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Extremal statistics for a resetting Brownian motion before its first-passage time
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We study the extreme value statistics of a one-dimensional resetting Brownian motion (RBM) till its first
passage through the origin starting from the position x0 (>0). By deriving the exit probability of RBM in an
interval [0, M] from the origin, we obtain the distribution Pr (M|x0) of the maximum displacement M and thus
gives the expected value 〈M〉 of M as functions of the resetting rate r and x0. We find that 〈M〉 decreases
monotonically as r increases, and tends to 2x0 as r → ∞. In the opposite limit, 〈M〉 diverges logarithmically as
r → 0. Moreover, we derive the propagator of RBM in the Laplace domain in the presence of both absorbing
ends, and then leads to the joint distribution Pr (M, tm|x0 ) of M and the time tm at which this maximum is achieved
in the Laplace domain by using a path decomposition technique, from which the expected value 〈tm〉 of tm is
obtained explicitly. Interestingly, 〈tm〉 shows a nonmonotonic dependence on r, and attains its minimum at an
optimal r∗ ≈ 2.71691D/x2

0 , where D is the diffusion coefficient. Finally, we perform extensive simulations to
validate our theoretical results.
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I. INTRODUCTION

Understanding extreme events that occur very infrequently
is important as they may bring catastrophic consequences.
From natural calamities like earthquake, tsunamis, and floods
to economic collapses and outbreak of pandemic are all
examples of extreme events which can lead to devastating
consequences [1–6]. Extreme-value statistics (EVS) has been
a branch of statistics which deals with the extreme deviations
of a random process from its mean behavior. Gnedenko’s
classical law of extremes is a general result regarding the
asymptotic distribution of extreme value for independent and
identically distributed random variables [7]. The study of
EVS has been extremely important in the field of disor-
dered systems [8,9], fluctuating interfaces [10,11], interacting
spin systems [12], stochastic transport models [13,14], ran-
dom matrices [15–17], epidemic outbreak [18], binary search
trees [19], and related computer search algorithms [20,21].
In recent years, there is an increasing interest in studying
the extreme value for many weakly and strongly corre-
lated stochastic processes [22–28]. We refer the readers to
Refs. [29,30] for two recent reviews on the extreme-value
statistics.

One of the central goals on this subject is to compute the
statistics of extremes, i.e., the maximum M of a given trajec-
tory x(t ) during an observation time window [0, t], and the
time tm at which the maximum M is reached. A paradigmatic
example is the one-dimensional Brownian motion for a fixed
duration t starting from the origin. The joint distribution of M
and tm is given by [31]

P0(M, tm|t ) = M

2πD
√

t3
m(t − tm)

e−M2/4Dtm , (1)

*chenhshf@ahu.edu.cn

where D the diffusion coefficient. Integrating P0(M, tm|t ) over
tm from 0 to t , one can get the marginal distribution of M,

P0(M|t ) = 1√
πDt

e−M2/4Dt , M > 0, (2)

which is the one-sided Gaussian distribution. Integrating
P0(M, tm|t ) over M from 0 to ∞, one can obtain the marginal
distribution of tm,

P0(tm|t ) = 1

π
√

tm(t − tm)
, 0 � tm � t, (3)

which is often referred to as the “arcsine law” due to
Lévy [32–34]. The name stems from the fact that the
cumulative distribution of tm reads F (z) = ∫ z

0 P(tm)dtm =
(2/π ) arcsin

√
z/t . A counterintuitive aspect of the U -shaped

distribution Eq. (3) is that its average value 〈tm〉 = t/2 cor-
responds to the minimum of the distribution, i.e., the less
probable outcome, whereas values close to the extrema tm = 0
and tm = t are much more likely. Recent studies led to many
extensions of the law, such as in constrained Brownian mo-
tions [35], random acceleration process [36,37], fractional
Brownian motion [38,39], run-and-tumble motion [40], re-
setting Brownian motion [41], and for general stochastic
processes [31,42–49]. Extension to study the distribution of
the time difference between the minimum and the maximum
for stochastic processes has also been made in Refs. [50,51].
Quite remarkably, the statistics of tm has found applications
in convex hull problems [52] and also in detecting whether a
stationary process is equilibrium or not [53,54].

