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Steady-state moments under resetting to a distribution
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The nonequilibrium steady state emerging from stochastic resetting to a distribution is studied. We show that
for a range of processes, the steady-state moments can be expressed as a linear combination of the moments
of the distribution of resetting positions. The coefficients of this series are universal in the sense that they do
not depend on the resetting distribution, only the underlying dynamics. We consider the case of a Brownian
particle and a run-and-tumble particle confined in a harmonic potential, where we derive explicit closed-form
expressions for all moments for any resetting distribution. Numerical simulations are used to verify the results,
showing excellent agreement.
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I. INTRODUCTION

Large fluctuations are present in almost all systems in
nature and are typically unavoidable in small systems. Instan-
taneous and large jumps in a system’s state can have drastic
implications for the system dynamics and potentially drive it
out of thermal equilibrium. Stochastic resetting is one exam-
ple of large and sudden fluctuations, whereby a system’s state
is typically brought back to its initial state at a constant rate
[1,2]. The study of (nonequilibrium) steady states emerging
from stochastic resetting has gained significant attention in the
past decade due to both its broad relevance in diverse scientific
disciplines and the analytically tractable steady states that
emerge. Most well known is perhaps the application of reset-
ting in search processes, where it has been shown that resets,
when optimized, can expedite a search process [1,3–7]. In
biology resetting can be found across multiple scales, ranging
from protein-bound search processes [8] to the migratory and
foraging patterns of animals [9,10]. In physics, fundamental
aspects have been in regard to the nonequilibrium nature of re-
setting, such as relaxation dynamics to nonequilibrium steady
states [11,12] and stochastic thermodynamics [13–20].

The paradigmatic example of stochastic resetting in
physics is that of a reset Brownian motion [1,2,21–23]. Since
the first studies of resetting in its modern form more than a
decade ago, a myriad of generalizations have surfaced, includ-
ing Brownian motion in potentials [24,25], processes where
the diffusivity switches between multiple possible values [26],
fractional Brownian processes [27,28], and in active matter
models like active Brownian and run-and-tumble particles
[29–32]. Steady states have also been studied under a variety
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of resetting schemes, for example, time-dependent resetting
rates [33], noninstantaneous resets [34], non-Poissonian wait-
ing times [34–36], and resetting mediated by an external trap
[37], to mention a few. For a recent review of stochastic
resetting and its applications, see [2].

Another resetting scheme of high degree of relevance to
both theory and experiments is one where the resetting posi-
tion is random and drawn from a distribution pR(x). Recently,
it has been argued that only for resetting distributions that
are not δ peaked does the standard path-based framework of
stochastic thermodynamics make sense for resetting systems
[18]. It is also highly natural to assume that resets cannot be
performed with perfect precision, neither in experiments nor
in natural systems. In addition, from a theoretical perspective,
the resetting distribution pR(x) introduces new length scales
into the problem, which can give rise to interesting phenom-
ena.

In this paper we characterize the steady states of resetting
processes where the reset position is drawn from a distribution
pR(x0). See Fig. 1 for a sketch of the system we consider. We

FIG. 1. Sketch of the system under consideration. A parti-
cle moving in a potential V (x) undergoes resetting with constant
rate r to a resetting distribution pR(x). Multiple length scales are
present in the problem, competing to produce interesting steady-state
properties.
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consider Poissonian resets, where the waiting time between
resets is distributed exponentially with constant rate r. The
exact steady-state distribution can in general be rather arduous
to compute for any interesting choice of pR(x0), and using
it to calculate moments and cumulants can be tricky from a
practical standpoint. Here we provide an alternate approach,
where we find exact closed-form formulas for all the moments
in the steady state, assuming that the moments of the resetting
distribution 〈xn

0〉R are known a priori. The main results take
the form

〈xn〉∗ =
n∑

j=0

Cn j
〈
x j

0

〉
R, (1)

where the asterisk denotes steady states and the coefficients
{Cn j}n

j=1 depend only on resetting rate and underlying system
parameters. The fact that the coefficients will not depend on
the shape of the resetting distribution makes the results rather
universal and can be used for gain insight into the steady states
for any choice of resetting distribution once the coefficients
Cn j are known. The presented results could be verified experi-
mentally using optical tweezers and be of relevance to further
theoretical studies of distributed resetting, for example, in
thermodynamical settings [18].

