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Tissue dynamics and collective cell motion are crucial biological processes. Their biological machinery is
mostly known, and simulation models such as the active vertex model exist and yield reasonable agreement with
experimental observations such as tissue fluidization or fingering. However, a good and well-founded continuum
description for tissues remains to be developed. In this work, we derive a macroscopic description for a two-
dimensional cell monolayer by coarse-graining the vertex model through the Poisson bracket approach. We
obtain equations for cell density, velocity, and the cellular shape tensor. We then study the homogeneous steady
states, their stability (which coincides with thermodynamic stability), and especially their behavior under an
externally applied shear. Our results contribute to elucidate the interplay between flow and cellular shape. The
obtained macroscopic equations present a good starting point for adding cell motion, morphogenetic, and other
biologically relevant processes.
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I. INTRODUCTION

From the physical point of view, a tissue is a very complex
material, since its constituents are active objects consuming
energy and exerting forces onto the outside and between each
other [1–5]. Individual cells are assembled into tissues by
coupling to their neighbors through specific transmembrane
protein complexes (cadherins), which build cell junctions. The
latter physically link the actomyosin cortices of neighboring
cells, enabling force transmission between them [1]. Many
individual cellular processes (changes of cell shapes, cellular
divisions, rearrangements, and extrusions) cause large-scale
deformations of tissues. In the last few decades, extensive
research has been devoted to understanding the links between
cellular processes, tissue deformations, and cohesive coordi-
nated cellular motion [5–10] responsible for wound healing
assays [2,4,11], cancer progression [12–17], and morpho-
genesis [1,18–20]. A good macroscopic description of the
mechanics and dynamics of tissue remains a major challenge
at the interface of physics and biology, although there have
been many proposals; see Refs. [5,21–25].

The main objective of this work is to derive a macro-
scopic description for a two-dimensional flat tissue such as
an epithelial monolayer by a well-defined coarse-graining
procedure. Successful and currently often-used mesoscopic
models describing tissues as a network of cells that fill
space with no gaps between cells exist: these are vertex
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and Voronoi models [18,26–29], first used to describe the
physics of foams [30,31]. Interestingly, such models predict
a jamming-unjamming (solid-liquid) transition at a critical
mean shape index, which is the ratio between the mean cell
perimeter and the square root of the mean cell area [32,33],
and this has been observed in experiments [34]. Here, we
use the Poisson bracket method [35,36] to coarse-grain the
dynamics governed by the free energy of the vertex model.
We obtain macroscopic—hydrodynamic—equations, which
keep track of the underlying cellular structure due to the cou-
pling to an equation for the average cellular shape tensor. We
study the stability of the homogeneous phases, reflecting the
above-mentioned transition, as well as the effects of externally
shearing the layer at low rates. The response to high shear
rates, as studied by simulations in Ref. [37], is outside the
scope of the present paper. Note that, although the solid-liquid
transition is present in the model derived here, we do not
consider solid dynamics, as was done in Ref. [38].

In Sec. II, we briefly discuss the widely used active vertex
model (AVM) [39]. It describes tissues as a network of polyg-
onal cells forming a Voronoi tiling of the plane. In turn, the
dual Delaunay triangulation of the plane uses the centers of
the cells, which underlie a dynamics governed by the vertex
free-energy function, as well as possibly additional active
terms, typically intended to model cell motion. Note that
in the following, we treat only the passive version. Usually
overdamped dynamics is used in simulations [39], but under-
damped dynamics with collective inertia has been recently
proposed, allowing to capture more qualitative features of
confluent cellular motion [17] seen in experiments [40,41].

The coarse-graining procedure is then briefly described
in Sec. III, following largely Ref. [25]. At this point, the
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FIG. 1. (a) Apical view of the wing imaginal disk epithelium
in the Drosophila embryo (modified from [43]). (b) Snapshot of a
two-dimensional cell monolayer modeled by the AVM, implemented
using the SAMOS software [44].

hydrodynamic equations are given with the dissipative part
to be determined self-consistently, which is one of the main
points of this work. In Sec. IV, we discuss the single-cell
free-energy function of the homogeneous phases in terms of
the shape tensor that is then decomposed in trace, anisotropy,
and nematic-order-like tensor fields. We also discuss differ-
ences from previous works [25]. The thermodynamic stability
of these homogeneous phases is then analyzed in Sec. V.
These results are not new—they recover the stability of the
ground state of the vertex model [42] and for an isotropic
tissue [23] as obtained previously—but they are needed as a
reference for the closed dynamical equations obtained later.
In addition, we show that the solid-liquid transition at the
critical shape index can be seen as a pitchfork bifurcation
from isotropic to anisotropic phases at a critical value of the
line tension. In Sec. VI we explain our choice of the Onsager
dissipative coefficients, and we derive the resulting final con-
tinuum equations. The choice is motivated by the fact that the
homogeneous steady states of the dynamic equations should
be equivalent to the minima of the single-cell free energy. The
dynamic stability of the homogeneous phases is then studied
in Sec. VII. Finally, in Sec. VIII we investigate the stability
under shear flow. We find an imperfect pitchfork bifurca-
tion that highlights the usefulness of our dynamic equations.
Section IX contains our conclusions.

II. ACTIVE VERTEX MODEL

Active vertex models (AVMs) are currently widely used to
describe and infer data from epithelial tissues, representing
them as two-dimensional (2D) networks of polygonal cells.
The left panel in Fig. 1 shows an image of a Drosophila wing,
in which the cell junctions have been visualized by fluores-
cent labeling. This picture clearly motivates such a modeling
approach, as sketched on the right panel.

The properties and interactions of the cells constituting the
monolayer are implemented in the AVM by defining a free-
energy function that typically reads

F =
N∑

α=1

[
κα

2

(
Aα − Aα

0

)2 + �α

2
P2

α

]
+

∑
〈μν〉

�μν lμν. (1)

Here each cell is labeled by α = 1, . . . , N , and each vertex
pair that shares a junction is designated by μ, ν. The first
term implements an area elasticity, with κα the modulus of
cell area Aα around Aα

0 , its reference value. The second term
is the perimeter contribution, with �α the resistance of the
cell to changing its perimeter Pα . Finally, �μν = γc − ω

2 is
the line tension of the cell junctions of length lμν that results
from the cortical tension γc along the contacts between cells
and the cell-cell adhesion energy ω. The implementation of
the vertex model dynamics then rearranges the positions of all
vertices, trying to minimize the energy function for a given set
of parameters.