While the statistics of M and tm in a fixed duration time
has been extensively studied, the study of these quantities
for a stochastic process until a stopping time, e.g., the first-
passage time when the process arrives at some threshold value
brings some recent attention. This problem is relevant to some
context. For instance, in queue theory the maximum queue
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length and the time at which this length is achieved before the
queue length gets to zero [55]. In stock market, an agent can
hold the stock till its price reaches a certain threshold value.
A best time to sell the stock is when the price of the stock
reaches its maximum before dropping to the threshold [56].
Another example arises in the biological context regarding the
maximal excursions of the tracer proteins before binding at a
site [57,58]. For a one-dimensional Brownian motion starting
from the position x0(> 0), the statistics of M and tm before
its first passage through the origin has been studied, and the
marginal distributions of M and tm are given by [55]

P0(M|x0) = x0

M2
, M � x0, (4)

and

P0(tm|x0) = 1

2πtm

[
π −

∫ π

0
dyϑ4

(
y/2, e−Dtmy2/x2

0
)]

, (5)

where ϑ4(y, z) is the fourth of Jacobi’s theta functions. It
was shown that P0(tm|x0) exhibits power-law forms at both
large and small tails with P0(tm|x0) ∼ t−1/2

m as tm → 0 and
P0(tm|x0) ∼ t−3/2

m as tm → ∞. A recent study has extended to
compute the joint distribution of M and tm and their marginal
distributions for the run-and-tumble particle in one dimension
[59].

Stochastic resetting is a renewal process in which the dy-
namics is interrupted stochastically followed by its starting
anew. The subject has recently gained considerable attention
due to wide applications in search problems [60,61], the op-
timization of randomized computer algorithms [62], and in
the field of biophysics [63,64] (see Refs. [65,66] for two
recent reviews). A paradigmatic example in statistical physics
is resetting Brownian motions where a diffusing particle is
reset to its starting point at random times but with a con-
stant rate. A finite resetting rate leads to a nonequilibrium
stationary state with non-Gaussian fluctuations for the particle
position. The mean time to reach a given target for the first
time can become finite and be minimized with respect to the
resetting rate [67]. Some extensions have been made in the
field, such as spatially [68] or temporally [69–73] dependent
resetting rate, higher dimensions [74], complex geometries
[75–78], noninstantaneous resetting [79–85], in the presence
of external potential [82,86,87], other types of Brownian mo-
tion, like run-and-tumble particles [88–90], active particles
[91,92], constrained Brownian particle [93], and so on [94].
These nontrivial findings have triggered an enormous recent
activities in the field, including statistical physics [95–106],
stochastic thermodynamics [107–109], chemical and biolog-
ical processes [63,64,110–112], record statistics [113–116],
optimal control theory [117], and single-particle experiments
[118,119].

In the present work, we aim to study the statistics of M and
tm for a resetting Brownian particle in one dimension till it
passes through the origin for the first time, starting from a pos-
itive position x0. We first compute analytically the marginal
distribution Pr (M|x0) of M by the splitting or exit probability
from the origin when the resetting Brownian motion is con-
fined in an interval [0, M]. For any nonzero resetting rate r,
Pr (M|x0) decays exponentially in the large-M limit, such that
the expectation 〈M〉 of M converges. The exact expression

0

x0

tf

M

x(
t)

t
tm

reset

ε→0

FIG. 1. A realization of a one-dimensional resetting Brownian
motion in the presence of an absorbing wall at the origin. The
stochastic process x(t ) starts from x0 and reaches its maximum M
at time tm before the first-passage time t f through the origin.

of 〈M〉 is also derived as functions of r and x0. 〈M〉 diverges
with − x0

2 ln r as r → 0, and decreases monotonically with r
and converges to 2x0 as r → ∞. Using the path decomposi-
tion technique, we express the joint distribution Pr (M, tm|x0)
of M and tm in the Laplace space, from which we can obtain
the exact expression of the expectation 〈tm〉 of tm. Interest-
ingly, 〈tm〉 shows a unique minimum at an optimal resetting
rate r∗ ≈ 2.71691D/x2

0, reminiscent of another optimal reset-
ting rate ≈2.53964D/x2

0 at which the mean first-passage time
is a minimum [65,67].