This paper is organized as follows. Section II introduces
the (last) renewal equation and uses it to prove the main result
of the paper, Eq. (1), for the steady-state moments for a class
of processes. Section III derives the series coefficients Cn j for
Brownian motion in a harmonic potential, i.e., for an Ornstein-
Uhlenbeck process. In Sec. IV we consider a run-and-tumble
particles in a harmonic potential, which may be thought of as
a non-Markovian version of the Ornstein-Uhlenbeck process,
driven by a telegraphic noise. Section V offers concluding
remarks.

II. RENEWAL EQUATION APPROACH

The standard route to find the propagator p(x, t |x0) in the
presence of resetting is through the (last) renewal equation [2]

p(x, t |x0) = e−rt p0(x, t |x0)

+ r
∫ t

0
dτ e−rτ

∫
dx0 pR(x0)p0(x, τ |x0). (2)

Here p0(x, t ) is the propagator of the underlying system in
the absence of resetting (r = 0). The first term corresponds
to trajectories where no resetting takes place (which happens
with probability e−rt ). The second term takes into account
trajectories where resetting does happen and makes use of
the fact that at every reset all dynamical memory is erased.
Therefore, one only needs information regarding the last reset,
which took place at time t − τ , before evolving freely for an
exponentially distributed waiting time τ from a reset position
x0 drawn from pR(x0).

In the late-time regime, the renewal equation predicts the
steady state

p∗(x) = r
∫ ∞

0
dτ e−rτ

∫
dx0 pR(x0)p0(x, τ |x0) (3)

= r
∫

dx0 pR(x0) p̃0(x, r|x0), (4)

where p̃0(x, s|x0) is the Laplace transform of p0. For many
interesting cases beyond free Brownian motion, performing
the above integrals analytically is at best arduous and in the
worst case impossible in closed form. Even for simple case of
freely diffusive Brownian particles with a Gaussian resetting
distribution, the steady-state density becomes rather involved
[18]. Here we propose a method based on moments that is
useful when the underlying process is more involved, such as
in the case of distributed resets for diffusion in a potential.

The expression (1) can be shown to follow from the re-
newal equation for a certain class of processes. From the last
renewal equation we know that the steady-state moments can
in general be written as

〈xn〉∗ = r
∫ ∞

0
dτ e−rτ

∫
dx0

∫
dx xn p0(x, τ |x0)pR(x0). (5)

To proceed, we consider a class of processes where the propa-
gator satisfies p0(x, τ |x0) = p0(x − x0g(τ ), τ ) for some time-
dependent function g(τ ) that may be specific to each process.
For spatially homogeneous processes, such as free Brownian
motion and Levy flights, we have p0(x, τ |x0) = p0(x − x0, τ )
and hence g(τ ) = 1. For the Ornstein-Uhlenbeck process with
relaxation time τrel, g(τ ) = exp(−τ/τrel ). Making a change of
coordinates to y = x − x0g(τ ), we find

〈xn〉∗ =r
∫

dτ e−rτ
∫

dx0

∫
dy[y + x0g(τ )]n p0(y, τ )pR(x0).

(6)

Using the binomial formula, we can write

[y + x0g(τ )]n =
n∑

j=0

(
n

j

)
yn− jgj (τ )x j

0. (7)

Combining Eqs. (6) and (7), we immediately find Eq. (1),
where the expansion coefficients take the form

Cn, j = r

(
n

j

) ∫
dy

∫ ∞

0
dτ e−rτ yn− jgj (τ )p0(y, τ ). (8)

We see that the coefficients depends on the resetting rate
and in addition on the propagator of the underlying process
through p0(y, τ ) and g(τ ). In particular, they are related to the
Laplace transform of the moments of the underlying process
without resetting. Importantly, the coefficients do not depend
on the resetting distribution and therefore hold universally for
any choice of pR(x).

