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Since the times of Holtsmark (1911), statistics of fields in random environments have been widely studied,
for example in astrophysics, active matter, and line-shape broadening. The power-law decay of the two-body
interaction of the form 1/|r|δ , and assuming spatial uniformity of the medium particles exerting the forces,
imply that the fields are fat-tailed distributed, and in general are described by stable Lévy distributions. With
this widely used framework, the variance of the field diverges, which is nonphysical, due to finite size cutoffs.
We find a complementary statistical law to the Lévy-Holtsmark distribution describing the large fields in the
problem, which is related to the finite size of the tracer particle. We discover biscaling with a sharp statistical
transition of the force moments taking place when the order of the moment is d/δ, where d is the dimension.
The high-order moments, including the variance, are described by the framework presented in this paper, which
is expected to hold for many systems. The new scaling solution found here is nonnormalized similar to infinite
invariant densities found in dynamical systems.
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I. INTRODUCTION

In 1919, Holtsmark considered the problem of the distri-
bution of force fields in the context of the chaotic motion of
charged particles in a plasma [1]. Similarly, Chandrasekhar
and Von Neumann examined the distribution of gravitational
forces in the universe [2]. The basic question studied was
the following: in an infinite system/universe with uniformly
distributed charges/masses, what is the distribution of forces
projected along the z axis, Fz, acting on a tracer located on
the origin [3]? This distribution peaks at Fz = 0, and its mean
is zero due to symmetry, however, the interesting aspect of
the solution is that the variance of the field diverges, which
is argued to be unphysical (see below) [1–8]. Mathematically,
Holtsmark’s problem is related to the generalized central limit
theorem [9], i.e., Lévy statistics, in which the distribution is
fat tailed [10,11]. The full connection to Lévy’s stable laws,
with truly vast applications [12–16], is only seen by extending
the original works [1,2] to include other force fields beyond
Coulomb and Newton’s gravitation law (see below). The sta-
tistical law discovered by Holtsmark and others is related to
the power-law decay in space of forces acting between two
bodies [3]. Hence, the applications of this basic model and
its extensions are found in many fields, for example, plasma
physics [17], astrophysics [2,3,18], swimming microorgan-
isms [19], glassy systems [20,21], forces in systems composed
of dipoles [6,7], NMR [22], Olbers paradox [18], and in-
homogeneous line-shape broadening [23].

Notwithstanding previous works, here we introduce a com-
plementary statistical law to those famous problems. Strictly
speaking, the diverging variance of the force field is unphys-
ical, as the original theory neglects an important excluded
volume effect, namely originally the size of the tracer is taken
to be zero. Mathematically, one goal of this manuscript is
to use tools from infinite ergodic theory [23–31] to find a
complementary statistical law for the force distribution. At the

center of infinite ergodic theory stands the infinite invariant
density [32,33], which is a nonnormalized function, hence its
name. We show how this function can be used to describe the
statistics of the force field when the tracer size is finite and
the density of bath particles is low. Importantly, in the field
of active matter, this tool describes the largest forces in the
problem, and these are crucial for current-day studies.

Recently, considerable work has been devoted to active
transport, for example, self-propelled colloids and biological
swimming microorganisms [34,35]. The phenomenology of
these systems is extremely rich, but one aspect of the prob-
lem is the “static force fields akin to Holtsmark distribution”
[8,16,19,36] that in turn controls the dynamical features of the
motion. The interaction is mediated by long-ranged hydro-
dynamical dipole force fields [34], but it has a cutoff length
scale a defined below, just like other realistic forces. This
cutoff scale is of great importance, as the forces the tracer
experiences cannot be arbitrarily large. Hence, as mentioned,
the Hotlsmark approach that yields a diverging variance of the
force needs modifications [19,37,38]. In particular, Zaid and
Mizuno found an exact expression for the Fourier transform
of the distribution of the force field, the numerical inversion
yields a distribution which is not of the Lévy type neither a
Gaussian [19].