II. MODEL

Let us consider a one-dimensional resetting Brownian mo-
tion (RBM), starting at x0(> 0), with resetting to the position
xr > 0 at rate r. The position x(t ) of the particle at time t is
updated by the following stochastic rule [65,67]:

x(t + dt ) =
{

x(t ) + √
2Dξ (t )dt, with prob. 1 − rdt,

xr, with prob. rdt,

(6)

where D is the diffusion coefficient, and ξ (t ) is a Gaus-
sian white noise with zero mean 〈ξ (t )〉 = 0 and δ correlator
〈ξ (t )ξ (t ′)〉 = δ(t − t ′).

We assume that there is an absorbing boundary located at
the origin x = 0, such that the stochastic process is terminated
once the particle hits the boundary. In Fig. 1, we show a
realization of the RBM x(t ), starting at x0 (>0) and terminat-
ing whenever x(t ) reaches the origin. The displacement x(t )
reaches its maximum M at time tm. We are interested in the
joint distribution Pr (M, tm|x0) of the maximum displacement
M of the particle and the time tm at which the maximum is
reached before the first-passage time to the absorbing bound-
ary at the origin, and their marginal distributions of M and tm,
Pr (M|x0) and Pr (tm|x0).
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III. EXIT PROBABILITY

Consider the RBM starting from x0 ∈ [0, M], and both
ends of the interval are absorbing boundaries. Let us denote by
Er (x0; xr ) the splitting or exit probability that the particle exits
the interval for the first time through the origin, i.e., the prob-
ability that the maximum before the first-passage time is less
than or equal to M. The exit probability has been obtained in a
recent work [120]. For completeness, we derive the expression
but use a different method. Considering an infinitesimal time
increment dt from beginning, the position of the particle will
move either to x0 + � from x0 with probability 1 − rdt , or
to xr with probability rdt , where � is a random variable
and is distributed by a Gaussian function with zero mean
and variance 〈�2〉 = 2Ddt . Er (x0; xr ) satisfies the following
equation:

Er (x0; xr ) = (1 − rdt )〈Er (x0 + �; xr )〉 + rdtEr (xr ; xr ), (7)

where 〈· · · 〉 denotes the average over �. Expanding Er (x0 +
�; xr ) to the second order in �, and then performing the
average in Eq. (7), we obtain [121]

D
d2Er (x0; xr )

dx2
0

− rEr (x0; xr ) + rEr (xr ; xr ) = 0. (8)

Equation (8) can be solved subject to the boundary conditions

Er (0; xr ) = 1, Er (M; xr ) = 0, (9)

which yields

Er (x0; xr ) = sinh [α0(M − xr )] + sinh [α0(xr − x0)]

sinh [α0(M − xr )] + sinh (α0xr )
, (10)

where α0 = √
r/D. For the special case when the resetting

position coincides with the starting position, xr = x0, Eq. (10)
simplifies to

Er (x0; x0) = sinh [α0(M − x0)]

sinh [α0(M − x0)] + sinh (α0x0)
. (11)

IV. MARGINAL DISTRIBUTION OF THE MAXIMUM
DISPLACEMENT BEFORE THE FIRST PASSAGE

TO THE ORIGIN

Differentiating Eq. (10) with respect to M gives the proba-
bility density function of M [55],

Pr (M|x0; xr ) = ∂Er (x0; xr )

∂M
= α0 cosh [α0(M − xr )](sinh (α0xr ) − sinh [α0(xr − x0)])