Spatially homogeneous processes

Before we move on to study cases where the above ap-
proach is useful, we briefly mention some properties of
spatially homogeneous systems. Homogeneity sets g(t ) = 1,
which will in some cases decouple the space and time integra-
tion in Eq. (8). For example, we have the identities

Cnn = 1, (9)

Cn−1,n−2 = n − 1

n
Cn,n−1, (10)

which follow immediately from Eq. (8). The latter identity
is a consequence of the fact that for homogeneous systems

044120-2



STEADY-STATE MOMENTS UNDER RESETTING TO A … PHYSICAL REVIEW E 108, 044120 (2023)

the integrand in Eq. (8) depends on n and j only through the
combination n − j. This gives rise to the more general identity(

n

n − k

)
Cn−�,n−�−k =

(
n − �

n − � − k

)
Cn,n−k . (11)

These properties of the series coefficients imply that the
cumulants in the steady state are linearly related to the corre-
sponding cumulants of the resetting distribution. For example,
for the variance κ2 and the third cumulant κ3 we have

κ2 = κR
2 + C2,0 − C2

2,1

4
, (12)

κ3 = κR
3 + C3,0 − 3C2,0C1,0 + 2C2

1,0. (13)

Hence the variance and the skew, as measured by κ3, are
directly “inherited” from pR(x), plus terms that comes from
the dynamics in between resetting events. Another way to
look at this is that the cumulants (except the mean) are simply
additive combinations of the corresponding cumulant of the
resetting distribution and the value one would obtain if the
resetting was to a fixed position pR(x) = δ(x − xr ). This is
because in homogeneous systems exactly where the particle
is reset does not matter for cumulants of order higher than 1
due to spatial translational invariance. In this sense, the case of
spatially homogeneous processes is not all that interesting to
study under the effect of a distribution of resetting positions,
as most properties are transferred directly from pR(x) or the
corresponding resetting process when pR(x) = δ(x − xr ).

However, if the system is not homogeneous there are bound
to be some length scales already present in the system. These
can interfere with the scales introduced by the resetting dis-
tribution, giving rise to more complex steady-state properties.
For more general processes, such as Brownian motion in a
harmonic potential, g(t ) �= 1 and the coefficients do not satisfy
the above relations (9)–(11).

While Eqs. (1) and (8) show the general form of the steady-
state moments, these equations are not always convenient as a
practical way to derive Cn, j for specific cases, as the integrals
involved in Eq. (8) are not always trivial. The approach we
will take, relying on the knowledge that Eq. (1) holds, will be
to identify the coefficients Cn j rather easily directly from the
master equation for a range of processes.

III. DISTRIBUTED RESETS IN A HARMONIC POTENTIAL

In this section we consider Brownian motion in a harmonic
potential with resetting to a distribution pR(x). During a time
step dt , the particle has a probability rdt to follow the under-
lying dynamics

x(t + dt ) = x(t ) + μF (x)dt +
√

2D�W (t ) (14)

and a complimentary probability 1 − rdt to be reset

x(t + dt ) = xr . (15)

Here xr is the resetting position which we draw from a reset-
ting distribution pR(x) at every resetting event. In Eq. (14),
�W (t ) is the increment of a Wiener process, which has
mean zero and variance 〈�W (t )2〉 = √

dt . F (x) = −V ′(x) is
a conservative force field originating from a potential V (x),
μ = 1/γ is the mobility (inverse friction coefficient), and D
is the diffusivity.