While the moduli κα and �α are positive, �μν < 0. When
the cell α shares junctions only with other cells of the
same type,

∑
〈μ,ν〉 �μν lμν = �μν

∑
〈μ,ν〉 lμν = �μνPα , and

this term can be put together with the perimeter term, thereby
yielding �α

2 (Pα − Pα
0 )2 plus an unimportant constant, pro-

vided the target perimeter is Pα
0 = −�μν/�α > 0. The shape

index [33],

pα
0 = Pα

0√
Aα

0

= |�αβ |
�α

√
Aα

0

, (2)

characterizes the ratio of the cell perimeter to the square
root of its area. A critical value of this quantity is p0∗ =
3.812, which separates fluidlike and solidlike behavior of the
tissue [33,45]: for p0 < p0∗, the monolayer is solidlike, and
for p0 > p0∗, it displays fluidlike behavior. Solidlike cells
tend to be close to regular polygons and rarely give rise to
fingering instabilities, whereas for fluidlike cells one finds
both fingering instabilities and irregular cell shapes.

In the standard implementation of the AVM, the cells in
the monolayer satisfy the following overdamped equations of
motion [39]:

ζ ṙα = fanα + Fα + να (3)

and

ζ r θ̇α = τα · Nα + νr
α. (4)

The unknowns rα and θα are the positions of the centers of
mass and the orientations of the directors of each cell α,
defined as nα = (cos θα, sin θα ). In the center-of-mass equa-
tion, fanα are active self-propulsion forces along the vector
nα determining the direction of cell motion, Fα are gradient
forces arising from the free-energy function, Eq. (1), να are
stochastic forces, and ζ is a friction coefficient. In the angular
equation, τα and Nα are the torque, stemming from cell-cell
alignment models and acting on the vector nα , and the normal
vector to the cell monolayer (unit vector along the z-axis). νr

α

is a rotational noise and ζ r is the rotational friction. Both noise
terms are usually implemented as Gaussian white noise.

In the following, we use a coarse-graining procedure that is
Hamiltonian in nature. Hence we do not use Eqs. (3) and (4),
but rather we study a fluid of deformable particles, without ac-
tive contributions. Nevertheless, the Poisson bracket approach
accounts for the dissipative contributions in the hydrody-
namic limit, and we will treat the vertex free-energy function,
Eq. (1), as faithfully as possible to keep track of the cellular
nature of the system, especially the sensitivity to the shape
index/line tension.
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FIG. 2. Definition of the vectors that are used to build up the
shape tensor. The position of the cell center α is given by rα , and
that of vertex μ of cell α is rαμ. Then, �rαμ = rαμ − rα .

III. COARSE-GRAINING PROCEDURE USING POISSON
BRACKETS

Our objective is to derive hydrodynamic equations for a
fluid formed by deformable polygonal-shaped particles that
is governed by the free energy of the AVM, Eq. (1). Unlike
the AVM, we shall not include active forces in our equations.
Thus, the equations will only reflect the effects of the fluid
flow on cell shape and vice versa.

On large scales, this fluid is described by the average
(coarse-grained) hydrodynamic fields φa, which are the mass
density ρ, the momentum density g, and the cell-shape density
tensor G. The latter accounts for the shape and elongation of
the cells. The “microscopic” versions of the hydrodynamic
fields are [25]

ρ̂(r, t ) =
∑
αμ

mαδ(r − rαμ(t )), (5)

ĝ(r, t ) =
∑
αμ

gαδ(r − rαμ(t )), (6)

Ĝα
i j (r, t ) =

∑
α

Gα
i jδ(r − rα (t )), (7)

Gα
i j = 1

n

n∑
μ=1

�xαμ
i �xαμ

j . (8)

Here mα is the mass of cell α (we use mα = 1), and rαμ is
the position of vertex μ. The momentum of cell α is given by
gα = mα ṙα and the shape tensor as specified via the vertices,
with �xαμ

i = rαμ − rα , where rα = ∑
μ rαμ/n is the center

of mass of the cell, and Latin indices denote components; see
Fig. 2. Note that the mass and momentum density fields are
defined through the positions of the vertices in the δ function,
while the shape tensor uses δ functions centered at the cell
centers. This is due to the definition of the shape tensor in
Eq. (8), which already includes all vertices from each cell and
is defined only for each cell center.

To obtain continuum equations for the hydrodynamic
fields φα from the vertex model, we could resort to the

Mori-Zwanzig projection technique [46]. However, although
thought for different microscopic dynamics, it is easier
to use the Poisson bracket approach, which is known to
produce the usual hydrodynamics for nondeformable (and
possibly anisotropic) particles [35,36,47]. Given microscopic
Hamiltonian dynamics, the evolution of a microscopic func-
tion φ̂(r, t ) obeys the equation

∂φ̂

∂t
= {Ĥ, φ̂} =

∑
α

∂Ĥ
∂gα

j

∂φ̂

∂rα
j

− ∂φ̂

∂gα
j

∂Ĥ
∂rα

j

, (9)

where the Hamiltonian function Ĥ depends on the cellular
positions and momenta rα and gα . The coarse-graining opera-
tion consists of a spatial average on a length scale comprising
many cells that is still small compared to macroscopic lengths.
Given a coarse-grained free energy, F , which depends on
the macroscopic fields φa = ρ, g, G, the coarse-grained equa-
tions are [25,36]

∂φa

∂t
= {F , φa} − �ab δF

δφb
, (10)

{F , φa} = −
∫

d2x′Pab(r, r′)
δF

δφb(r′)
, (11)

Pab(r, r′) = {φa(r), φb(r′)} = −Pba(r′, r), (12)

where summing over repeated indices is intended, and we
have dropped the time variable for now. The term {F , φa} in
Eq. (10) yields the reactive part of the evolution equations,
and the other term yields the dissipative part. The latter is
proportional to the generalized forces, as defined by varia-
tions of the free energy, times kinetic coefficients �ab that
obey Onsager reciprocity relations near equilibrium [48]. The
coarse-grained Poisson brackets {φa, φb}, especially for the
shape tensor, have been calculated previously in Ref. [25].