Our goal is to show that a new solution emerges, the
mentioned infinite invariant density that describe the statistics
of forces in this basic problem. While the standard treatment
assumes monoscaling, namely that the statistics of the force
field is determined by a single scale, which is the Holtsmark
scale defined below, we will show how the field distribution
exhibits biscaling [39–41], accompanied by a sharp statis-
tical transition. This study is important for a vast number
of systems [2–6,8], and with some modifications for ones
driven by long-range active forces [34,42]. Simply enough,
the infinite density found in this manuscript describes the
statistical properties of the largest forces in the problem, and
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these are important in the study of extreme events in many
systems.

II. MODEL

Consider a rigid tracer with a radius a that is centered
in a sphere with a volume V → ∞ in dimension d = 2, or
d = 3. There are N → ∞ randomly uniformly distributed
bath particles inside the system, resulting in a finite overall
density, ρ = N/V [3–5,13]. The bath particles are treated
as sizeless charges, dipoles, masses, etc., and they cannot
overlap with the rigid body on the origin. This in turn im-
plies that we are considering the low density limit of the
model where spatial correlations in the bath are neglected.
Each particle applies a force on the tracer that decays like
a power law with the distance. The Cartesian axes in d = 3
are denoted as (x, y, z) and in d = 2, (x, z), so the total force
toward the z axis, denoted as Fz, is obtained by adding all the
z components of the forces applied on the tracer by all the
N particles,

Fz =
N∑

i=1

(Fi )z =
N∑

i=1

C cos(θi )

|ri|δ , (1)

where C is a constant determined by the type of the particles.
For Coulomb force, δ = 2 and C = q2/4πε0εr , where εr is the
dielectric constant in a medium, and ε0 is the one in vacuum.
The opening angles from the z-axis and the distance from the
tracer to particle i are denoted by θi and ri, respectively, and
the force-law exponent is denoted by δ.

The force Fz is clearly a random variable, as it is a sum
of many random contributions. The basic question is what is
the force probability density function (PDF), P(Fz, ξ ), where
we define ξ = (ρ1/d a)δ? In particular we focus on the limit of
small ξ , and the new finding of our work deals mainly with the
large forces, as mentioned in the introduction. An explanation
about the simulation of the model is provided in Appendix A.

III. CHARACTERISTIC FUNCTION AND MOMENTS

This problem contains two force scales: Fc = C/aδ , which
is the maximal force exerted on the tracer by a single bath
particle, (the subscript “c” stands for cut-off), as one can see
from Eq. (1) by simply inserting r = a and θ = 0. The second
is FH = ρδ/dC, which is the force scale studied by Holtsmark
and others. The pair of force scales and connection of the
problem to fat tailed distributions, with cutoffs, imply that
we can use biscaling ideas [39,43], namely we will find two
limiting laws for the distribution of forces. The relationship
between FH and Fc is characterized by

ξα =
(

FH

Fc

)α

= ρad , where α = d

δ
< 2 (2)

and our interest, as mentioned, is in the limit of small ξ .
Examine the characteristic function of Fz which is defined by
[19,22,37]

〈eikFz 〉 = [〈
1 − [

1 − exp
(
ikF j

z

)]〉]N
. (3)

Here, F j
z denotes the force exerted on the tracer by parti-

cle j. This formulation exploits the circumstance that we

are dealing with a collection of N independently and uni-
formly distributed identical particles, scattered randomly in
space. The spatial averaging is performed by integration con-
ducted across the entire system, normalized by the system’s
volume denoted as V . This leads to the following outcome
[22,37]:

〈eikFz 〉 = lim
N→∞

⎡
⎣1 −

∫
V dV

[
1 − e

ik C cos(θ )
|r|δ

]
V

⎤
⎦N

, (4)

where we used Eq. (1) and the fact that the bath particles are
uniformly distributed in space. By substituting the relation
V = N/ρ into Eq. (4) and subsequently taking the limit as
N → ∞, while keeping ρ fixed, we arrive at