(sinh [α0(M − xr )] + sinh (α0xr ))2 . (12)

In the limit r → 0, Eq. (12) recovers to the result when the
resetting is absent, see Eq. (4). For the special case xr = x0,
Eq. (12) simplifies to

Pr (M|x0; x0) = α0 sinh [α0x0] cosh [α0(M − x0)]

(sinh [α0(M − x0)] + sinh [α0x0])2 . (13)

In Fig. 2, we plot the distribution Pr (M|x0; x0) for four
different values of r but for the fixed x0 = 1 and D = 1/2. For
small resetting rates, Pr (M|x0; x0) decays with M very slowly
like a power law, similar to the case without resetting [see
Eq. (4)]. For relatively larger resetting rates, the resetting to
the starting position can decrease the long-range meandering
of diffusing particle, so that the fat-tailed distribution is cut off
in the large-M limit. Interestingly, as r increases, there exists a
critical r = rc at which Pr (M|x0; x0) changes from a monoton-
ically decreasing function into a nonmonotonic function. Such
a nonmonotonicity of Pr (M|x0; x0) for r > rc is characterized
by a maximum at M = M+ and a minimum at M = M−, see
an illustration for the case r = 5 shown in Fig. 2. M± can be
obtained by the condition ∂Pr (M|x0; x0)/∂M|M=M± = 0, given
by

M± = 1

α0
ln

(
1

2
B± + 1

2

√
B2± + 4

)
+ x0, (14)

with

B± = sinh (α0x0) ±
√

sinh2(α0x0) − 8. (15)

In the limit of r → ∞, M+ and M− tend to 2x0 and x0,
respectively. As r decreases, M+ and M− get close to each
other, until they colloid and annihilate at r = rc, as shown
in the inset of Fig. 2. The critical value rc is determined by

B+ = B−, which yields

rc = D

x0
[ln(3 + 2

√
2)]2 ≈ 3.10728

D

x0
. (16)
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FIG. 2. The marginal distribution Pr (M|x0; xr ) of the maximum
displacement M for four different resetting rate r, where x0 = xr = 1
and D = 1/2. The lines [see Eq. (12)] and symbols correspond
to the theoretical and simulation results, respectively. For r = 5,
Pr (M|x0; xr ) is a nonmonotonic function of M, and possesses a max-
imum at M = M+ and a minimum M = M− (shown by asterisks),
where M± is determined according to Eqs. (14) and (15). Inset: M±
as a function of r. M1 and M2 colloid at a critical value of r = rc,
where rc is given in Eq. (16).
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The expectation of M can be computed as

〈M(x0; xr )〉 =
∫ ∞

x0

dMMPr (M|x0; xr )

= α−1
0 F1(γ0; γr ), (17)

where

γ0 = x0α0 = x0

√
r/D, γr = xrα0 = xr

√
r/D, (18)

and

F1(γ0; γr ) = γ0 + sech(γr )[sinh γr − sinh (γr − γ0)]

×
[
γr + ln

(
cosh γr coth

(
γ0

2

)
− sinh(γr )

)]
.

(19)

For the special case xr = x0, Eq. (19) reduces to

F1(γ0; γ0) = γ0 + tanh(γ0)
[
γ0 + ln

(
coth

γ0

2

)]
. (20)

For r = 0, 〈M(x0; xr )〉 is divergent. This is because that the
standard Brownian motion can diffuse for increasingly long
times in the positive direction without touching the absorbing
boundary at the origin. For any nonzero r, Pr (M|x0; xr ) decays
exponentially with M in the large-M limit, Pr (M|x0; xr ) ∼
e−α0M , and thus 〈M(x0; xr )〉 becomes convergent. In the limit
of r → 0,

〈M(x0; xr )〉 ∼ −x0

2
ln r, r → 0. (21)

Therefore, the expected maximum 〈M(x0; xr )〉 diverges loga-
rithmically as r → 0. In the opposite limit r → ∞,