The associated master equation for the density p(x, t |x0, t )
can be obtained from noting that in a small step dt there are
two ways the density can be updated [2]:

p(x, t + dt |x0, 0) = (1 − rdt )〈p(x − dx, t |x0)〉dx + rdt pR(x).
(16)

Here the first term takes into account trajectories where the
particle at time t was located at position x′ = x − dx before
taking a (random) step dx without resetting. This happens
with probability 1 − rdt . With probability rdt , the particle
resets to a position drawn from pR(x). Expanding to first order
in dt , meaning second order in dx due to the properties of the
Wiener increments, we find in the dt → 0 limit the master
equation

∂t p(x, t ) =∂x[−μF (x)p(x, t ) + D∂x p(x, t )]

− r p(x, t ) + r pR(x), (17)

where we have written p(x, t |x0, t0) = p(x, t ) for simplicity.
The time evolution of any generic observable 〈 f (x)〉 can

be derived using this master equation. If the time-evolution
operator in the absence of resetting is denoted by L̂, we
generally have

∂t 〈 f (x)〉 =
∫

dx f (x)L̂p(x, t ) − r〈 f (x)〉 + r〈 f (x)〉R, (18)

where the subscript R denotes averages calculated using the
resetting distribution pR(x). If a steady state can be reached at
late times ∂t 〈 f (x)〉∗ = 0, we find

〈 f (x)〉∗ = 〈 f (x)〉R + r−1〈L̂† f (x)〉∗, (19)

where the asterisk denotes steady states. For monomial func-
tions f (x) = xn Eq. (19) together with Eq. (17) results in the
hierarchy for the steady-state moments

〈xn〉∗ = 〈xn〉R − nμ

r
〈xn−1∂xV (x)〉∗ + n(n − 1)D

r
〈xn−2〉∗.

(20)

For a harmonic potential V (x) = 1
2 kx2 the hierarchy simpli-

fies, becoming

〈xn〉∗ = 〈xn〉R

1 + nμk
r

+ n(n − 1)D

r
(
1 + nμk

r

) 〈xn−2〉∗. (21)

Rather than calculating the integrals in Eq. (8), we can solve
this second-order recursive equation directly using standard
methods, resulting in

〈xn〉∗ =
n∑

j∈2N

⎛
⎝ ∏

i∈2N,i< j

(n − i)(n − i − 1)

1 + (n−i)μk
r

⎞
⎠

×
(

D

r

) j/2 1

1 + (n− j)μk
r

〈xn− j〉R, (22)

where the sum is over positive even numbers 2N (with zero
included) up to and including n and the product is over pos-
itive even numbers up to the largest even number smaller
than j. Note that the order of summation is opposite to that
of Eq. (1), which can easily be reversed by summing over
i = n − j instead. This gives the expansion coefficients for
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FIG. 2. Steady-state variance for a Brownian particle in a harmonic potential, for a Gaussian resetting distribution with mean z and variance
σ 2. Resetting is centered at (a) the origin z = 0 and (b) z = 3. Dots show numerical simulations, while solid curves correspond to Eq. (24).
The parameters are set to k = μ = D = 1.

Brownian motion in a harmonic potential, valid for any re-
setting distribution pR(x).

From Eq. (22) any moment or cumulant can be obtained
directly. For example, the mean takes the simple form

〈x〉∗ = 〈x〉R

1 + μk/r
, (23)

where we see that due to the potential the steady-state mean
is always less than the mean of the resetting distribution. The
variance takes the form

κ2 = 2D/r + 〈x2〉R

1 + 2μk/r
− 〈x〉2

R

(1 + μk/r)2
. (24)

This variance can display nonmonotonic behavior as a func-
tion of resetting rate r resetting with mean 〈x〉R nonzero.
As a concrete example, consider resetting to a Gaussian
distribution pR(x) = N (x, σ ) with mean z and variance σ 2.
Figure 2(a) shows the variance as a function of resetting rate
for centered resetting z = 0, while Fig. 2(b) shows the same
quantity for z �= 0. While resetting to a position with mean
centered at the potential minimum gives rise to a monotonic
increase of the decrease in the variance, a noncentered reset-
ting z �= 0 gives rise to nonmonotonic variance with a global
maximum at a critical resetting rate. For high values of the
resetting width σ , this nonmonotonic behavior can be erased.