〈eikFz 〉 = lim
N→∞

⎡
⎣1 − ρ

∫
V dV

[
1 − e

ik C cos(θ )
|r|δ

]
N

⎤
⎦N

= exp

[
−ρ

∫
V

dV
(
1 − e

ik C cos(θ )
|r|δ

)]
. (5)

Thus, the characteristic function, also known as the Fourier
transform of P(Fz, ξ ), denoted

〈eikFz 〉 =
∫ ∞

−∞
P(Fz, ξ )eikFz dFz, (6)

is written as [19,22,37]

〈eikFz 〉 = exp

[
−ρ	d

∫ θd

0
fd (θ )dθ

×
∫ ∞

a

(
1 − eik C cos(θ )

rδ
)
rd−1dr

]
, (7)

where we used the mentioned excluded volume effect, i.e., the
lower limit of the integration is a. 	d results from the integral
over the azimuth angle in dimension d , with 	2 = 1 and 	3 =
2π . θd represents the polar angle, hence θ2 = 2π and θ3 = π .
For dimensions two and three, f2(θ ) = 1 and f3(θ ) = sin(θ ),
respectively.

Due to symmetry, P(Fz ) = P(−Fz ), making the charac-
teristic function a real function. Consequently, Eq. (7) is
rewritten in the following form:

〈eikFz 〉 = exp

[
−ρ	d

∫ θd

0
fd (θ )dθ

×
∫ ∞

a

(
1 − cos

(
Ck cos(θ )

rδ

))
rd−1dr

]
. (8)

A. The infinite density for dimension three

We first study the d = 3 case. Using Eq. (8), the character-
istic function,

〈eikFz 〉 = exp

[
−2πρ

∫ π

0
sin(θ )dθ

×
∫ ∞

a

(
1 − cos

(
Ck cos(θ )

rδ

))
r2dr

]
(9)
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is found using Mathematica, which gives the following
form [19]:

〈eikFz 〉 = exp

[
−4πξα

[
1F2

( − α
2 ; 3

2 , 1 − α
2 ; −|Fck|2

4

) − 1
]

3

]
,

(10)

where 1F2 is the generalized hypergeometric function [44].
Naturally, one can utilize Eq. (10) to numerically find the
PDF P(Fz, ξ ) using the inverse Fourier transform. Our goal
as declared already is to use Eq. (10) to establish a limiting
law, called the infinite density.

The moments of Fz can be determined using the following
equation:

〈
F 2n

z

〉 = (−1)n d2n〈eikFz 〉
dk2n

∣∣∣∣
k=0

. (11)

After performing straightforward calculations (refer to
Appendix B for details), the variance can be expressed as

〈F 2
z 〉 = 4παξαF 2

c

9(2 − α)
. (12)

Thus, the cutoff force scale, Fc, governs the behavior of the
variance. Similarly, the fourth moment is

〈F 4
z 〉 = F 4

c

(
4παξα

15(4 − α)
+ 3

(
4παξα

9(2 − α)

)2
)

, (13)

and for ξ � 1, the leading term of the fourth moment is of
order ξα . This is not a coincidence since the leading term of
the sixth moment,

〈
F 6

z

〉 = F 6
c

[
4παξα

21(6 − α)

+ 16π2α2ξ 2α

9(2 − α)(4 − α)
+ 15

(
4παξα

9(2 − α)

)3]
, (14)

has an asymptotic behavior of ξα for ξ � 1. The same can be
done for the 2nth moment. Hence, for a non-negative integer
n, the 2nth moment for ξ � 1 is

〈
F 2n

z

〉 ∼ 4παξα

3(2n − α)(2n + 1)
F 2n

c . (15)

As discussed in the introduction, the second moment 〈F 2
z 〉

diverges as Fc → ∞, but Fc is finite as long as a > 0, so
moments of the force field do not diverge. Odd moments
are zero due to symmetry. Notice that the expression in
Eq. (15) diverges if we analytically continue n and set it to
approach α/2 (n → α/2) from above, and if we set n = 0,
we get a negative result, which violates the normalization
condition.

