
corresponding to the critical initial density in the noergodic
phase for OBCs. We note that unlike for PBCs, the initial
density, not the initial configuration, plays a primary role in
determining the steady state for OBCs. The area of (LD, LD,
LD) becomes a little wider than the theory because no con-
flicts can be realized depending on the initial configuration,
especially for low-initial-density conditions.
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We summarize the results for various μ and confirm the
same phenomena in Appendix J.

VI. DISCUSSION

In this paper, we present a TASEP-based simple network
with conflicts at a merging point that exhibits metastability
(i.e., nonergodicity) for both PBCs and OBCs. Metastability
induces hysteresis for OBCs. By using simple expansions
of the TASEP, namely, by considering a branching-merging
structure, which is a fundamental element of network models,
and a conflict rule at the merging point, we can obtain a
nonergodic phase, where the initial condition determines the
steady state for OBCs. Moreover, we successfully identify
the critical conditions (i.e., tipping points) where a small
disturbance causes the collapse of metastability. These critical
conditions include (i) the critical initial density for PBCs, (ii)
the critical boundary conditions for OBCs, and (iii) the critical
initial density for OBCs.

We would like to discuss the robustness of observed
metastability, which depends on (i) deterministic hopping
probabilities, (ii) the same length of the two branches in the
network, and (iii) initial conditions. As for (i), metastability
can be observed in the TASEP-based models and other related
models where the number of stochastic elements are relatively
small. It is true that the restriction of hopping probabilities as
p = 1 is certainly a strong approximation compared to previ-
ous investigations. Instead, we observe metastability not only
for PBCs but also for OBCs, where the stochastic elements–
input probabilities and output probabilities–make it difficult
to maintain metastability. This is one of the strengths of this
paper. As for (ii), metastability in this paper requires that the
two branches have the same length, or at least the length of
one branch is a multiple that of the other. We admit that this re-
quirement is relatively strong and one limitation of the present
investigation. As for (iii), initial conditions critically influence
whether the system yields to metastability. This fact holds true
for many of the previous investigations [9–13,19–21], which
considered two different initial conditions–homogeneous and
megajam states for PBCs. Homogeneous states are, in a sense,
artificial, because there is a very slim chance of obtaining the
states if initial conditions are randomly chosen. In this paper,
however, the steady state for OBCs depends on initial densi-
ties rather than initial configurations, which we can consider
more robust than the previous ones.

For complex network systems in various fields, it is im-
portant to identify the critical points to be able to anticipate
undesired or positive changes. In recent studies [45–49],
TASEP networks have been proposed as models for such
complex systems. The rules identified in this paper can be
applied to these models to identify metastability. Despite the
simplicity of the present model, we believe that our findings
can provide insights into the metastability (nonergodicity) of
network systems.
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APPENDIX A: FUNDAMENTAL DIAGRAMS

Here, we derive Eq. (1). In the FF regime, the flow is deter-
mined by the number of particles. Considering the definition
of flow, the flow can be calculated as

Q = 4Lρ

3L
= 4

3
ρ, (A1)

where ρ is the global density.
In the MI regime, the flow is determined by the merging

point. The average number of time steps in which either of the
two particles involved in a conflict must exit the merging point
is given as 1

1−μ
. Therefore, the average density of subsystems

4 and 1 is reduced to 1
1+ 1

1−μ

, resulting in the following flow:

Q = 1

1 + 1
1−μ

= 1 − μ

2 − μ
. (A2)

In this case, the average density of subsystems 2 and 3 halves,
becoming 1

2(1+ 1
1−μ

)
. As a result, ρ becomes

ρ1 =
2L

(
1

1+ 1
1−μ

)
+ 2L

[
1

2(1+ 1
1−μ )

]
4L

= 3(1 − μ)

4(2 − μ)
, (A3)

which is the transitional density from the FF regime to the MI
regime.

To ensure that there is no conflict at the merging point with
the maximum number of particles, the average gap between
particles is reduced to 1 in subsystems 4 and 1, indicating that
the average density of subsystems 4 and 1 is 1

2 . Therefore, the
average density of subsystems 2 and 3 halves, becoming 1

4 .
Eventually, ρ2, the maximum density at which the FF regime
can exist, is given by

ρ2 = 2L × 1
2 + 2L × 1

4

4L
= 3

8
. (A4)

In the JF regime, the flow is determined by the number of
empty sites. Considering the definition of flow and particle-
hole symmetry, the flow can be calculated as

Q = 4L(1 − ρ)

3L
= 4

3
(1 − ρ), (A5)

and the value ρ3, the transitional density from the MI regime
to the JF regime, is represented as ρ3 = 1 − ρ1.

Based on the above discussion, we obtain Eq. (1).

APPENDIX B: INITIAL CONDITIONS FOR PBCS

For PBCs, we consider two types of initial conditions;
nonclustered and clustered initial conditions. The difference
between the two conditions lies in the configuration rather
than the density. Therefore, they can be defined under the
same density, only at relatively low densities.