〈M(x0; xr )〉 = 2xr, r → ∞. (22)

This result is a bit surprising as one may expect intuitively
that the expected maximum is xr rather than 2xr as r → ∞.
The result in Eq. (22) can be understood as follows. In the
limit r → ∞, the exit probability in Eq. (10) tends to a step-
like function, Er (x0; xr ) = 1 − θ (xr − M

2 ), where θ (x) is the
Heaviside step function defined as θ (x) = 1 if x � 0 and zero
otherwise. Taking the derivative of Er (x0; xr ) with respect to
M to yield the Dirac δ distribution of M, i.e., Pr (M|x0; xr ) =
δ(M − 2xr ) as r → ∞. Finally, Eq. (22) can be easily ob-
tained by inserting the δ distribution into the definition of
〈M(x0; xr )〉 given in the first line of Eq. (17).

In Fig. 3, we show 〈M(x0; x0)〉 as a function of r for three
different values of x0. Clearly, 〈M(x0; x0)〉 decreases mono-
tonically with r and approaches to 2x0 in the limit of r → ∞.
Simulation results are also shown in Fig. 3 and support the
theoretical predictions.

V. SURVIVAL PROBABILITY

In this section, we compute the survival probability
Qr (x0, t ; xr ) of the RBM confined in an interval [0, M] with
the absorbing boundaries at both ends, defined as the proba-
bility that the particle has hit neither of the boundaries until
time t starting from x0 ∈ (0, M ). In the next two sections, the
survival probability will be used to deduce the propagator of
RBM and the joint distribution of the maximum displacement

10-3 10-2 10-1 100 101 102
1

2

3

4

5

6

7
x0=0.5
x0=1.0
x0=1.5

<M
(x
0;x

r)>

r

FIG. 3. The expected value 〈M(x0; xr )〉 of the maximum dis-
placement M as a function the resetting rate r for three different
values of x0, where xr = x0 and D = 1/2. The lines [see Eq. (17)]
and symbols correspond to the theoretical and simulation results,
respectively.

M and the time tm at which the maximum is reached. The
backward equation for Qr (x0, t ; xr ) reads [65,67,68]

∂Qr (x0, t ; xr )

∂t
= D

∂2Qr (x0, t ; xr )

∂x2
0

− rQr (x0, t ; xr )

+ rQr (xr, t ; xr ), (23)

where the boundary conditions are Qr (0, t ; xr ) =
Qr (M, t ; xr ) = 0 and the initial condition is Qr (x0, 0; xr ) = 1.

Performing the Laplace transform Q̃r (x0, s; xr ) =∫ ∞
0 e−st Qr (x0, t ; xr )dt , Eq. (23) becomes

D
d2Q̃r (x0, s; xr )

dx2
0

−(r + s)Q̃r (x0, s; xr ) + rQ̃r (xr, s; xr ) = −1, (24)

subject to the boundary conditions Q̃r (0, s; xr ) =
Q̃r (M, s; xr ) = 0. The solution of Eq. (24) reads

Q̃r (x0, s; xr )

= sinh(αM ) − sinh(αx0) − sinh [α(M − x0)]

s sinh(αM ) + r sinh(αxr ) + r sinh [α(M − xr )]
, (25)

where α = √
(r + s)/D. For xr = x0, Eq. (25) simplifies to

Q̃r (x0, s; x0)

= sinh(αM ) − sinh(αx0) − sinh [α(M − x0)]

s sinh (αM ) + r sinh(αx0) + r sinh [α(M − x0)]
.

(26)

VI. PROPAGATOR

In this section, we will derive the propagator Gr (x, t |x0; xr )
of the RBM in an interval [0, M] with the absorbing bound-
aries at both ends. It is proved to be useful in the next
section to compute the joint distribution of M and tm. One
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can write a time-dependent equation for the propagator
Gr (x, t |x0; xr ) using a last renewal formalism [65,67,68]

Gr (x, t |x0; xr ) = e−rt G0(x, t |x0)

+r
∫ t

0
dτe−rτ G0(x, τ |xr )Qr (x0, t − τ ; xr ).