IV. INFINITE DENSITY

Our next goal is to find a function that generates the
moments presented in Eq. (15). This function is called
the infinite density. Using Eq. (15) and [(2n − α)(2n +
1)] = [(2n − α)−1 − (2n + 1)−1]/(1 + α), we search for a

nonnegative symmetric function PA(Fz, ξ ) such that〈
F 2n

z

〉
A = 2

∫ ∞

0
F 2n

z PA(Fz, ξ )dFz

= 4παξαF 2n
c

3(1 + α)

[
1

2n − α
− 1

2n + 1

]
, (16)

where “A” stands for asymptotic, since the approach is valid
for ξ � 1. Naively, PA(Fz, ξ ) is a PDF since it gives the
moments of the force field, but this as we show soon is simply
wrong. Recall the Mellin transform [45] for a polynomial
function, f (x), that satisfies f (|x| < 1) = |x|b and otherwise
zero,

{M f }(s) ≡
∫ ∞

0
xs−1 f (x)dx = 1

s + b
. (17)

Using Eq. (16), we see that in our case s = 2n + 1. Therefore,
by applying the inverse Mellin transform on Eq. (16), we find
that

PA(Fz, ξ ) =
{

2παFα
H

3(1+α)F 1+α
c

[( |Fz|
Fc

)−1−α − 1
]
, |Fz| < Fc

0, |Fz| � Fc.

(18)

Clearly, this function is not normalizable since PA(Fz, ξ ) ∼
|Fz|−(1+α) for small force fields, hence it is not a PDF. It is
easily verified with simple integration that Eq. (18) gives the
moments found in Eqs. (15) and (16). Mathematically, we
are interested in the limit where both Fc → ∞ and Fz → ∞,
hence we denote F̃ = Fz/Fc. This corresponds to the large
forces in the problem. We present the solution using a natural
scale, namely we define

Iα (F̃ ) = F 1+α
c PA(Fz, ξ ), (19)

and Iα (F̃ ) is the infinite density of F̃ , where the name comes
from the fact that

∫ ∞
−∞ Iα (F̃ )dF̃ = ∞. With the usage of

Eq. (19) we find

Iα (F̃ ) =
{ 2παFα

H
3(1+α)

(
1

|F̃ |1+α − 1
) |F̃ | < 1

0 |F̃ | � 1.
(20)

While we may use Eq. (20) to obtain force moments, the
remaining question is how can it be measured, at least in prin-
ciple? Clearly, Iα (F̃ ) ∼ F̃−(1+α) for small F̃ , the question is
what is the physical meaning of this nonnormalized solution?
Namely, how is the infinite density related to the normalized
probability density of the force field.

We realize that moments of the force field can be obtained
not only from the infinite density, instead we may use the
probability density of the force itself, namely P(Fz, ξ ). From
here, we reach the conclusion

Iα (F̃ ) = lim
Fc,Fz→∞

F 1+α
c P(Fz, ξ ), (21)

namely the normalized density P(Fz, ξ ) is related to Iα (F̃ ).
It is important to emphasize that while Eq. (21) is an exact
statement that holds in a limit, for finite Fc the theory holds as
a valid approximation, as we now demonstrate.