The free energy can be split in a kinetic and a potential part

F (φa) =
∫

d2x( fK + fV ), (13)

fK =
2∑

i=1

g2
i

2ρ
=

2∑
i=1

1

2
ρv2

i , fV = fsc + fint. (14)

The kinetic free energy is the usual one in terms of the average
velocity v = g/ρ. The potential free energy is split into an
average containing only single-cell quantities, fsc, and an in-
teraction with neighboring cells, which, in analogy to nematic
liquid crystals [49], is assumed to be

fint = KG

2

(
∂Gkl

∂xi

)2

. (15)

This assumption is motivated by the fact that tissues share
many properties of (active) nematic liquid crystals concerning
their anisotropy and defect structure [50]. Note that it could
be necessary to introduce more elastic constants. However,
in so far as dedicated experimental measurements of these
constants remain an open task, we keep the simple form (15).
For a homogeneous phase with constant hydrodynamic fields,
fK = fint = 0, and the free-energy density is f = fsc. In the
next section, we will find an expression for fsc from Eq. (1) in
terms of the trace and deviatoric parts of the shape tensor.
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With the splitting of Eq. (13), the equations of motion (10)
become

∂ρ

∂t
+ ∇ · (ρv) = 0, (16)

ρ
d

dt
vi = −∂i p + ∂ j

(
σ D

i j + σ E
i j + σ G

i j

)
, (17)

D

Dt
Gi j = GikDk j + DikGk j − �i jkl

δF
δGkl

. (18)

These equations have already been deduced in [25]. There, the
authors introduced an additional dynamic anisotropy density
field M(r, t ) by splitting off a contribution from the shape
tensor already at the level of the Poisson brackets. We deemed
this unnecessary, since by treating the free energy of the ver-
tex model faithfully, see Sec. IV below, all the information
about anisotropy should be properly accounted for. Here ∂i =
∂/∂xi, and

∂iv j = Di j + ωi j + 1

2
δi j∇ · v, (19)

Di j = 1

2
(∂iv j + ∂ jvi − δi j∇ · v), (20)

ωi j = 1

2
(∂iv j − ∂ jvi ), (21)

d

dt
= ∂

∂t
+ v · ∇,

D

Dt
= d

dt
− [ω, ·] (22)

are the gradient of the average velocity, the deviatoric part
of its symmetrization (the rate of strain tensor), the vorticity,
the material derivative, and the corotational derivative, respec-
tively. In the latter, [A, B]i j = AikBk j − BikAk j . The continuity
equation (16) does not contain a dissipative part. The pressure,
and the different stress tensor contributions entering Eq. (17),
are [25]

p = ρ
δFV

δρ
− f , (23)

σ D
i j = 2ηDi j + ηbδi j∇ · v, (24)

σ E
i j = − ∂ fint

∂ (∂ jGkl )
∂iGkl = −KG∂iGkl∂ jGkl , (25)

σ G
i j = 2Gjk

δFV

δGik
− δi jGkl

δFV

δGkl
. (26)

For the sake of simplicity, in Eq. (24) we assumed that the
dissipative part of the stress tensor, σ D

i j , is that of an isotropic
fluid with shear and bulk viscosity coefficients η and ηb, re-
spectively. In uniaxial anisotropic situations, one expects five
instead of just these two viscosities [49]. The contributions σ E

i j

and σ G
i j are reactive, and the former corresponds to Ericksen

stresses in liquid crystals [49]. The coefficient tensor �i jkl in
Eq. (18) will be derived later, after we have analyzed the free
energy of the homogeneous phases.

It should be noted that Eqs. (16)–(18) are clearly of a hy-
drodynamic nature, i.e., they describe a, possibly anisotropic,
tissue at timescales where flow is important. They cannot
account for any elastic response beyond what is implemented
in the vertex free-energy function (area elasticity and liquid-
crystal-like anisotropic elasticity).

FIG. 3. Sketch of the anisotropic states of a cell with c > 0
(upper row) vs c < 0 (lower row). For a given orientation angle
θ , c > 0 aligns the long axis of the ellipse, l , and the θ direction,
whereas c < 0 aligns the short axis of the ellipse, s, and the θ

direction.

IV. HOMOGENEOUS FREE-ENERGY DENSITY
OF THE VERTEX MODEL

Let us assume that the cells are regular (or almost regular)
n-sided polygons. We also assume that κ , A0, �, and � are the
same for all the cells, and we use

∑
〈μν〉 lμν = P (perimeter).

Then the cellular area and perimeter are given in terms of the
shape tensor G by [25]

Aα = μ
√

det(G), Pα = ν
√

Tr(G), (27)

μ = n

2
sin

(
2π

n

)
, ν = n

√
2 sin

(π

n

)
, (28)

with n = 6 for hexagons. For such a homogeneous phase
with a single type of cells, Eq. (1) results in the following
expression for the vertex free-energy density:

fsc = κ

2
[μ

√
det(G) − A0]2 + �ν2

2
Tr(G) + �ν

√
Tr(G), (29)

where the cell area has been absorbed in the positive constants
κ , �, and in � < 0. Note that Eq. (29) reflects only single-cell
properties.

Following Ref. [23], we write the shape tensor as

G = M0ec� = M0(cosh c I + sinh c �), (30)

where M0 and c are scalar fields, I is the identity, and � is the
traceless symmetric tensor field

� =
(

cos 2θ sin 2θ

sin 2θ − cos 2θ

)
. (31)

Note that M2
0 = det(G) and �2 = I hold. Importantly, c =

0 yields an isotropic shape tensor with Tr(G) = 2
√

det(G).
Thus, c measures the anisotropy of the cells. The angle θ in
Eq. (31) determines the direction of the eigenvector corre-
sponding to the largest eigenvalue of G. Figure 3 sketches the
anisotropic states of an elliptic cell with nonzero c. A related
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decomposition has been used directly on a triangular tiling of
the plane representing a cellular tissue in Ref. [24]. However,
Eq. (30) is easier to relate to the free energy of Eq. (29) written
in terms of the average shape tensor.

In terms of R = Tr(G), we can rewrite Eq. (30) as

G = R

2
(I + tanh c �), G̃ = R

2
tanh c �, (32)

where the traceless tensor G̃ is the deviatoric part of the shape
tensor. Note its similarity to the order parameter of nematic
liquid crystals [49]. Thus, we can rewrite the vertex free
energy density Eq. (29) in the following simple form:

fsc = κ

2

(
μR

2 cosh c
− A0

)2

+ �ν2R

2
+ �ν

√
R . (33)

Looking at Eq. (32), the fields R, R tanh c, and θ occurring in
the shape tensor parametrization describe the cell perimeter,
the shape anisotropy, and the director angle, respectively. As
R and c appear naturally in the shape tensor and enter the
free-energy density, Eq. (33), there is no need to introduce
a specific anisotropy field or to postulate a connection of the
latter to the orientational order, as had been done previously
in Ref. [25].