In a nonclustered initial condition, more than or equal
to one-site interval is maintained between the two adjacent
particles. In the simulations, we put all the particles in either
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Clustered condition

Nonclustered condition

FIG. 8. Two initial conditions for PBCs when L = 4 and ρ = 3
8 .

Note that the two conditions can be defined when ρ � 3
8 ; otherwise,

only the clustered condition can be defined.

subsystem 1, 2, or 4. For ρ � 1
8 , all the particles are posi-

tioned in subsystem 1 with one-site interval. For 1
8 < ρ � 1

4 ,
the particles which cannot be accommodated in subsystem 1
are positioned in subsystem 2 with a one-site interval. For
1
4 < ρ � 3

8 , the particles which cannot be accommodated in
subsystem 1 or 2 are positioned in subsystem 4 with a one-
site interval. We note that for ρ > 3

8 a nonclustered initial
condition cannot be realized.

On the other hand, in a clustered condition, all the particles
are positioned behind the merging point to intentionally gen-
erate conflicts. In the simulations, half the particles are placed
as one cluster in both subsystems 2 and 3 for 0 < ρ � 1

2 .
For ρ > 1

2 , the particles which cannot be accommodated in
subsystem 2 or 3 are positioned in subsystems 1 and 4 with no
interval, starting from the right edge.

Figure 8 compares the examples of the two initial
conditions.

APPENDIX C: FUNDAMENTAL DIAGRAMS
WITH VARIOUS μ

Figure 9 presents the fundamental diagram of the system
with various μ ∈ {0, 0.2, 0.8, 1}. Except for the case of μ= 0,
we confirm the same phenomena as Fig. 2. For the case of
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FIG. 10. Hysteresis plots for (a) (μ, α) = (0, 1), (b) (μ, β ) =
(0, 1), (c) (μ, α) = (0.2, 0.9), (d) (μ, β ) = (0.2, 0.9), (e) (μ, α) =
(0.8, 0.5), (f) (μ, β ) = (0.8, 0.5), (g) (μ, α) = (1, 0.5), and (h)
(μ, β ) = (1, 0.5). We note that (e) and (f) are identical to Fig. 4. The
black lines in (g) and (h), entirely or partially, overlap the horizontal
axis. Other explanations are the same as those of Fig. 4.

μ = 0, there is no conflict at the merging point, and therefore,
the metastable FF regime vanishes.

APPENDIX D: HYSTERESIS PLOTS WITH VARIOUS μ

Figure 10 presents the hysteresis plots for various μ ∈
{0, 0.2, 0.8, 1}. Except for the case of μ = 0, we confirm the
same phenomena as Fig. 4.

APPENDIX E: CALCULATION SCHEME OF FIG. 4

We here explain the details of the calculation scheme of
Fig. 4. The specific scheme with a fixed β is as follows:

(1) The simulation starts from ρini = 0 with (α, β ) =
(0, 0.5) [(α, β ) = (1, 0.5)].

(2) The system is evolved for 106 time steps.
(3) We increase (decrease) α by 10−3 every 104 time steps;

i.e., the system is evolved for 104 time steps with a certain
set of (α, β ). At the same time, we calculate snapshot values
of Q̄. We note that we do not restart the simulation, i.e., all
the particles in the system remain at the same sites when α is
changed.
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time
106 104 104 104

…

=0

=10-4

=2*10-4

=3*10-4

…

ini=0

FIG. 11. Schematic of the calculation scheme with fixed β, start-
ing from α. The space-averaged flow Q̄ is calculated every 104 time
steps.

This scheme can be illustrated as in Fig. 11. The case with
a fixed α is absolutely identical.

APPENDIX F: SIMPLE APPROXIMATION
FOR PHASE DIAGRAMS

We first recall the phase diagram of the one-lane L-site
TASEP with no branching-merging structures for parallel
updating [44]. When the entrance governs the system (i.e.,
α < β � 1), a LD phase is observed with

Q = α

1 + α
, ρbulk = α

1 + α
, ρ1 = α

1 + α
, ρL = α

β(1 + α)
,

(F1)

where Q is the flow of the system, ρbulk is the bulk density, ρ1

is the density of the first site, and ρL is the density of the Lth
site.