In numerous areas of physics, the observed tracer is typ-
ically small and fulfills the condition ρad � 1, indicating a
significantly low density [1,2,20]. This condition holds true,
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FIG. 1. F 1+α
c P(Fz, ξ ) versus F̃ = Fz/Fc obtained from numeri-

cal simulation (dotted line) and compared with the infinite density
(solid line) and the inverse Fourier transform of the characteristic
function (dashed line) found in Eq. (20) and Eq. (10) for α = 3/2,
respectively. Clearly the infinite density is indeed a complementary
statistical law, indicating that the Holtsmark’s law is only part of the
story. In particular the infinite density has a cutoff at |F̃ | = 1, which
refers to the rare events. Thus, this law describes the large forces
in the problem. For small F̃ , the solution is nonintegrable at the
origin in the limit Fc → ∞. We chose C = 1, such that Fc = 1/aδ ,
the density ρ = 3/4π , the number of particles N = 8000, and the
dimension d = 3.

for instance, in a two-dimensional system, such as a disk,
where a tiny tracer with a small radius a is positioned at its
center. The tracer is encompassed by positively/negatively
charged particles. Here we demonstrate this relation for the
case studied by Holtsmark, where a is finite though small.

We simulated the random force field for the case δ = 2
and d = 3, and obtained P(Fz, ξ ) (see details in Appendix A).
Recall that δ = 2 implies a gravitational of Coloumb type or
force fields. The results (dotted line) are compared with the
theory in Fig. 1. After rescaling, using Eq. (21), we compare
numerical data to the exact one, namely the inverse Fourier
transform of Eq. (10) (black solid line), and to Iα (F̃ ) found
in Eq. (20) (dashed line). The figure demonstrates perfect
agreement between statistics of the simulated field and the
non normalized solution, Iα (F̃ ). Notice, for F̃ = 1, there is
a cutoff indicating that the largest total force is of the order
Fc, which is equivalent to the largest force exerted by a single
particle in the vicinity of the tracer [46,47]. The next step is to
consider another scaling solution of the problem, found when
a = 0, corresponding to the original work of Holtsmark.

A. Lévy-Holtsmark statistics

The characteristic function, Eq. (10), for the case of a = 0
is given by

P̃(k, 0) = exp [−μd,α|FH k|α], (22)

where μd,α is a dimensionless constant given by

μd,α = π

⎧⎪⎨
⎪⎩


(1− α
2 )

2α
(1+ α
2 ) d = 2

4 cos( πα
2 )
(1−α)

3(1+α) d = 3.

(23)

Equation (22) is the Fourier transform of the well-known Lévy
stable distribution function, P(Fz, 0) = Lα (Fz ), for 0 < α < 2.
Here Lα (Fz ) = Lα (−Fz ) from symmetry. From Eq. (22) we
see that force scale defined above Eq. (2), FH , determines
the width of the distribution of the force field, when a = 0,
namely ξ = 0. For d = 3 and δ = 2, namely α = 3/2, by ap-
plying the inverse Fourier transform over Eq. (22), we recover
the Holtsmark distribution, which is a special case of the Lévy
stable distribution. The following question arises: what is the
connection between the Lévy-Holtsmark distribution and the
infinite density? This question is answered next.

B. Relation of infinite density and Lévy statistics

Applying an inverse Fourier transform (F−1) on the char-
acteristic function yields the Lévy distribution of Fz, where
P(Fz, 0) = Lα (Fz ) = F−1[exp(−μd,α|FH k|α )]. The function
Lα (Fz ) is tabulated in programs like Mathematica and hence,
easy to plot. We now notice that the Lévy density for large
Fz matches the solution we found here, namely the infinite
density for small Fz. We have, by using the large Fz limit of
Lα (Fz ) and the small Fz limit of Eq. (20),Â

Lα (Fz ) ∼ 2παFα
H

3(1 + α)

1

|Fz|1+α
,

P(Fz, ξ ) ∼ Iα (Fz )

F 1+α
c

∼ 2παFα
H

3(1 + α)

1

|Fz|1+α
,

(24)

hence, the two solutions match as they should. In other words,
the Lévy distribution accurately describes the center part of
P(Fz, ξ ) in the limit of a small but finite a, whereas our
solution accurately describes the large Fz limit. As mentioned
in the introduction, the study of large forces is crucial, and that
regime is described by the infinite density found here.