V. THERMODYNAMIC STABILITY

The minima of the vertex free energy, Eq. (33), correspond
to stable homogeneous phases. At them, the first derivatives
of fsc vanish, which yields the conditions

∂ fsc

∂R
= κμ

2 cosh c

(
μR

2 cosh c
− A0

)
+ ν

2

(
�ν + �√

R

)
= 0 ,

(34a)

∂ fsc

∂c
= −κμR sinh c

2 cosh2 c

(
μR

2 cosh c
− A0

)
= 0 . (34b)

Figure 4 shows graphically that solutions to Eq. (34a) ex-
ist only if the line tension is nonpositive or, in the case of
anisotropic phases, negative. In turn, Eq. (34b) has isotropic
solutions c = 0 and ±c-symmetric anisotropic solutions only
for R > 2A0/μ, as is evident from the bracket term and
also shown graphically in Fig. 5. Anisotropic solutions have
A = A0, and hence from Eq. (34a) it can be deduced that√

R = |�|/(�ν), i.e., P = |�|/�. These phases are stable if
and only if the Hessian matrix of fsc is positive-definite, which
is equivalent to

∂2 fsc

∂R2
= κμ2

4 cosh2 c
− ν�

4R
3
2

> 0 , (35a)

∂2 fsc

∂c2
= κμR

4 cosh2 c
[2A0 cosh c(1 − 2 tanh2 c)

−μR(1 − 3 tanh2 c)] > 0 , (35b)

∂2 fsc

∂R2

∂2 fsc

∂c2
−

(
∂2 fsc

∂R∂c

)2

> 0 . (35c)

A. Cell shape instability and bifurcation

Let us assume that the cell perimeter is constant,
and we want to ascertain whether phases with isotropic

FIG. 4. Graphical solution of ∂ fsc/∂R = 0 by showing Ṙ =
−∂ fsc/∂R vs R for different values of the line tension �. The parame-
ters are κ = 1, n = 6 (hexagons), � = 0.1, and A0 = π . (a) Isotropic
case, c = 0; (b) an anisotropic case with c = 3.

cells (c = 0) are stable. If this is the case, c = 0
has to be a minimum of the free energy. Writing
sech c =

√
1 − tanh2 c � 1 − 1

2 tanh2 c in Eq. (33), we

FIG. 5. Graphical solution of ∂ fsc/∂c = 0 by showing ċ =
−∂ fsc/∂c vs c for different values of R, proportional to the squared
perimeter. Shown are the three cases R < R∗, R = R∗ = 2A0/μ, and
R > R∗. The parameters are κ = 1, n = 6 (hexagons), � = 0.1, and
A0 = π .
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obtain

fsc − f0 � κμRA0

4

[(
1 − μR

2A0

)
tanh2 c + 1

4
tanh4 c

]

� κμRA0c2

4

[
1 − μR

2A0
+ 1

3

(
μR

A0
− 5

4

)
c2

]
(36)

up to order O(c6) and where f0 is constant. Using Eq. (27),
for a fixed perimeter we get R = P2

0 /ν2 = �2/(�2ν4), and we
obtain

fsc = f0 + κμ2P2
0 A0c2

8ν4

[
2ν2

μ
− P2

0

A0
+ 1

3

(
2P2

0

A0
− 5ν2

2μ

)
c2

]

+ O(c6). (37)

Clearly, the isotropic solution c = 0 is stable when the shape
index p0 as defined in Eq. (2) is smaller than a critical value
given by

p∗
0 = P0√

A0
=

√
2ν2

μ
=

√
4n tan

(π

n

)
, (38)

where we used Eq. (28). At p0 = p∗
0, the single-cell free-

energy density deviates from that of the isotropic phase as
fsc − f0 � κν2A2

0c4/8 � 0. For p0 < p∗
0, the isotropic phase

is stable, corresponding to a solidlike structure with cells
being almost regular polygons; see Fig. 2 of [42] for critical
lines on the plane (�,�) corresponding to n = 3, 4, 5, 6. For
p0 > p∗

0, a finite c �= 0 emerges, corresponding to cells having
irregular anisotropic shapes. It has been shown in [42] that the
shear modulus for the hexagonal lattice is finite and vanishes
at p∗

0: there is a rigidity transition separating solidlike phases,
where cells have to put in some work in order to rearrange,
and liquidlike phases (soft lattices [42]) with no energy cost
for rearranging cells [33]. For a disordered cellular tissue, the
rigidity transition was shown numerically to occur at p∗

0 ≈
3.81 [33]. Interestingly, this corresponds to n = 5, although
pentagons cannot tile the plane. If one considers a hexagonal
tiling, n = 6, we obtain p∗

0 ≈ 3.72, as already given in [42].
Figure 6 shows the single-cell free-energy density, Eq. (33),
as a function of c for different values of �, and it illustrates
how the anisotropic phase appears.

Equation (37) is an approximation of Eq. (33), which, for
a fixed perimeter P0 = |�|/� and � < 0, becomes

fsc = κμ2�4

8�4ν4

(
sech c − 2A0�

2ν2

μ�2

)2

− �2

2�
. (39)

Similarly, fixing the area to A0,
√

R = √
2A0 cosh c/μ, and

Eq. (33) becomes

fsc = �ν2A0

μ

⎛
⎝√

cosh c −
√

μ�2

2A0�2ν2

⎞
⎠

2

− �2

2�
. (40)

For p0 > p0∗, the values of c that solve Eq. (34b) are either
c = 0 or

cosh c = μ�2

2A0�2ν2
. (41)

FIG. 6. Normalized homogeneous free-energy density vs
anisotropy c for different values of � as indicated in the inset.
The dashed line corresponds to the critical line tension given by
Eq. (38) with �∗ = −P0� = −�

√
4A0n tan(π/n). Parameter values

are κ = 1, n = 6, � = 1.5, and A0 = π .

Solutions of this equation with c �= 0 correspond to
anisotropic phases, which are stable, as evident according
to either Eqs. (39), (40), or the criteria (35), which simply
become

∂2 fsc

∂R2
= κA2

0

R2
+ �ν2

4R
> 0 ,

∂2 fsc

∂c2
= κA2

0 tanh2 c > 0,

∂2 fsc

∂R2

∂2 fsc

∂c2
−

(
∂2 fsc

∂R∂c

)2

= κ�ν2A2
0

4R
tanh2 c > 0.

We can now draw the bifurcation diagram of anisotropy c
versus the line tension � as the control parameter, with its
critical value �∗ = −�ν

√
2A0/μ obtained from Eq. (38).

The bifurcation diagram, displaying a pitchfork bifurcation, is
shown in Fig. 7. Cells with c > 0 and c < 0 have the same
free energy (since there is no preferred direction in the free
energy), but different orientations; cf. Fig. 3 [23,24].