When the exit governs the system (i.e., β < α � 1), a HD
phase is observed with

Q = β

1 + β
, ρbulk = 1

1 + β
, ρ1 = 1 − β

α(1 + β )
,

ρL = 1

1 + β
. (F2)

When α = β < 1, a shock-wave (SW) phase, which is also
referred to as a transition line or coexistence line, is observed
with

Q = α

1 + α
, ρi = α

1 + α
+ 1 − α

1 + α

i

L
, (F3)

where ρi is the density of the ith (1 � i � L) site.
When α = β = 1, a maximal current (MC) phase is ob-

served with

Q = 1

2
, ρbulk = 1

2
. (F4)

Based on the above discussion, we investigate the phase
diagram of this system. With the notion of flow conservation,
we have

Q1 = Q2 + Q3 = Q4 � 1

2
, Q2 = Q3, (F5)

where Qj ( j = 1, 2, 3, 4) is the flow of subsystem j.
The effective probabilities at the branching points αeff,b and

βeff,b can be expressed as

αeff,b = ρL, βeff,b = 2(1 − ρL+1), (F6)

whereas the effective probabilities at the merging points αeff,m

and βeff,m can be expressed as

αeff,m = 2ρ2L, βeff,m = 1 − ρ2L+1, (F7)

when subsystems 2 and 3 are in the LD phase, where a con-
flict rarely occurs. These expressions are the same as those
reported in previous studies [33–35,38]. However, when sub-
systems 2 and 3 are in the HD phase, a conflict almost always
occurs, and the expression of αeff,m becomes

αeff,m = 1 − μ. (F8)

Because the three stationary phases (LD, HD, and MC) can
be found in each lane and subsystems 2 and 3 have identical
phases due to a symmetry, the number of possible phase
combinations of the system is equal to 27(= 33). However,
it is evident that 17 of these phases cannot exist. Nine of
them cannot exist because J2 � 1

4 according to Eqs. (F5),
indicating that an MC phase cannot be present in subsys-
tems 2 and 3. In addition, eight of the 17 phases cannot
exist because the MC phase cannot occur in subsystem 1 or
4 alone since J1 = J4. Therefore, there are ten valid phase
combinations as follows: (LD, LD, LD), (LD, LD, HD), (LD,
HD, LD), (LD, HD, HD), (HD,LD, LD), (HD, LD, HD),
(HD, HD, LD), (HD, HD, HD), (MC, LD, MC), and (MC,
HD, MC). In the following discussion, we examine the re-
quirements and density profile for each phase using a simple
approximation.

(1) (LD, LD, LD) phase
The following conditions must be satisfied:

α < βeff,b, αeff,b < βeff,m, αeff,m < β. (F9)

Using Eqs. (F1) and (F5), we obtain

α

1 + α
= 2αeff,b

1 + αeff,b
= αeff,m

1 + αeff,m
, (F10)

resulting in

αeff,b = α

2 + α
, αeff,m = α. (F11)

From Eqs. (F1), (F6), and (F7), we obtain

ρL = α

βeff,b(1 + α)
, ρL+1 = αeff,b

1 + αeff,b
, (F12)

ρ2L = αeff,b

βeff,m(1 + αeff,b)
, ρ2L+1 = αeff,m

1 + αeff,m
, (F13)

βeff,b = 2 + α

1 + α
(> α), βeff,m = 1

1 + α
(> αeff,b). (F14)

Based on Eqs. (F11) and (F14), Eqs. (F9) can be simplified to

α < β. (F15)

We note that βeff,b > 1 despite the fact that βeff,b is a proba-
bility. Therefore, hereafter we consider βeff,b = 1 for practical
purposes.

(2) (LD, LD, HD) phase
The following conditions must be satisfied:

α < βeff,b, αeff,b < βeff,m, αeff,m > β. (F16)

044121-7



YAMAMOTO, YANAGISAWA, AND NISHINARI PHYSICAL REVIEW E 108, 044121 (2023)

Using Eqs. (F1), (F2), and (F5), we obtain

α

1 + α
= 2αeff,b

1 + αeff,b
= β

1 + β
, (F17)

resulting in

α = β, αeff,b = α

2 + α
. (F18)

From Eqs. (F1), (F2), (F6), and (F7), we obtain

ρL = α

βeff,b(1 + α)
, ρL+1 = αeff,b

1 + αeff,b
, (F19)

ρ2L = αeff,b

βeff,m(1 + α)
, ρ2L+1 = 1 − β

αeff,m(1 + β )
, (F20)

βeff,b = 2 + α

1 + α
(> α). (F21)

We note that αeff,m and βeff,m cannot be determined from the
above relationships.

(3) (LD, HD, LD) phase
The following conditions must be satisfied:

α < βeff,b, αeff,b > βeff,m, αeff,m < β. (F22)

Using Eqs. (F1), (F2), and (F5), we obtain
α

1 + α
= 2βeff,m

1 + βeff,m
= αeff,m

1 + αeff,m
, (F23)

resulting in

αeff,m = α, βeff,m = α

2 + α
. (F24)

From Eqs. (F1), (F2), (F6), and (F8), we obtain

ρL = α

βeff,b(1 + α)
, (F25)

ρL+1 = 1 − βeff,m

αeff,b(1 + βeff,m )
, (F26)

ρ2L = 1

1 + βeff,m
, ρ2L+1 = αeff,m

(1 + αeff,m )
, (F27)

αeff,m = α = 1 − μ. (F28)

We note that αeff,b and βeff,b cannot be determined from the
above relationships.