V. SHARP STATISTICAL TRANSITION

We now show how the moments of the force field exhibit
bilinear scaling with a sharp transition found when the order
of the moments is modified.

Consider the absolute value of the moment, denoted as
〈|Fz|q〉, where q gets any nonnegative real value. Since the
Lévy/Holtsmark method of calculating the moments fails for
q > α mathematically because the moments diverge in that
regime and physically since the assumption of absence of
excluded volume a = 0 cannot be used, we employ the infinite
density. Hence, 〈|Fz|q〉 is given by the integral

〈|Fz|q〉 ∼ 1

F 1+α
c

∫ Fc

−Fc

|Fz|qIα (Fz )dFz, q > α. (25)

Unlike Eq. (16) now q is not necessarily an integer. The mo-
ments for q < α cannot be calculated by the infinite density,
since the latter does not describe well the small force fields
and the normalization condition q = 0 case, hence they are
found using the Lévy’s distribution. The infinite density and
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the Lévy distribution are complementary, thus each succeeds
where the other one fails. Hence, 〈|Fz|q〉 for q < α is obtained
by solving the integral

〈|Fz|q〉 =
∫ ∞

−∞
|Fz|qLα (Fz )dFz. (26)

The final solution for 〈|Fz|q〉 is

〈|Fz|q〉 ∼
{

Mq>αFα
H F q−α

c q > α

Mq<αF q
H q < α,

(27)

where the amplitudes Mq are

Mq>α = 4π

δ(q − α)(q + 1)

Mq<α = (μd,α )
q
α 


(
1 − q

α

)
cos

(
πq
2

)

(1 − q)

. (28)

There is a clear divergence of 〈|Fz|q〉 for q → α from above
and below, thus the moments exhibit a transition, which is
an indication of a transition between statistical laws of weak
fields (Lévy/Holtsmark) and strong fields (infinite density).

A. The infinite density for dimension two

As in the three-dimensional case we start with the calcula-
tion of the moments 〈F 2n

z 〉, where n is a nonnegative integer.
With the usage of the characteristic function, found using
Eq. (7) [19]

〈eikFz 〉 = exp

[
−πξα

(
1F2

[
−α

2
; 1, 1 − α

2
; −|Fck|2

4

]
− 1

)]
,

(29)

and Eq. (11), the 2nth moment for the dimensionless variable
F̃ = Fz/Fc is

〈F̃ 2n〉 ∼
√

παξα

2n − α

⎛
⎜⎜⎜⎜⎝

2
(α)


( α
2 )

+ 
(n + 1
2 )


(n + 1)
− 


(
1+α

2

)


(
1 + α

2

)︸ ︷︷ ︸
gα (n)

⎞
⎟⎟⎟⎟⎠,

(30)

where we used ξ � 1 as before. In Appendix C, we present
the first three nonzero moments for d = 2. Our next goal
is to find the infinite density that generates the moments in
Eq. (30). For that aim, we use the Mellin transform with
Eq. (17) and the identity

gα (n) = α − 2n√
π (1 + α)

∫ 1

−1
2F1

[
1

2
,

1 + α

2
;

3 + α

2
, F̃ 2

]
F̃ 2ndF̃ ,

(31)

where gα (n) is defined in Eq. (30). Therefore, the infinite
density is

Iα (F̃ ) =
{

αFα
H

[ √
π
( 1+α

2 )
α
( α

2 )|F̃ |1+α − 2F1[ 1
2 , 1+α

2 ; 3+α
2 ,F̃ 2]

(1+α)

]
|F̃ | < 1

0 |F̃ | � 1,

(32)

where 2F1 is the Gaussian hypergeometric function [44]. Of
course, one may insert Eq. (32) in Eq. (25), with q = 2n