FIG. 7. Pitchfork bifurcation in the plane (�, c), occurring at
a critical line tension value �∗ = −�ν

√
2A0/μ. For � > �∗, the

isotropic solution, c = 0, is the only stationary state and stable. For
� < �∗, the isotropic state becomes unstable (dashed line) and the
system chooses one of the symmetric anisotropic branches.
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FIG. 8. Single-cell free-energy density of the isotropic homo-
geneous state (c = 0) as a function of R for different line tension
values �, with κ = 1, n = 6 (hexagons), � = 0.1, and A0 = π . The
minimum of the free energy at R∗ > 0 disappears for sufficiently
large positive values of the line tension.

B. Cell area instability of the isotropic phase

It is also interesting to find the inflection point of the free-
energy density, Eq. (33), as a function of R for the isotropic
phase. For c = 0, from Eq. (35a), one obtains the stability
condition

κμ2

4
− ν�

4R
3
2

> 0 
⇒ �

κA
3
2

<

√
μ

2ν2
= 1

p∗
0

. (42a)

From Eqs. (27) and (30) with c = 0, A = μM0 = μR/2. Then
Eq. (35b) with c = 0 yields

A < A0. (42b)

Hence there are two ways in which the isotropic phase may
become unstable: For sufficiently negative line tension, if the
area reaches the target area A0, anisotropic phases emerge
from the isotropic phase as shown in Figs. 6 and 7. In turn,
if the scaled line tension surpasses 1/p∗

0, the homogeneous
isotropic phase becomes unstable, cf. Fig. 8, but homogeneous
anisotropic phases are not stable either. While Fig. 8 seems to
suggest that the cells shrink to zero area (collapsed cells [42]),
it could also happen that spatially nonhomogeneous phases
may appear.

VI. KINETIC COEFFICIENTS AND EQUATION
OF MOTION FOR THE SHAPE TENSOR

Now that we know the behavior of the vertex free en-
ergy in terms of the variables R and c introduced in the
parametrization of the shape tensor, let us come back to
the coarse-graining procedure of Sec. III. As discussed above,
since in general Gi j varies in space, we have to add the
term fint of Eq. (15) to the free-energy density that penal-
izes gradients, where for simplicity we used a one-constant
approximation (cf. Frank elasticity in nematic liquid crys-
tals [49,51]). Then, the coarse-grained free-energy density,
Eq. (14), is the sum of the single-cell free-energy density,
Eq. (33) and the interaction part, Eq. (15). The resulting free-
energy density is

fV = κ

2

(
μR

2 cosh c
− A0

)2

+ �ν2R

2
+ �ν

√
R + KG

4
|∇R|2

+ KG

4
[|∇(R tanh c)|2 + 4(R tanh c|∇θ |)2]. (43)

To decide the form of the kinetic coefficients �i jkl in Eq. (18),
we first derive the following formulas:

D

Dt
Gi j = δi j

2

dR

dt
+ �i j

2

d

dt
(R tanh c) + R

2
tanh c

(
dθ

dt
+ ∂1v2 − ∂2v1

2

)
∂�i j

∂θ
, (44a)

DikGk j + GikDk j = R

2
tanh c[(∂1v1 − ∂2v2) cos 2θ + (∂1v2 + ∂2v1) sin 2θ ]δi j + RDi j, (44b)

D

Dt
Gi j − DikGk j − GikDk j = δi j + �i j tanh c

2

(
dR

dt
− [

(∂1v1 − ∂2v2) cos 2θ + (∂1v2 + ∂2v1) sin 2θ
]
R tanh c

)

+ R�i j

2

(
1

cosh2 c

dc

dt
+ [

(∂1v1 − ∂2v2) cos 2θ + (∂1v2 + ∂2v1) sin 2θ
]

tanh2 c

)

+ R

2
tanh c

(
dθ

dt
+ ∂1v2 − ∂2v1

2

)
∂�i j

∂θ
− RDi j = −�iikl

δF
δGkl

, (44c)

∂

∂Gkl
TrG = δkl ,

∂

∂Gkl
detG = (detG)G−1

kl = Rδkl − Gkl = R

2
δkl − R tanh c

2
�kl , (44d)

where (44c) is just an expanded version of (18). Using Eq. (44d), from Eq. (43) we obtain

δF
δGkl

= δkl

2

[
κμ

(
μR

2
− A0 cosh c

)
+ �ν2 + �ν√

R
− KG∇2R

]
− �kl

[
κμ

2

(
μR

2 cosh c
− A0

)
sinh c

+ KG

2
[∇2(R tanh c) − 4R tanh c |∇θ |2]

]
− KG

2
[R tanh c ∇2θ + 2∇θ · ∇(R tanh c)]

∂�kl

∂θ
. (45)

Note that the matrices δi j , �i j , and ∂�i j/∂θ appearing in
Eqs. (44) and (45) are orthogonal with respect to the scalar

product Tr(AikBk j ) and form a basis in the corresponding
vector space. Thus, the kinetic coefficients can be written as
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linear combinations of products of these matrices. We will
select them by imposing that, at zero average flow velocity,
v = 0, Eq. (18) should yield a gradient system for homoge-
neous phases compatible with the thermodynamic stability
established in the preceding section.

According to Eq. (44c), the evolution equation for R can be
found by taking the trace, thereby obtaining

dR

dt
= R tanh c[(∂1v1 − ∂2v2) cos 2θ

+ (∂1v2 + ∂2v1) sin 2θ ] − �iikl
δF
δGkl

. (46)

For Eq. (46) to be a gradient vector field for zero velocity, we
consider

δF
δR

= δF
δGkl

∂Gkl

∂R
= δF

δGkl

Gkl

R
.

Thus, we should select �iikl = γ1Gkl/R = γ1R(δkl +
tanh c �kl )/2.

Similarly, ċ in Eq, (44a) has a prefactor R�i j/(2 cosh2 c)
and, therefore, the kinetic coefficient in its equation has to pro-
duce the gradient vector field −γ2R�i j[δF/δc]/(2 cosh2 c),
where

δF
δc

= δF
δGkl

∂Gkl

∂c
= δF

δGkl

R �kl

2 cosh 2c

= ∂ fsc

∂c
− KGR

2 cosh2 c
[∇2(R tanh c) − 4R tanh c|∇θ |2].

The first line suggests a second contribution to the kinetic
coefficient. We choose a third one, as explained below, and
write

�i jkl = γ1
Gi jGkl

R2
+ γ2

R2�i j�kl

4 cosh 4c
+ γ3

8

∂�i j

∂θ

∂�kl

∂θ
. (47)

Note that the kinetic coefficients �i jkl have to be symmet-
ric with respect to the exchanges i j ↔ ji and in kl ↔ lk
(because stress and shear are symmetric tensors) and i j ↔ kl
(Onsager relation) [48], which is all fulfilled by our choice.