(4) (LD, HD, HD) phase
The following conditions must be satisfied:

α < βeff,b, αeff,b > βeff,m, αeff,m > β. (F29)

Using Eqs. (F1), (F2), and (F5), we obtain

α

1 + α
= 2βeff,m

1 + βeff,m
= β

1 + β
, (F30)

resulting in

α = β, βeff,m = α

2 + α
. (F31)

From Eqs. (F1), (F2), (F6), and (F8), we obtain

ρL = α

βeff,b(1 + α)
, (F32)

ρL+1 = 1 − βeff,m

αeff,b(1 + βeff,m )
, (F33)

ρ2L = 1

1 + βeff,m
, ρ2L+1 = 1 − β

αeff,m(1 + β )
, (F34)

αeff,m = 1 − μ. (F35)

We note that αeff,b and βeff,b cannot be determined from the
above relationships.

(5) (HD, LD, LD) phase
The following conditions must be satisfied:

α > βeff,b, αeff,b < βeff,m, αeff,m < β. (F36)

Using Eqs. (F1), (F2), and (F5), we obtain

βeff,b

1 + βeff,b
= 2αeff,b

1 + αeff,b
= αeff,m

1 + αeff,m
, (F37)

resulting in

αeff,b = βeff,b

2 + βeff,b
, αeff,m = βeff,b. (F38)

From Eqs. (F1), (F6), and (F38), we obtain

ρL+1 = αeff,b

1 + αeff,b
, βeff,b =

√
2, (F39)

which never satisfies α > βeff,b; therefore, this phase cannot
exist.

(6) (HD, LD, HD) phase
The following conditions must be satisfied:

α > βeff,b, αeff,b < βeff,m, αeff,m > β. (F40)

Using Eqs. (F1), (F2), and (F5), we obtain

βeff,b

1 + βeff,b
= 2αeff,b

1 + αeff,b
= β

1 + β
, (F41)

resulting in

αeff,b = β

2 + β
, βeff,b = β. (F42)

From Eqs. (F1), (F6), and (F42), we obtain

ρL = 1

1 + βeff,b
, αeff,b = 1

1 + βeff,b
= β

1 + β
. (F43)

Equation (F42) contradicts Eq. (F43); therefore, this phase
cannot exist.

(7) (HD, HD, LD) phase
The following conditions must be satisfied:

α > βeff,b, αeff,b > βeff,m, αeff,m < β. (F44)

Using Eqs. (F1), (F2), and (F5), we obtain

βeff,b

1 + βeff,b
= 2βeff,m

1 + βeff,m
= αeff,m

1 + αeff,m
, (F45)

resulting in

αeff,m = βeff,b, βeff,m = βeff,b

2 + βeff,b
. (F46)

From Eqs. (F1), (F2), (F8) and (F46), we obtain

ρL = 1

1 + βeff,b
, ρL+1 = 1 − βeff,m

αeff,b(1 + βeff,m )
, (F47)
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ρ2L = 1

1 + βeff,m
, ρ3L = αeff,m

β(1 + αeff,m )
, (F48)

αeff,m = βeff,b = 1 − μ, (F49)

αeff,b = 1

2 − μ
, βeff,m = 1 − μ

3 − μ
(< αeff,b). (F50)

Based on Eqs. (F49) and (F50), Eq. (F44) can be simplified to

α > 1 − μ, β > 1 − μ. (F51)

(8) (HD, HD, HD) phase
The following conditions must be satisfied:

α > βeff,b, αeff,b > βeff,m, αeff,m > β. (F52)

Using Eqs. (F1), (F2), and (F5), we obtain

βeff,b

1 + βeff,b
= 2βeff,m

1 + βeff,m
= β

1 + β
, (F53)

resulting in

βeff,b = β, βeff,m = β

2 + β
. (F54)

From Eqs. (F1), (F2), (F8) and (F46), we get

ρL = 1

1 + βeff,b
, ρL+1 = 1 − βeff,m

αeff,b(1 + βeff,m )
, (F55)

ρ2L = 1

1 + βeff,m
, ρ2L+1 = 1 − 1

αeff,m(1 + β )
, (F56)

αeff,m = 1 − μ, αeff,b = 1

1 + β
(> βeff,m ). (F57)

Based on Eqs. (F54) and (F57), Eq. (F52) can be simplified to

α > β, β < 1 − μ. (F58)

(9) (MC, LD, MC) phase
The following conditions must be satisfied:

α = βeff,b = αeff,m = β = 1, αeff,b < βeff,m. (F59)

Using Eqs. (F1), (F4), and (F5), we obtain

2αeff,b

1 + αeff,b
= 1

2
⇔ αeff,b = 1

3
. (F60)

From Eqs. (F1), (F4), (F7) and (F60), we obtain

ρL = αeff,b, ρL+1 = αeff,b

1 + αeff,b
, (F61)

ρ2L = αeff,m

2
, ρ2L+1 = 1 − βeff,m, (F62)

βeff,m = 1

2
> αeff,b. (F63)

(10) (MC, HD, MC) phase
The following conditions must be satisfied:

α = βeff,b = αeff,m = β = 1, αeff,b > βeff,m, (F64)

which contradicts Eq. (F8); therefore, this phase cannot exist.
Based on the above analysis, it can be seen that the system

can exhibit seven possible phases, specifically, (LD, LD, LD),
(LD, LD, HD), (LD, HD, LD), (LD, HD, HD), (HD, HD, LD),
(HD, HD, HD), and (MC, LD, MC). Surprisingly, the region
in which α > β, α � 1 − μ, and β � 1 − μ, or α = β = 1,

can exhibit two possible phases, which we refer to as noner-
godic phases.