FIG. 2. We present numerical results for the moments amplitude
Mq versus q (shapes). In the limit of large Fc, these converge to
the theoretical prediction Eq. (28) and Eq. (C8) (see Appendix C)
for d = 3, 2, respectively. In the large limit of Fc, these moments
diverge as q → α, as shown. In the top (bottom) graph ρ = 3/4π

(ρ = 1/π ), α = 3/2 (α = 1), and d = 3 (d = 2), respectively. In
both graphs we chose C = 1, such that Fc = 1/aδ . The plots show
how q > α corresponds to the infinite density scaling, while q < α

to the Holtsmark-Lévy law.

and verify Eq. (30). The infinite density in two and three
dimensions are clearly different from each other, but both
satisfy the relations in Eqs. (19) and (21). Still, in both di-
mensions the infinite density has similar behavior for F̃ → 0,
i.e., Iα (F̃ ) ∼ F̃−(1+α), so this is a nonnormalized function.

In Fig 2, we compare the theoretical result of the ampli-
tudes of the absolute value of the force moments, obtained
from Eq. (28) and Eq. (32) (see Appendix C), with the
simulation for the Holtsmark (d = 3, α = 3/2) and Cauchy
(d = 2, α = 1) cases, respectively. From this figure we see
that for q > α, the moments are obtained by the infinite den-
sity function, and for q < α by the Lévy distribution. As Fc

gets larger (a smaller) so does the peak at q = α, hence the
data converges to the theoretical result. The figures clearly
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illustrate that by studying different orders of moments, we
reveal different scales of the problem, accompanied by a sharp
transition, found at qc = α.

B. Extension of this work

In many stochastic models, the noise is described by Lévy
statistics [48]. Lévy noise cannot be realized in physical sys-
tems in its exact mathematical form, instead semitruncated
Lévy noise is used, for various far from equilibrium systems,
including active swimmer suspension [16,19,35], actomyosin
networks [49], and cultured cell [50]. Here we showed, using
a static model, that indeed the forces are truncated, and that
this truncation is related to finite size effects, namely to the
radius a, and more importantly this cutoff is, at least in a static
description, deeply related to the infinite density concept.
Since the far tail of the distribution of the random force is
important for the enhancement of active diffusion, our work
may impact the whole field. The remaining challenge is to see
how the statistical laws found here for a basic static model
translate into a dynamical picture [34].

VI. SUMMARY

To conclude, we found a nontrivial behavior of the mo-
ments of the force field for Holtsmark-like problems. A
transition controlled by the order of the moments is observed
at a critical value of qc = α = d/δ.Â The q moments of order
q > qc are described by the cutoff force scale Fc, which is
determined by a single bath particle in the vicinity of the
tracer, so 〈|F |q〉 ∝ (Fc)q−α . In contrast, low order moments
q < qc are given by the Holtsmark force scale. The amplitudes
of these moments, Mq, diverge in the vicinity of the transition
point qc. Further, the low order moments are determined by
the Lévy-Holtsmark law, while the higher order moments,
namely q > qc, are determined by the infinite density found
here. The Lévy-Holtsmark distribution and the infinite density
are complementary scaling laws of the problem. The infinite
density in Eqs. (32) and (20) describes the distribution of
forces, Fz, for large forces. These are important in many ap-
plications, as large forces can lead to violent effects. More
mathematically, in the limit where both Fc and Fz are large,
we get a limit theorem that is complementary to the well-
known Holtsmark distribution. This is found using the small
density limit, where the assumptions of the model are valid.
The PDF of forces, when properly rescaled, yields the infinite
density, and importantly, the latter describes the large forces
in the problem (see Fig. 1). As such, the infinite density is
an essential part of this problem, exactly like the well known
Lévy-Holtsmark distribution.
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APPENDIX A: SIMULATION OF THE MODEL

Here we give an explanation about the simulation of the
model. We scattered uniformly N particles in a d = 2, 3 di-
mensional sphere with the outer radius denoted as R. The force

each particle exerts on a rigid body tracer with a radius of a
located in the center is then measured (bath particles are ex-
cluded from the volume with radius a � R). By summing all
the observed forces, one obtains the total force field applied on
the rigid tracer presented in Eq. (1). By repeating this process
many times, the distribution of the total force, P(Fz, ρad ), is
obtained. We also obtained the PDF by performing numeri-
cal inverse Fourier transform of Eq. (7), using Mathematica.
In both Fig. 1 and Fig. 2, R = 20, which is much greater
than a.