(27)

Here, G0(x, t |x0) is the propagator in the absence of reset-
ting. Also, recall that Qr (x0, t ; xr ) = ∫ M

0 dxGr (x, t |x0; xr ) is
the survival probability until time t . The first term on the
right-hand side of Eq. (27) corresponds to the case when no
resetting happens in the interval [0, t] with the probability ert .
The second term refers to the case when at least one resetting
happens in the interval [0, t], where the last resetting occurs
at t − τ with the probability re−rτ dτ . The factor Qr (x0, t −
τ ; xr ) is the survival probability during this interval [0, t − τ ].

It is convenient to take the Laplace transform of Eq. (27)
so that the convolution structure in the second term on the
right-hand side of Eq. (27) can be exploited. By defining
G̃r (x, s|x0; xr ) = ∫ ∞

0 e−st G(x, t |x0; xr )dt , Eq. (27) becomes

G̃r (x, s|x0; xr ) = G̃0(x, r + s|x0)

+ rG̃0(x, r + s|xr )Q̃r (x0, s; xr ). (28)

Here, the Laplace transform G̃0(x, s|x0) of the propagator
G0(x, t |x0) without resetting is a classical result and known
from the literature [121],

G̃0(x, s|x0)

= cosh
[√ s

D (M − |x − x0|)
] − cosh

[√ s
D (M − x − x0)

]
2
√

sD sinh
(√ s

D M
) .

(29)

For simplicity, we consider the case when xr = x0. Thus, by
substituting Eqs. (26) and (29) into Eq. (28) we obtain

G̃r (x, s|x0; x0)

= α

2

cosh [α(M − |x − x0|)] − cosh [α(M − x − x0)]

s sinh(αM ) + r sinh(αx0) + r sinh [α(M − x))]
,

(30)

where α = √
(r + s)/D again. Note that Eqs. (26) and (30)

were also obtained in a previous work [120].

VII. JOINT DISTRIBUTION OF M AND tm BEFORE ITS
FIRST PASSAGE TO THE ORIGIN

In this section, we only consider the special case when the
reseting position is the same as the starting one, i.e., xr = x0.
Therefore, in the following we will suppress the xr depen-
dence on most of quantities for the sake of brevity. However,
it is straightforward to generalize the subsequent results to the
case when xr is not necessarily the same as x0.

Let us define Pr (M, tm|x0) as the joint probability density
function that the RBM reaches its maximum M at time tm be-
fore passing through the origin for the first time t f , providing
that the Brownian starts from the position x0 (>0). To com-
pute the joint distribution Pr (M, tm|x0), we can decompose
the trajectory into two parts: a left-hand segment for which
0 < t < tm, and a right-hand segment for which tm < t < t f ,
as shown in Fig. 1. Due to the Markovian property of the
resetting Brownian trajectory, once the position of the particle
is specified at tm, the weights of the left and the right segments
become completely independent and the total weight is just
proportional to the product of the weights of the two sepa-
rate segments. For the first segment, we have a process that
propagates from x0 at t = 0 to M at t = tm without hitting the
origin. The statistical weight of the first segment thus equals
to the propagator Gr (M, tm|x0). However, it turns out that
Gr (M, tm|x0) = 0 which implies that the contribution from
this part is zero. To circumvent this problem, we compute
Gr (M − ε, tm|x0) and later take the limit ε → 0 [11]. For the
second segment, the process propagates from M − ε at tm to 0
at t f , where t f � tm without crossing the level M and the level
0 in between. The statistical weight of the second segment is
given by the exit probability Er (M − ε). Therefore, the joint
probability density Pr (M, tm|x0) can be written as the product
of the statistical weights of two segments [55],

Pr (M, tm|x0) = lim
ε→0

N (x0, ε)Gr (M − ε, tm|x0)Er (M − ε),

(31)

where the normalization factor N (x0, ε) will be determined
later.