APPENDIX G: PHASE BOUNDARIES

This Appendix investigates the phase boundaries, specifi-
cally, (i) α = 1 − μ < β, (ii) α = β > 1 − μ, (iii) β = 1 −
μ < α, (iv) α = β < 1 − μ, and (v) α = β = 1 − μ. This
investigation is performed because the phase and the density
profile for the boundaries cannot be determined from the
simple approximation in Appendix F. We note that for all the
simulations below, L = 500.

(1) α = 1 − μ < β

With low-initial-density conditions, the system clearly ex-
hibits the (LD, LD, LD) phase from an early stage in the
simulation.

In contrast, with high-initial-density conditions, the steps
to reach a steady state are somewhat complex; specifically,

(a) Conflicts occur due to congestion at the merging
point, leading to αeff,m = 1 − μ < β. This results in the
LD phase in subsystem 4.

(b) A SW arises at the right boundary and moves
throughout subsystems 1, 2, and 3 because the maximal
input flow equals the flow at the merging point, that is,

α

1 + α
= 2βeff,m

1 + βeff,m

(
=

2 × 1−μ

3−μ

1 + 1−μ

3−μ

)
, (G1)

leading to a temporary SW phase in subsystems 1, 2, and 3.
(c) Once the SW reaches the merging point, the value

of βeff,m changes from βeff,m = 1−μ

3−μ
to βeff,m = 1

1+α
, lead-

ing to the disappearance of the SW.
(d) Subsystems 1, 2, and 3 exhibit an LD phase because

the maximal input flow is less than the flow at the merging
point, that is,

α

1 + α
<

2βeff,m

1 + βeff,m

(
= 2 × 1

1+α

1 + 1
1+α

)
. (G2)

Therefore, the system yields the (LD, LD, LD) phase.
Figure 12 presents space-time plots for (α, β, μ) =

(0.2, 0.5, 0.8). In this figure and subsequent figures, the
space-time plots only illustrate the states of subsystems 1, 2,
and 4 because the states of subsystem 3 are almost identical to
those of subsystem 2. Figure 12 confirms the above explana-
tions. Refer to Sec. I for the density profile.

(2) α = β > 1 − μ

With low-initial-density conditions, the steps to a steady
state are as follows:

(a) A SW arises at the right boundary because α = β.
(b) Once the SW reaches the merging point, conflicts

occur at the merging point and the value of αeff,m changes
from αeff,m = α to αeff,m = 1 − μ. This leads to the disap-
pearance of the SW.

(c) Subsystems 1, 2, and 3 exhibit the HD phase be-
cause the maximal input flow exceeds the flow at the
merging point, that is,

α

1 + α
>

2βeff,m

1 + βeff,m

(
=

2 × 1−μ

3−μ

1 + 1−μ

3−μ

)
. (G3)
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FIG. 12. Space-time plots for (α, β, μ) = (0.2, 0.5, 0.8). The
value t represents the simulation time. The low-initial-density
condition (ρini = 0) is adopted for (a) and (b), while the high-initial-
density condition (ρini = 1) for (c) and (d). Snapshots with t ∈
[0, 104] are plotted for (a) and (c), while snapshots with t ∈ [0, 107]
are plotted every 103 time steps for (b) and (d).

In contrast, subsystem 4 exhibits an LD phase because
αeff,m<β. Therefore, the system exhibits the (HD, HD, LD)
phase.
With high-initial-density conditions, the steps are as

follows:
(a) Conflicts occur due to congestion at the merging

point, leading to αeff,m = 1 − μ < β. This results in the
LD phase in subsystem 4.

(b) Finally, subsystems 1, 2, and 3 present the HD
phase, because the maximal input flow exceeds the flow
at the merging point, i.e.,

α

1 + α
>

2βeff,m

1 + βeff,m

(
=

2 × 1−μ

3−μ

1 + 1−μ

3−μ

)
. (G4)

Therefore, the system yields the (HD, HD, LD) phase.
Figure 13 presents space-time plots for (α, β, μ) =

(0.5, 0.5, 0.8), which confirm the above explanations. Refer
to Sec. I for the density profile.

(3) β = 1 − μ < α

With low-initial-density conditions, the steps to a steady
state are as follows:

(a) Particles accumulate at the right boundary because
the input flow exceeds the output flow, that is,

α

1 + α
>

β

1 + β
. (G5)

(b) Conflicts occur due to congestion at the merging
point, leading to αeff,m = 1 − μ = β. This results in the
SW phase in subsystem 4.