APPENDIX B: DERIVATION OF THE FORCE
MOMENTS IN THREE DIMENSION

The exact result of the force moments in dimension d = 3
are given here. Since the odd moments are vanishing, we deal
only with the even ones, starting with the variance. We expand
the Hyper geometric function presented in Eq. (10) as a Taylor
series and find

〈eikFz 〉 = exp

( ∞∑
n=1

4παξαF 2n
c

3(2n − α)(2n + 1)

(ik)2n

(2n)!

)
. (B1)

The expansion of Eq. (B1) in a Taylor series,

〈eikFz 〉 = 1 +
∞∑

m=1

1

m!

( ∞∑
n=1

4παξαF 2n
c

3(2n − α)(2n + 1)

(ik)2n

(2n)!

)m

,

(B2)

with the usage of Eq. (11) gives all the exact moments. We
provided only the first three nonzero exact moments in the
paper.

APPENDIX C: DERIVATION OF THE FORCE MOMENTS
IN TWO DIMENSION

We start by expanding Eq. (29) in a Taylor series:

〈eikFz 〉 = 1 +
∞∑

m=1

1

m!

( ∞∑
n=1

α
√

πξαF 2n
c 
(n + 1

2 )

(2n − α)
(n + 1)

(ik)2n

(2n)!

)m

.

(C1)

Using Eqs. (11) and (C1), the variance is

〈F 2
z 〉 = παξα

2(2 − α)
F 2

c . (C2)

We find the fourth moment, 〈F 4
z 〉, and the sixth moments,

〈F 6
z 〉, in the same way

〈
F 4

z

〉 =
[

3παξα

8(4 − α)
+ 3

(
απξα

2(2 − α)

)2
]

F 4
c , (C3)

〈
F 6

z

〉 =
[

5παξα

16(6 − α)

+ 45α2π2ξ 2α

16(4 − α)(2 − α)
+ 15

(
απξα

2(2 − α)

)3]
F 6

c . (C4)
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For ξ � 1, the leading term in Eq. (C3) is

〈
F 4

z

〉 ∼ 3παξα

8(4 − α)
F 4

c . (C5)

Similarly, the 2nth moment is

〈
F 2n

z

〉 = α
√

πξα

(
n + 1

2

)
(2n − α)
(n + 1)

F 2n
c + O(ξ 2α ). (C6)

Using the rescaled variable F̃ = Fz/Fc, we get

〈F̃ 2n〉 = α
√

πξα

(
n + 1

2

)
(2n − α)
(n + 1)

+ O(ξ 2α ), (C7)

which yields Eq. (30).

Our next goal is to find the moments of the absolute force
value that are mentioned in Eq. (27), 〈|Fz|q〉. We do so
by employing the infinite density presented in Eq. (32) for
q > α and Lα (Fz ) for the moments q < α, using 〈|Fz|q〉 =∫ ∞
−∞ |Fz|qLα (Fz )dFz, which yield Eq. (27). The amplitudes,

Mq, for the case of d = 2 are

Mq>α = α
√

πξα

( q+1

2

)
(q − α)


(
1 + q

2

) ,
Mq<α = (μd,α )

q
α 


(
1 − q

α

)
cos

(
πq
2

)

(1 − q)

, (C8)

with μd,α defined in Eq. (23). Equation (C8) is used to
describe how the finite size simulations converge to the
asymptotic prediction in Fig. 2 presented in the manuscript.
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