The skew of the steady state also shows interesting be-
haviors. Using again Eq. (22) for the third moments and
combining them into the third cumulant, we find

κ3 = 2r3〈x〉3
R

(kμ + r)3
+ 6D〈x〉Rr

(kμ + r)(3kμ + r)

− 3〈x〉Rr(2D + 〈x2〉Rr)

(kμ + r)(2kμ + r)
+ r

3kμ + r
〈x3〉R. (25)

Just like the variance, the skew may also display nonmono-
tonic behavior. More interestingly, in some parameter regions
the skew even changes sign as a function of resetting rate;
for r < rc the skew is positive, while for r > rc the skew is
negative. Returning again to the case of Gaussian resetting
pR ∼ N (z, σ ), we can find the critical resetting rate rc where

the skew is zero to be

rc =
√

k3μ3z2[24D + kμ(z2 − 24σ 2)]

6(D − kμσ 2)

− kμ[6D + kμ(z2 − 6σ 2)]

6(D − kμσ 2)
. (26)

This zero only exists when the resetting width is sufficiently
small, namely,

σ 2 < σ 2
c ≡ D

kμ
+ z2

24
, (27)

where it is assumed that z �= 0. For larger resetting widths
σ > σc the third cumulant may still be nonmonotonic, as seen
in Fig. 3(c), but will not change sign as the resetting rate is
varied.

FIG. 3. Steady-state third cumulant from Eq. (25) for an
Ornstein-Uhlenbeck process with Gaussian resetting pR ∼ N (z, σ ),
with the parameters k = μ = D = 1. For sharp resetting to a point
high in the potential landscape, z = 3 in this case, the skew of the dis-
tribution may change sign at a critical resetting rate given by Eq. (26).
According to Eq. (27), this will only happen for σ < σc ≈ 1.173.
Dots show numerical simulations, while solid curves correspond to
Eq. (25).
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IV. RESETTING OF RUN-AND-TUMBLE PARTICLES

This section derives the series coefficients entering Eq. (1)
for an active run-and-tumble particle (RTP) in a harmonic
potential. In active particle systems a nontrivial steady states
emerge when the particles are put into confinement, due to
interactions with either solid boundaries or smooth poten-
tials [38,39]. Intriguing phenomena have been studied in this
context in the past, ranging from accumulation and trapping
of individual particles at confining boundaries [40–47] to
collective phenomena only possible due to the presence of
confinement [48–50]. Understanding the interplay between
the activity of the particles and the confinement is crucial for
elucidating the complex behavior of active matter in realistic
environments. On top of confinement, we include here the
effects of distributed stochastic resetting. In addition to a
model of active matter, the model considered here may also
be interpreted as distributed resetting in a non-Markovian
Ornstein-Uhlenbeck process driven by a telegraphic rather
than Gaussian white noise.

A. Stochastic equation and coupled master equations

We consider a RTP following the stochastic dynamics

xt+dt =
{

xt + f (xt )dt + v0κ (t )dt with probability 1 − rdt

xr with probability rdt,
(28)

where κ (t ) is a telegraph process that switches between values
+1 and −1 with a constant rate α. Hence, κ obeys

κ (t + dt ) =
{
κ (t ) with probability 1 − αdt

−κ (t ) with probability αdt .
(29)

The value of κ (t ) indicates the particle’s direction of motion
in which it swims with speed v0. In the above, f (xt ) is a
time-independent external force which we will assume to be
conservative, f (x) = −∂xV (x), for some potential V (x). The
resetting position xr is as before drawn at each reset from the
resetting distribution pR(x).

Upon resetting, also the internal velocity state κ (t ) of the
RTP is also subject to resetting, and we will assume that
motion in the positive (negative) direction is chosen with
probability ρ+ (ρ−) at each reset. Hence, in addition to the
underlying telegraphic process where κ (t ) changes sign with
probability αdt in a time step of size dt , the process is at each
resetting updated according to

κ (t + dt ) =
{+1 with probability ρ+
−1 with probability ρ−.

(30)

We assume that the process is also initialized according to
the probabilities ρ±. The state of the system is specified
by the probability density pz(x), where z = ±1 corresponds
to the two swimming directions. The master equation for this
process can be conveniently expressed as

∂t p+ = −v∂x p+ − μ∂x[ f p+] − (α + r)p+ + αp− + r pRρ+,

(31)

∂t p− = v∂x p− − μ∂x[ f p−] − (α + r)p− + αp+ + r pRρ−.