One can compute the Laplace transform of Gr (M −
ε, tm|x0) in terms of Eq. (30) and Er (M − ε) by Eq. (10). Up
to the leading order in ε, they are

G̃r (M − ε, s|x0) = α2 sinh (αx0)

s sinh (αM ) + r sinh (αx0) + r sinh [α(M − x0)]
ε, (32)

and

Er (M − ε) = α0 cosh [α0(M − x0)]

sinh [α0(M − x0)] + sinh (α0x0)
ε. (33)

It is convenient to perform the Laplace transform for Pr (M, tm|x0) over tm,

P̃r (M, s|x0) =
∫ ∞

0
dtme−stm Pr (M, tm|x0)

= N (x0, ε)G̃r (M − ε, s|x0)Er (M − ε). (34)
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Letting s → 0, the left hand side of Eq. (34) is just the marginal distribution Pr (M|x0), which yields

Pr (M|x0) =
∫ ∞

0
dtmPr (M, tm|x0)

= N (x0, ε)G̃r (M − ε, 0|x0)Er (M − ε). (35)

Substituting Eqs. (13), (32), and (33) into Eq. (35), we obtain

N (x0, ε) = D

ε2
, (36)

which is independent of the starting position x0. In fact, N can be also obtained by the normalization condition of Pr (M|x0),
i.e.,

∫ ∞
x0

dMPr (M|x0) = 1. This can be easily accomplished by integrating the second line of Eq. (35) over M. The two strategies
produce the consistent result.

Substituting Eqs. (32), (33), and (36) into Eq. (34), we obtain the joint distribution Pr (M, tm|x0) in the Laplace space,

P̃r (M, s|x0) = (r + s) sinh (αx0)

s sinh (αM ) + r sinh (αx0) + r sinh [α(M − x0)]

α0 cosh [α0(M − x0)]

sinh [α0(M − x0)] + sinh (α0x0)
. (37)

To obtain the joint distribution Pr (M, tm|x0), one has to perform the inverse Laplace transformation for Eq. (37) with respect to
s. Unfortunately, it turns out to be a challenging task. However, one may expect to obtain explicitly the statistics of tm, such as
the expectation value of tm. To this end, by integrating Eq. (34) over M from x0 to ∞, one obtain the Laplace transform of the
marginal distribution Pr (tm|x0),

P̃r (s|x0) =
∫ ∞

0
dtme−stm Pr (tm|x0)

=
∫ ∞

x0

dMP̃r (M, s|x0). (38)

In particular, the expectation of the time tm is given by

〈tm〉 = − lim
s→0

∂P̃r (s|x0)

∂s
= r−1F2(γ ), (39)

where γ = x0
√

r/D and

F2(γ ) = {coth (γ )[1 + 2e2γ + e4γ − γ + 2e2γ − γ e4γ + (e2γ − 1)
2

ln ((eγ + 1)(eγ − 1))] + 4e2γ [Li2(e−γ ) − Li2(−eγ )]}

× eγ sinh (γ )

2(1 + e2γ )3 − γ

4
coth (γ ) + (eγ − 1)csch(2γ )sinh2(γ )

(1 + eγ )(1 + e2γ )2

× [−2 − eγ − 2e2γ + e5γ + 2eγ (1 + eγ )2(x + ln (coth (γ /2)))], (40)

where Li2(z) is the polylogarithm function. In the limit of
r → 0, we have

〈tm〉 = π2x0

16
√

Dr
∼ r−1/2. (41)

As expected, 〈tm〉 diverges in the absence of resetting, and pos-
sesses the same asymptotic behavior as the mean first-passage
time 〈t f 〉 with r → 0 [65,67].