(c) Subsystems 1, 2, and 3 exhibit the HD phase be-
cause the input flow exceeds the flow at the merging point,
that is,

α

1 + α
>

2βeff,m

1 + βeff,m

(
=

2 × 1−μ

3−μ

1 + 1−μ

3−μ

)
. (G6)
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FIG. 13. Space-time plots for (α, β, μ) = (0.5, 0.5, 0.8). Snap-
shots with t ∈ [0, 104] are plotted for (a) and (c), while snapshots
with t ∈ [0, 106] are plotted every 103 time steps for (b) and (d). The
other conditions are the same as in Fig. 12.

Therefore, the system yields the (HD, HD, SW) phase.
We note that with high-initial-density conditions, the steps

start from (b).
Figure 14 presents space-time plots for (α, β, μ) =

(0.5, 0.2, 0.8), which confirm the above explanations.
The density profile for subsystems 1, 2, and 3 is the same as

that for the (HD, HD, HD) phase, whereas that for subsystem
4 (2 < x � 3) can be represented as follows [44]:

ρ(x) = 1 − μ

2 − μ
+ μ

2 − μ
(x − 2). (G7)

(4) α = β < 1 − μ

A SW arises at the right (left) boundary with low-initial-
density (high-initial-density) conditions because α = β. The
SW does not disappear, and another SW arises because the
maximal input flow cannot exceed the flow at the merging
point. Therefore, the SW moves throughout the system, and
the system yields the (SW, SW, SW) phase.
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FIG. 14. Space-time plots for (α, β, μ) = (0.5, 0.2, 0.8). Snap-
shots with t ∈ [0, 104] are plotted for (a) and (c), while snapshots
with t ∈ [0, 106] are plotted every 103 time steps for (b) and (d). The
other conditions are the same as in Fig. 12.
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FIG. 15. Space-time plots for (α, β, μ) = (0.1, 0.1, 0.8). Snap-
shots with t ∈ [0, 104] are plotted for (a) and (c), while snapshots
with t ∈ [0, 108] are plotted every 104 time steps for (b) and (d). The
other conditions are the same as in Fig. 12.

Figure 15 presents space-time plots for (α, β, μ) =
(0.1, 0.1, 0.8), which confirm the above explanations.

To obtain the density profile, domain wall theory
[33,34,50] is used. First, the domain wall in each subsystem
have a random walk though a speed

vDW = Q+ − Q−
ρ

j
+ − ρ

j
−

, (G8)

where + (−) represents the phase to the right (left) of the
domain wall, j represents the subsystem number, and the right
direction of an axis is defined as the positive direction.

We define the position of the domain wall as x = i
L , where i

is the site number. The domain wall moves with velocity v1 in
subsystem 1 when 0 < x � 1, with velocity v2 in subsystems
2 and 3 when 1 < x � 2, and with velocity v4 in subsystem
4 when 2 < x � 3, as illustrated in Fig. 16. The velocity is
given as

v j = Qj

ρ
j
+ − ρ

j
−

for j = 1, 2, 4, (G9)

0

0.5

1

0 1 2 3

x

D
en

si
ty

xDW xDW xDW

-
1

+
1

-
2

+
2

-
4

+
4

v1 v1 v2 v2 v4 v4

Subsystem 1 Subsystem 2 Subsystem 4

FIG. 16. Schematic of domain wall dynamics for α = β<1−μ.
The domain wall moves with velocities v1, v2, and v4 in subsystems
1, 2, and 4, respectively. We note that only one domain wall can exist
in the system at the same time.

where

ρ1
− = α

1 + α
, ρ1

+ = 1

1 + α
, (G10)

ρ2
− = α

2(1 + α)
, ρ2

+ = 2 + α

2(1 + α)
, (G11)

ρ4
− = β

1 + β
, ρ4

+ = 1

1 + β
, (G12)

Q1 = α

1 + α
, Q2 = α

2(1 + α)
, Q4 = β

1 + β
. (G13)

We note that this simple approximation determines whether
the system exhibits the (LD, LD, HD) or (LD, HD, HD)
phase, and the values of (ρ1

−, ρ1
+, ρ2

−, ρ2
+, ρ4

−, ρ4
+, Q1, Q2, Q4)

are determined under the assumption.
Using Eqs. (G9)–(G13), v1, v2, and v4 can be expressed as

v1 = α

1 − α
, v2 = α

2
, v4 = β

1 − β
. (G14)

The probability of a domain wall in a site in subsystems
1, 2, and 4 is equal to q1

L , q2

L , and q4

L , respectively, where
q1, q2, and q4 represent the probabilities of the domain wall
in subsystems 1, 2, and 4, respectively. As a result, at the
branching (merging) point, we have

v1q1

L
= v2q2

L
= v4q4

L
. (G15)

In addition, q1, q2, and q4 satisfy the normalization condition:

q1 + q2 + q4 = 1. (G16)