Looking now at the traceless part of Eq. (18) in the form of
Eq. (44c), using (46) and (47), we get

A�i j + B

2

∂�i j

∂θ
= RDi j, (48a)

where A and B are the coefficients of �i j and of (∂�i j/∂θ )/2
in Eqs. (44c) and (18):

A = R

2 cosh2 c

(
dc

dt
+ γ2

∂ fsc

∂c
+ A sinh2 c

− γ2KG[∇2(R tanh c) − 4R tanh c|∇θ |2]

)
, (48b)

B = R tanh c

(
dθ

dt
+ ∂1v2 − ∂2v1

2
− γ3KG[∇2θ

+ 2∇θ · ∇ ln(R tanh c)]

)
, (48c)

A = (∂1v1 − ∂2v2) cos 2θ + (∂1v2 + ∂2v1) sin 2θ. (48d)

Equation (48a) is equivalent to(
A cos 2θ − B sin 2θ − R

∂1v1 − ∂2v2

2

)(
1 0
0 −1

)

= −
(

A sin 2θ + B cos 2θ − R
∂1v2 + ∂2v1

2

)(
0 1
1 0

)
.

(49)

The coefficients of the independent matrices in Eq. (49) have
to be zero, which allows us to get the equations for dc

dt and dθ
dt

from (48). Together with Eq. (46), the final equations are

dR

dt
= R tanh c [(∂1v1 − ∂2v2) cos 2θ + (∂1v2 + ∂2v1) sin 2θ] − γ1

∂ fsc

∂R
+ γ1KG

2
[∇2R + tanh c∇2(R tanh c) − 4R tanh 2c|∇θ |2

(50a)

dc

dt
= (∂1v1 − ∂2v2) cos 2θ + (∂1v2 + ∂2v1) sin 2θ − γ2

∂ fsc

∂c
+ γ2KGR

2 cosh2 c
[∇2(R tanh c) − 4R tanh c|∇θ |2], (50b)

dθ

dt
= −∂1v2 − ∂2v1

2
+ (∂1v2 + ∂2v1) cos 2θ − (∂1v1 − ∂2v2) sin 2θ

2 tanh c
+ γ3KG [∇2θ + 2∇[ln(R tanh c)] · ∇θ ]. (50c)

In the equation for θ̇ , we used that

δF
δGkl

∂�kl

∂θ
= −4KG[R tanh c ∇2θ + 2∇(R tanh c) · ∇θ ].

Hence the choice of the contribution proportional to γ3 in
Eq. (47) leads to Eq. (50c) becoming a diffusion equation for
the angle.

Equations (50) conclude the coarse-graining procedure.
Our choice of the Onsager coefficients, Eq. (47)—motivated
by the fact that the homogeneous steady states of the dynamic
equations should be equivalent to the minima of the single
cell free energy—allowed us to derive consistent and closed
hydrodynamic equations from microscopic dynamics. More-
over, we were able to give a compact form of these equations

in only three scalar variables (R, c, and θ ) that are easy to
interpret.

VII. HOMOGENEOUS PHASES AT ZERO FLOW
VELOCITY

For homogeneous phases at zero velocity, R and c depend
only on time, and Eq. (50) become (putting all contributions
in v and KG to zero)

Ṙ = −γ1
∂ fsc

∂R
= − γ1κμ

2 cosh c

(
μR

2 cosh c
− A0

)

− γ1

2

(
�ν√

R
+ �ν2

)
, (51a)
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ċ = −γ2
∂ fsc

∂c
= γ2

Rκμ tanh c

2 cosh c

(
μR

2 cosh c
− A0

)
, (51b)

θ̇ = 0. (51c)

The stationary solutions of Eq. (51) are—by construction,
i.e., by the choice of the dissipative coefficients—exactly the
homogeneous phases already discussed in Sec. V. Their linear
stability depends on the eigenvalues of the Jacobian matrix

J =
(

−γ1
∂2 fsc

∂R2 −γ1
∂2 fsc

∂R∂c

−γ2
∂2 fsc

∂R∂c −γ2
∂2 fsc

∂c2

)
. (52)

The stability criteria in Eq. (35) (corresponding to a positive
definite Hessian matrix of the single cell free energy den-
sity fsc) ensure that the eigenvalues of the Jacobian (52) are
negative and, therefore, that the homogeneous phases are dy-
namically stable. This is further illustrated by the phase space
portraits [52] of the dynamical system defined by Eqs. (51a)
and (51b). If � > �∗ = −�ν

√
2A0/μ, the only stationary

solution is isotropic and a stable node as shown in Fig. 9. For
� < �∗, the isotropic solution becomes an unstable saddle
point and there are two symmetric anisotropic solutions that
are stable nodes, as illustrated in Fig. 10. The anisotropic
phases emerge from the homogeneous phase at � = �∗, cf.
the pitchfork bifurcation shown in Fig. 7.

The area A = μR/(2 cosh c) calculated from homogeneous
phases, i.e., stationary solutions of Eq. (51), increases with
negative line tension, from � = 0 to −� = |�∗|. Then A =
A0 in the anisotropic phase for all � � �∗.

VIII. HOMOGENEOUS PHASES UNDER SHEAR FLOW

Let us now consider the system under a stationary homo-
geneous shear flow,

vy = 0, vx = γ̇ y, (53)

that solves the continuity equation (16), and, to leading order,
the velocity equation (17) (i.e., including σ D and σ E , but

FIG. 9. Phase space portrait of Eq. (51) for � = 0. The only
stationary solution occurs at c = 0 (isotropic phase) at finite R (thick
dot). Shown are the nullclines (thick solid and dashed curves) and the
streamlines of the dynamical system (lines with arrows). Here κ = 1,
n = 6, � = 0.1, and A0 = π .

FIG. 10. Same as Fig. 9 for � = −1 < �∗. There are two
±c-symmetric stable nodes (thick dots) corresponding to the
anisotropic phases. The isotropic phase at c = 0 (purple dot) be-
comes a saddle point.

neglecting a possible feedback of the ordering on the flow as
described by σ G).

Substituting Eq. (53) into Eq. (50), they become

Ṙ = γ̇ R tanh c sin 2θ − γ1
∂ fsc

∂R
, (54a)

ċ = γ̇ sin 2θ − γ2
∂ fsc

∂c
, (54b)

θ̇ = γ̇

2

(
1 + cos 2θ

tanh c

)
. (54c)

Note that uniform shear introduces a relation between the
“director orientation” at angle θ and the cellular anisotropy
and perimeter fields, c and R, although the average free energy
does not depend on θ .