In Fig. 4, we show 〈tm〉 as a function of r for three different
values of x0, but for a fixed D = 1/2. Interestingly, 〈tm〉 show
a nonmonotonic dependence on r or equivalently on γ for
the fixed x0 and D. There exist an optimal r at which 〈tm〉
attains its unique minimum. Also, we have performed simu-
lations (shown by symbols in Fig. 4), which are in excellent
agreement with our theory (shown by lines in Fig. 4). Taking
the derivative of 〈tm〉 with respect to r, and then letting the
derivative equal to zero, we obtain the optimal r, determined
by the equation 2F2(γ ∗) = γ ∗F ′

2 (γ ∗). The equation can be
solved by numeric to yield γ ∗ ≈ 1.64831, or equivalently, the

optimal resetting rate

r∗ ≈ 2.71691D/x2
0 . (42)

We note that the mean first-passage time through the ori-
gin shows a nonmonotonic change with r as well, and has
a minimum at an optimal r, which equals approximately
to 2.53964D/x2

0 [65,67], different from the value given in
Eq. (42).

VIII. CONCLUSIONS

In conclusion, we have studied the extremal statistics of the
maximal displacement M of the RBM starting from a positive
position x0 and the time tm at which the maximum is reached
before the first-passage time through the origin. In the first part
of this paper, we compute the exit probability of the RBM in
an interval [0, M] from the origin [Eq. (10)], and thus obtain
the marginal distribution Pr (M|x0) [Eq. (13)]. In particular,
the expectation of M, 〈M〉, is obtained explicitly [Eq. (17)].
We find that 〈M〉 decreases monotonically with the resetting
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FIG. 4. The expected value 〈tm〉 of the time tm at which the RBM
reaches its maximum before its first passage through the origin, hav-
ing starting from x0 > 0, as a function of the resetting rate r, where
D = 1/2 is fixed. The lines [see Eq. (39)] and symbols correspond to
the theoretical and simulation results, respectively.

rate r, and converges to its asymptotic value 2x0 as r → ∞,
but diverges with the negative logarithm of r as r → 0. In the
second part of this paper, we compute the survival probability
and propagator of the RBM in an interval [0, M] with absorb-
ing boundaries at both ends. However, these quantities are
obtained explicitly only in the Laplace space. Subsequently,
we obtain in the Laplace space the joint distribution of M
and tm based on a path decomposition technique for Markov
processes. Fortunately, the expectation 〈tm〉 of tm is obtained
explicitly [Eq. (39)]. 〈tm〉 diverges as r → 0 with 〈tm〉 ∼ r−1/2,
as the diffusing particle in the absence of resetting can me-
ander indefinitely in the positive direction without reaching
its maximum displacement. Also 〈tm〉 diverges as r → ∞,
because that the diffusing particle has less time between

resets to reach the origin as the resetting rate increases. In
between these two divergences there is an optimal resetting
rate [Eq. (42)] at which 〈tm〉 attains its unique minimum. Such
a phenomenon is reminiscent of mean first-passage time 〈t f 〉
of the RBM, wherein 〈t f 〉 also possesses a single minimum at
some resetting rate. We should emphasize that the two optimal
resetting rates are quantitatively different. The optimal reset-
ting for 〈tm〉 is slightly larger than that for 〈t f 〉. Therefore, our
study provides an additional example regarding the nontrivial
effects of stochastic resetting.

In the future, it would be interesting to investigate the
extremal statistics of other types of Brownian motions under
resetting before their first passage to an absorbing boundary,
such as active Brownian motions [91,92] and run-and-tumble
motions [59,88–90]. While the instantaneous resetting is easy
to analyze mathematically in studying resetting models, it is
only justified when the time scale of return is far less than the
time scale of the dynamics itself. In reality the return time
is not usually ignored, and thus noninstantaneous resetting
is common [79–85]. Recently, a noninstantaneous resetting
controlled by an intermittent potential has been proposed as
a feasible protocol in experiments [83,84]. Concerned with
extremal statistics of noninstantaneous resetting models, one
should compute time-dependent quantities in the presence of
absorbing ends, such as survival probability and propagator.
This maybe posed some theoretical challenges in the future.
Finally, we hope that our results are able to be applied to some
other models under stochastic resetting, such as economic
models [122].
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