(32)

In the case of a confining potential, it is known that the den-
sities p± separately become stationary [51]. Since resetting
effectively confines the process by curbing large excursions,
we will assume that ∂t p± = 0 in the steady state, even if
V (x) = 0. In this model, a nonequilibrium steady state is
expected to be reached for two reasons; one is the resetting
dynamics which produces steady states even in passive sys-
tems. In addition there is the effect of activity, which further
pushes the system away from thermodynamic equilibrium.

B. Steady-state moments

In order to obtain moments for the RTP case, we proceed
similarly to the passive Brownian case. We define

mn =
∑
z=±

∫
dx xn pz =

∫
dx xn(p+ + p−), (33)

dn =
∑
z=±

∫
dx xnzpz =

∫
dx xn(p+ − p−), (34)

where {mn} are the full bare moments of the spatial density
p = p+ + p−, while {dn} measures the difference in the nth
moment between the right- and left-moving densities. To em-
phasize the notation of this section, Eq. (1) will now take the
form

mn =
n∑

j=0

Cn jm
R
j , (35)

where m1 = 〈x〉∗, m2 = 〈x2〉∗, etc. While dn does not have as
clear an interpretation as the bare moments mn, it does contain
information about the steady state. For example, d0 contains
information regarding the mean current in the system, i.e.,
gives the probability of finding the particle in the right- or left-
moving states in the steady state through

∫
dx p±(x) = 1±d0

2 ,
where we also use that by normalization m0 = 1.

For a harmonic potential V (x) = 1
2 kx2 the master equa-

tion gives rise to the following steady-state hierarchy for the
moments:

mn = r

r + nkμ
mR

n + nv0

r + nkμ
dn−1, (36)

dn = r(ρ+ − ρ−)

2α + r + nkμ
mR

n + nv0

2α + r + nkμ
mn−1. (37)

Here we immediately see that d0 = [r(ρ+ − ρ−)]/(2α + r),
giving the probability of finding the particle swimming to the
right (+) or left (−) as

∫
dx p±(x) = 2α + r ± r(ρ+ − ρ−)

4α + 2r
. (38)

This is shown in Fig. 4(a). As dn in Eq. (34) is given entirely in
terms of the bare moments mn−1, we can easily find the closed
hierarchy

mn = rmR
n

r + nkμ
+ nv0

r + nkμ

r(ρ+ − ρ−)

2α + r + (n − 1)kμ
mR

n−1

+ n(n − 1)v2
0

(r + nkμ)(2α + r + (n − 1)kμ)
mn−2. (39)
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FIG. 4. Comparisons between numerical simulations and theory for harmonically confined run-and-tumble particles with resetting to a
Gaussian distribution pR(x) = N (z, σ ). (a) Probability of finding the particle moving to the right (+) or to the left (−) in the steady state,
given by Eq. (38), for ρ+ = 0.8. (b) Steady-state mean 〈x〉∗ as a function of resetting rate for z = 0. We see that the mean is generally not
monotonic for asymmetric velocity resetting ρ± �= 0. (c) Steady-state mean 〈x〉∗ as a function of resetting rate for z = 3. Points correspond to
numerical simulations, while solid lines correspond to theory. The parameters are α = μ = k = v0 = 1.