Using Eqs. (G14)–(G16), we have

q1 = β(1 − α)

α + 3β − 2αβ
, (G17)

q2 = 2β

α + 3β − 2αβ
, (G18)

q4 = α(1 − β )

α + 3β − 2αβ
. (G19)

Therefore, the probabilities of domain walls in a certain region
are expressed as

Prob(xDW < x) =

⎧⎪⎨
⎪⎩

q1x (0 < x � 1)

q1 + q2(x − 1) (1 < x � 2)

q1 + q2 + q4(x − 2) (2 < x � 3).
(G20)
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Thus, we obtain the density at x in the system ρ(x) as follows:

ρ(x) =

⎧⎪⎨
⎪⎩

ρ1
−(1 − q1x) + ρ1

+q1x (0 < x � 1)

ρ2
−[1 − q1 − q2(x − 1)] + ρ2

+[q1 + q2(x − 1)] (1 < x � 2)

ρ4
−[1 − q1 − q2 − q3(x − 2)] + ρ4

+[q1 + q2 + q3(x − 2)] (2 < x � 3).

(G21)

From Eqs. (G10)–(G12), (G17)–(G19), (G21), and α = β, we have

ρ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α
1+α

+ (1−α)2

(1+α)(4−2α) x (0 < x � 1)

1+α−α2

(1+α)(4−2α) + 1
(1+α)(2−α) (x − 1) (1 < x � 2)

3−α2

(1+α)(4−2α) + (1−α)2

(1+α)(4−2α) (x − 2) (2 < x � 3).

(G22)

(5) α = β = 1 − μ

With low-initial-density conditions, the steps to a steady
state are as follows:

(a) A SW occurs at the right boundary because α = β.
(b) Once the SW reaches the merging point, conflicts

occur at the merging point and the value of αeff,m changes
from αeff,m = α to αeff,m = 1 − μ.

(c) Another SW arises in subsystems 1–3 because the
maximal input flow equals the flow at the merging point,
that is,

α

1 + α
= 2βeff,m

1 + βeff,m

(
=

2 × 1−μ

3−μ

1 + 1−μ

3−μ

)
. (G23)

In contrast, the SW in subsystem 4 is still present because
the flow at the merging point equals the maximal output
flow, that is,

2βeff,m

1 + βeff,m

(
=

2 × 1−μ

3−μ

1 + 1−μ

3−μ

)
= β

1 + β
. (G24)
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FIG. 17. Space-time plots for (α, β, μ) = (0.2, 0.2, 0.8). Snap-
shots with t ∈ [0, 104] are plotted for (a) and (c), while the snapshots
with t ∈ [0, 108] are plotted every 104 time steps for (b) and (d). The
other conditions are the same as in Fig. 12.

Therefore, the system yields the (SW1, SW1, SW2) phase.
We note that SW1 and SW2 are clearly separated because
different SWs determine the phases.
In contrast, with high-initial-density conditions, the steps

to a steady state are as follows:
(a) Conflicts occur due to congestion at the merging

point, leading to αeff,m = 1 − μ = β.
(b) A SW arises at the left boundary, while another SW

arises at the merging point because the maximal input flow,
the flow at the merging point, and the maximal output flow
all have the same value, that is,

α

1 + α
= 2βeff,m

1 + βeff,m

(
=

2 × 1−μ

3−μ

1 + 1−μ

3−μ

)
= β

1 + β
, (G25)

leading to the (SW1, SW1, SW2) phase.
Figure 17 presents space-time plots for (α, β, μ) =

(0.2, 0.2, 0.8), which confirms the above explanations.
Next, we use domain wall theory to obtain the density

profile. Unlike in the case of α = β < 1 − μ, two domain
walls exist in the system; one moves through subsystems 1
and 2, while the other moves through subsystem 4.

Q ( ini=0) Q ( ini=1)

FIG. 18. (a) Simulation values of Q for ρini = 0. (b) Simulation
values of Q for ρini = 1. The five black crosses in each panel rep-
resent (α, β) = (0.1, 0.5), (0.5, 0.1), (0.5, 0.6), (0.6, 0.5), and (1,1),
while the five black circles represent (α, β) = (0.2, 0.5), (0.5, 0.5),
(0.5, 0.2), (0.1, 0.1), and (0.2,0.2), which are used in Appendix I.
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FIG. 19. Space-time plots for (α, β, μ) = (0.5, 0.6, 0.8). Snap-
shots with t ∈ [0, 104] are plotted for (a) and (c), while the snapshots
with t ∈ [0, 106] are plotted every 102 time steps for (b) and (d). The
other conditions are the same as in Fig. 12.