A. Stationary solutions

The stationary solutions of Eq. (54) satisfy the following
system of equations:

γ̇ R tanh c sin 2θ = γ1

2

[
κμ

cosh c

(
μR

2 cosh c
− A0

)

+ �ν√
R

+ �ν2

]
, (55a)

γ̇ sin 2θ = −γ2
κμR sinh c

2 cosh 2c

(
μR

2 cosh c
− A0

)
, (55b)

cos 2θ = − tanh c. (55c)

Equation (55c) has a solution with c � 0 defined on −π
4 <

θ � π
4 , and another with c > 0 on π

4 < θ < 3π
4 . Then, we can

write sin 2θ = sechc, which transforms Eqs. (55a) and (55b)
into

γ̇ R tanh c = γ1

2

[
κμ

(
μR

2 cosh c
− A0

)

+
(

�ν√
R

+ �ν2

)
cosh c

]
, (56a)

γ̇ = −γ2κμR tanh c

2

(
μR

2 cosh c
− A0

)
. (56b)
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B. Imperfect pitchfork bifurcation

Let us find out how shear modifies the pitchfork bifurcation
of Fig. 7. For small shear, we expect an imperfect bifurcation
(cf., e.g., Ref. [53]). For γ̇ = 0, Eq. (56b) has the solutions
c = 0 and cosh c = μR/(2A0). Inserting the latter expression
into Eq. (56a), we obtain the outer bifurcation diagram on the
(c,�) plane given by

� = −�ν
√

R = −�ν

√
2A0

μ
cosh c and c = 0. (57)

Expanding this expression around c = 0, we obtain to leading
order

R = 2A0

μ
cosh c 
⇒ R = 2A0

μ

(
1 + c2

2

)
, (58a)

� = −�ν

√
2A0

μ

(
1 + c2

4

)

⇒ � − �∗

�∗ = c2

4
. (58b)

Thus, the inner limit of the outer pitchfork bifurcation
diagram is (

� − �∗

−�∗ + c2

4

)
c = 0. (59)

See Ref. [54] for some background on matched asymptotic
expansions. Note that all terms in Eq. (59) are O(c3).

To obtain the bifurcation diagram modified by a small γ̇ ,
we first substitute Eq. (56b) into (56a), thereby obtaining(

�ν√
R

+ �ν2

)
sinh c = 2γ̇

(
1

γ2R
+ R tanh2 c

γ1

)
. (60)

Let us now consider how a small shear modifies the immediate
neighborhood of the bifurcation point in Fig. 7,

R = R∗ + r, � = �∗ + λ, c = c, (61)

where R∗ = 2A0/μ, and r, c, and λ are small. Equation (59)
indicates that λ = O(c2), and Eq. (60) indicates that γ̇ =
O(c3). Inserting Eq. (61) into (60) and keeping only leading-
order terms, we obtain

r = −2
√

R∗

�ν
λ. (62)

We now substitute this expression into Eq. (56b) and keep
only leading-order terms. The result is(

� − �∗

�ν
√

R∗ + c2

4

)
c = γ̇0, (63a)

γ̇0 = γ̇

2γ2κA2
0

. (63b)

Hence the right-hand side of Eq. (63a), given by γ̇0, acts as
a small imperfection on the pitchfork bifurcation diagram,
as shown in Fig. 11. There we have depicted the imperfect
bifurcation for both γ̇ > 0 and its mirror image for γ̇ < 0.

For positive λ � 1, c � 1, and Eq. (63a) becomes the
hyperbola

λ c = γ̇0�ν
√

R∗, (64)

which is on the half-plane having sgn c = sgn γ̇ . The other
half-plane contains a turning point having dλ/dc = 0; see

FIG. 11. Imperfect pitchfork bifurcation of Eq. (63a) appearing
in the presence of a shear flow on top of the pitchfork bifurca-
tion from Fig. 7, represented by pink curves. Thick (green)/thin
(orange) curves correspond to positive/negative shear flow, respec-
tively. Continuous (stable) and dashed (unstable) curves follow from
linear stability with eigenvalues given by Eqs. (70) and (71) below.
We have also plotted the zero-shear pitchfork bifurcation of Fig. 7.
Parameter values are κ = ν = γ1 = γ2 = 1, A0 = π , � = 0.1, μ =
2.4166, and γ̇ = ±0.1.

Fig. 11. Together with Eq. (63), this gives the turning point
(λ0, c0) with

c0 = (−2γ̇0)
1
3 , r0 = −2

√
R∗λ0

�ν
, (65a)

λ0 = −3�ν
√

R∗
(

γ̇0

4

)2/3

. (65b)

For large values of |c|, Eq. (56b) yields Eq. (58a), R =
2A0 cosh c/μ. Substituting this into Eq. (60) and approximat-
ing tanh c = ±1 for large c, we find

� = −
√

2A0

μ

(
�ν ∓ 4γ̇ A0

γ1μν

)√
cosh c. (66a)

For consistency with the imperfect bifurcation diagram, we
should have

4γ̇ A0

γ1μ�ν2
< 1. (66b)

Equation (63) approximates Eq. (60) and matches the outer
solution for γ̇ given by Eq. (57). In fact, the inner approxima-
tion of Eq. (57) is Eq. (59), which clearly matches Eq. (63)
as γ̇ → 0. To find a uniformly valid bifurcation diagram at
leading order, we add inner and outer solutions and subtract
their common part. After multiplication by

√
R∗, the result is(

�

�ν
√

R∗ +
√

cosh c

)
c = γ̇0, (67)

where γ̇0 is given by Eq. (63b).