Although this recursive relation has somewhat complex coef-
ficients, it is of the general form mn = bn + gnmn−2 just as in
the passive case, where we defined coefficients

bn = rmR
n

r + nkμ
+ nv0

r + nkμ

r(ρ+ − ρ−)

2α + r + (n − 1)kμ
mR

n−1, (40)

gn = n(n − 1)v2
0

(r + nkμ)[2α + r + (n − 1)kμ]
. (41)

Here mR
n = 〈xn〉R is again the nth moment of the resetting

distribution. In this notation, the solution reads

mn =
n∑

j∈2N

⎛
⎝ ∏

i∈2N,i< j

gn−i

⎞
⎠bn− j . (42)

The mean of the run-and-tumble particle takes a form
similar to the passive Brownian case, with an additional con-
tribution coming from the potential asymmetry in how the
internal velocity states σ (t ) are reset:

〈x〉∗ = rv0(ρ+ − ρ−)

(r + 2α)(r + kμ)
+ r

r + kμ
〈x〉R. (43)

When the internal state is reset asymmetrically ρ+ �= ρ−,
the mean obtains a more complex behavior. Indeed, even
for 〈x〉R = 0, the first term alone gives rise to nonmonotonic
behavior as a function of reset rate. This is due to the competi-
tion between the spatial resetting and the asymmetric velocity
resets. In this case, the mean is maximized at r = √

2kμα,
in agreement with the numerics in Fig. 4(b), where again a
Gaussian resetting distribution was considered. Interestingly,
this maximum of the mean is independent of the degree of
asymmetry |ρ+ − ρ−| between the velocity states. Also, note
that for symmetric velocity resets ρ± = 1/2 it is not possible
to distinguish an active RTP from a passive Brownian by
looking solely at the mean.

The fluctuations in the steady state are characterized by the
variance, which reads

κ2 = 2v2
0

(r + 2kμ)(r + 2α + kμ)

+ 2rv0(ρ+ − ρ−)〈x〉R

(r + 2kμ)(r + 2α + kμ)

− [rv0(ρ+ − ρ−) + r(r + 2α)〈x〉R]2

(r + 2α)2(r + kμ)2

+ r

r + 2kμ
〈x2〉R. (44)

Figure 5 shows the variance as a function of the resetting rate
for Gaussian resetting distribution. As in the passive case, we
see a nonmonotonic behavior at sharp resetting distributions
for z �= 0, while large resetting widths σ give rise to mono-
tonic variance.

In all calculations for the run-and-tumble particle, the
passive limit can be taken to ensure consistency with the
Brownian results. This limit can be taken by letting v0 →
∞ and α → ∞ while keeping the ratio equal to a constant
proportional to the diffusion coefficient. This reproduced the
results of the previous sections.

V. CONCLUSION

The steady state under stochastic resetting to a distribution
was studied analytically and the results were supported by
numerical simulations. We proposed a method for calculating
moments of any order in the steady state, with results valid for
arbitrary resetting distributions pR(x). We showed that for ho-
mogeneous systems with translational invariance, distributed
resetting will not introduce new phenomena, while for nonho-
mogeneous systems the presence of multiple scales may give
rise to novel behavior. This includes a strongly nonmonotonic
dependence of the cumulants on resetting rate in some cases,
an effect which can be washed away by introducing too-broad
resetting distributions.
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FIG. 5. Steady-state variance of a run-and-tumble particle under resetting to a Gaussian with mean z = 2 and variance σ 2, in the presence
of a harmonic potential. Different colored curves correspond to different asymmetries in the internal velocity states, controlled by ρ+. For high
resetting width σ , the variance becomes monotonically growing, with little distinction between different values of ρ+: (a) σ = 0.5, (b) σ = 1.0,
and (c) σ = 1.5. The parameters are set to k = μ = α = v0 = 1.

The presented results are useful when exact calculation
of the steady-state probability density is not possible due to
the potentially complex nature of the resetting distribution.
Distributed resetting positions also closely mimic resetting
schemes used in experimental setups with optical tweezers.
We exemplified the framework by considering both passive
Brownian particles and active run-and-tumble particles con-
fined by harmonic potentials in one dimension. In both cases
we calculated exact expressions for the moments, which we
further studied for a Gaussian resetting distribution. Nu-
merical simulations showed excellent agreement with the
theoretical predictions.

In future works it would be interesting to extend Eqs. (1)
and (8) to other resetting schemes, including non-Poissonian

waiting-time distributions. It would also be interesting to com-
pare the presented predictions to experiments on resetting
colloids using optical tweezers, where resetting distributions
naturally appear.
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