First, the density profile for subsystem 4 (2 < x � 3) can
be represented as follows [44]:

ρ(x) = 1 − μ

2 − μ
+ μ

2 − μ
(x − 2). (G26)

Then, we obtain the density profile for subsystems 1
and 2. The same values are given for (ρ1

−, ρ1
+, ρ2

−, ρ2
+,

Q1, Q2, v1, v2) as in the case of α = β < 1 − μ.
At the branching point, we have

v1q1

L
= v2q2

L
. (G27)

Here, q1 and q2 satisfy the normalization condition:

q1 + q2 = 1. (G28)

From Eqs. (G14), (G27), and (G28), we have

q1 = 1 − α

3 − α
, (G29)

q2 = 2

3 − α
. (G30)
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FIG. 20. Space-time plots for (α, β, μ) = (1, 1, 0.8). Snapshots
with t ∈ [0, 104] are plotted for (a) and (c), while the snapshots with
t ∈ [0, 106] are plotted every 102 time steps for (b) and (d). The other
conditions are the same as in Fig. 12.
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FIG. 21. Density profiles with μ = 0.8 for each phase. Circles
represent the simulation results, while red solid lines represent es-
timates of the theoretical results. Other parameters are displayed in
each panel.

From Eqs. (G21), (G29), and (G30), we have

ρ(x) =

⎧⎪⎨
⎪⎩

α
1+α

+ (1−α)2

(1+α)(3−α) x (0 < x � 1)

2−α
2(3−α) + 2

(1+α)(3−α) (x − 1) (1 < x � 2).
(G31)

APPENDIX H: PHASE DIAGRAMS

Based on the above discussion, we describe the phase
diagram presented Fig. 6. To validate our theoretical ap-
proximation, we perform simulations with two kinds of
initial conditions: ρini = 0 (low-initial-density condition) and
ρini = 1 (high-initial-density condition), as illustrated in
Fig. 18. As expected, a nonergodic phase, in which the
phase depends on the initial conditions, is observed. The
dependency of the phase on the initial conditions can be
confirmed by Figs. 19 and 20, which present space-time plots
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FIG. 22. Density profiles with μ = 0.8 for each phase boundary.
Circles represent the simulation results, while red solid lines repre-
sent the theoretical results. Other parameters are displayed in each
panel. To obtain the densities, we evolve the system for 108 time
steps and calculate the averages of 108 time steps for (a), (b), (e), (f),
(i), and (j). In contrast, we use the average of ten trials of the densities
for 108 time steps after evolving the system for 108 time steps with
one standard error for (g) and (h) because their standard errors are
relatively large.

for (α, β, μ) = (0.5, 0.6, 0.8) and for (α, β, μ) = (1, 1, 0.8),
respectively.

APPENDIX I: DENSITY PROFILE

This Appendix compares the density profiles obtained from
the theoretical analysis and the simulations.

Figure 21 presents density profiles for the black crosses
in Fig. 18, which exist in each phase, for the two initial
conditions, comparing the simulation and theoretical results.
We note that only the density profiles of subsystems 1, 2, and
4 are presented because the profiles of subsystems 2 and 3 are
equivalent due to their symmetry (the same holds for Fig. 22).

FIG. 23. Probability of two steady-state phases (LD, LD, LD)
(blue) or (HD, HD, LD) (orange) as a function of ρini, with the
red line representing the estimated ρini = ρini,cr [i.e., Eq. (8)] for
(a) μ = 0, (b) μ = 0.2, (c) μ = 0.4, (d) μ = 0.6, (e) μ = 0.8, and
(f) μ = 1. For all cases, we set (α, β ) = (0.85, 0.9), with which the
system always satisfies α > 1 − μ and α < β, i.e., the system is in
the nonergodic phase, except for the case of μ = 0. We calculate
the probabilities for each ρini in increments of 0.01 (black circles)
by 100-time (for μ = 1) and 10-time (for others) simulations with
random configurations. We note that (e) is identical to Fig. 7. Other
explanations are the same as those of Fig. 7.

The simulation results are in excellent agreement with the
theoretical results.

Figure 22 presents density profiles for the black circles in
Fig. 18, which exist on each phase boundary, for the two initial
conditions, comparing the simulation results and theoretical
results. The simulation results are generally in excellent agree-
ment with the results of the simple approximations, except
for (α, β ) = (0.1, 0.1), (0.2, 0.2). For (α, β ) = (0.1, 0.1), the
deviation of densities for each trial is relatively large because a
SW moves through the system; however, the average generally
agrees with the theoretical results.

The above discussion demonstrates the validity of our the-
oretical analysis.

APPENDIX J: PROBABILITY OF TWO STEADY-STATE
PHASES WITH VARIOUS μ

Figure 23 presents the hysteresis plots for various μ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1}. Except for the case of μ = 0, we
confirm the same phenomena as Fig. 7. We stress that Eq. (8)
does not hold true for the case of μ = 0 (no collision), because
Q never equals to QM, and therefore, the red line cannot
be depicted for all (α, β ). For the case of μ = 1, the the-
oretical value of ρini,cr becomes 0; however, various initial
configurations, with which collisions can be avoided, exist in
low-initial-density conditions, resulting in an existence of the
(LD,LD,LD) phase for small ρini,cr.
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