C. Linear stability

To find out the linear stability of the stationary solutions—
this time also accounting for spatial degrees of freedom—we
linearize Eq. (50) around the stationary solutions obtained
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from the bifurcation equation (63a) with two simplifying
assumptions: (i) we consider periodic boundary conditions
on a rectangular box, and (ii) we assume R − R∗ = O(c2),
� − �∗ = O(c2), γ̇ = O(c3). The linearized equations con-
tain terms that depend on y due to the material derivatives.
We can eliminate them by shifting x → x − γ̇ yt . Then, if
the unknowns in the linearized equations are proportional to
exp[σ t + ik1(x − γ̇ yt ) + ik2y], σ are the eigenvalues of the
matrix Ai j , where

A11 = γ̇ sinh c

cosh2 c
− γ1

(
∂2 fsc

∂R2
+ KGk2

2
(1 + tanh2 c)

)
, (68a)

A12 = γ̇ R

cosh3 c
− γ1

(
∂2 fsc

∂R∂c
+ KGk2R sinh c

2 cosh3 c

)
, (68b)

A21 = −γ2

(
∂2 fsc

∂R∂c
+ KGk2R sinh c

2 cosh3 c

)
, (68c)

A22 = −γ2

(
∂2 fsc

∂c2
+ KGR2k2

2 cosh4 c

)
, (68d)

A13 = −2γ̇ R tanh2 c, A23 = −2γ̇ tanh c, (68e)

A31 = 0, A32 = γ̇

sinh(2c)
, A33 = − γ̇

sinh c
− γ3KGk2, (68f)

and k =
√

k2
1 + k2

2 . Here fsc is given by Eq. (33), and R, c,
and θ are the stationary solutions given by Eqs. (61)–(63).
Expanding around the bifurcation point R∗, c∗ = 0, �∗ with
the scaling (ii), we obtain an approximation including up to
O(c2) terms,

A11 = −γ1

(
∂2 fsc

∂R2
+ KGk2

2
(1 + c2)

)
, (69a)

A12 = −γ1

(
∂2 fsc

∂R∂c
+ KGk2R∗c

2

)
, (69b)

A21 = −γ2

(
∂2 fsc

∂R∂c
+ KGk2R∗c

2

)
, (69c)

A22 = −γ2

(
∂2 fsc

∂c2
+ KGR∗k2

2
(R∗ + r − 2R∗c2)

)
, (69d)

A13 = A23 = A31 = 0, (69e)

A32 = γ̇

2c
, A33 = − γ̇

c
− γ3KGk2, (69f)

∂2 fsc

∂R2
= κμ2(1 − c2) + �ν2

4
− 3�ν2r

8R∗2
− λν

4R∗3/2
, (69g)

∂2 fsc

∂c2
= 3κA2

0c2

2
,

∂2 fsc

∂R∂c
= −κμA0c. (69h)

Expanding by minors, Eqs. (69e) and (69f) imply that the
determinant det(A − σ I ) is (A33 − σ ) times det(Ai j − σδi j )
(i, j = 1, 2). Thus, one eigenvalue is

σ3 = − γ̇

c
− γ3KGk2. (70)

Equation (70) states that the stationary solutions with γ̇ c > 0
(corresponding to continuous branches existing for all values
of � in Fig. 11) are always stable. In contrast, the branches
issuing from the turning points in Fig. 11 are unstable for
wave numbers on the interval 0 < k2 < −γ̇ /(γ3KGc). They

will produce spatially nonhomogeneous solutions when the
size of the tissue exceeds a critical value. Here the kinetic
coefficient γ3 plays a stabilizing role.

The other two eigenvalues are those of the submatrix given
by Eqs. (69a)–(69d). We find

σ1 = −γ1

4

(
κμ2 + �ν2

R∗ + 2KGk2

)
+ O(c2), (71a)

σ2 = −γ2

2

[
KGR∗k2(R∗ + 2r + 2c2) + κA0(3A0c2 − μr)

+ 8γ1A2
0c2(κμ − KGk2/μ)2

γ1(κμ2 + �ν2

R∗ + 2KGk2) − 2γ2KGR∗2k2

]
+ O(c3),

(71b)

provided the denominator in the last term of Eq. (71b) is O(1).
If this denominator vanishes for some value of the parameters,
the eigenvalues become

σ1,2 = −γ1

4

(
KGk2 + κμ2

2
+ �ν2

2R∗

)
− 2γ2

μ2
A2

0KGk2

±√
γ1γ2A0|c|

∣∣∣∣KGk2

μ
− κμ

2

∣∣∣∣ + O(c2). (72)

In all cases, these eigenvalues are negative and the stability of
the homogeneous phases under shear is decided by Eq. (70)
alone.

IX. CONCLUSIONS

In this work, we have derived macroscopic hydrody-
namic equations to describe a monolayer of confluent cells.
We started from the mesoscopic vertex model, which pro-
vides a convenient average single-cell free-energy density
in terms of the cell area and perimeter. These quantities
can be related to an average shape tensor, which can be
written in terms of three fields: R (trace, proportional to
perimeter square), c (anisotropy), and θ (angle of the direc-
tor field describing the nematiclike alignment of elongated
cells). Hydrodynamic equations follow from a coarse-graining
procedure using Poisson brackets [25]. The reactive part
of the hydrodynamic equations is a straightforward conse-
quence of averaging the Poisson brackets of microscopic
quantities, i.e., density, momentum and shape tensor. The
dissipative part of the equations depends on the choice of
the kinetic coefficients and the average free energy. Our con-
sistent choice produces a gradient system for homogeneous
phases, which have the same dynamic stability proper-
ties as the thermodynamic stability of their homogeneous
counterpart.

Thus, we could recover the solid-liquid transition for a
critical value of the line tension, which appears as a supercrit-
ical pitchfork bifurcation between isotropic cells (c = 0) and
elongated cells with nonzero anisotropy field c. Furthermore,
we have analyzed how a homogeneous shear flow converts
this transition into an imperfect pitchfork bifurcation. There,
the continuous branches are stable, even including spatial
degrees of freedom, while the saddle-node branches are un-
stable versus spatially inhomogeneous states in sufficiently
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large monolayers. These predictions should be accessible to
dedicated simulations of the vertex model under shear, similar
to [37], which investigated nonlinear response to shear, but
with a parallel analysis of the coarse-grained dynamics of the
shape tensor.

It should be noted that, although the solid-liquid transition
is present in the model, the dynamic equations are hydrody-
namical in nature. To describe the solid dynamics faithfully,
complementary approaches have to be developed. One route
could be based on Ref. [38]. There, the metric tensor is in-
troduced in addition to the shape tensor (called the network
tensor there). This allows to describe elastic effects. Another
approach could start from recently developed microscopic
theories of sheared jammed soft particles [55]. Potentially this
could capture the yield stress behavior recently demonstrated
in the vertex model [56] when shearing the elastic phase.

In the future, the coarse-grained equations for a tissue
obtained here can be investigated for several biologically
relevant situations—for instance, having spatially varying pa-
rameters in the equations. An interesting related question is
the stability of a boundary between two tissues that have
different line tensions, as in antagonistic migration assays
of two cell populations [16,17]. Conceptually, the most

important next step would be to incorporate activity into the
coarse-graining process. Active, e.g., contractile, elements
have been included in phenomenological and mechanical
approaches to tissues [22,23], and active dynamics simi-
lar to Eqs. (3) and (4) have been coarse-grained to yield
Vicsek-type models [57,58]. However, a systematic coarse-
graining of these effects on the tissue level has not yet been
undertaken.
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