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Recently, measurement-based quantum thermal machines have drawn more attention in the field of quantum
thermodynamics. However, the previous results on quantum Otto heat engines were either limited to special
unital and nonunital channels in the bath stages, or a specific driving protocol at the work strokes and assuming
the cycle being time-reversal symmetric, i.e., V † = U (or V = U ). In this paper, we consider a single spin-1/2
quantum Otto heat engine, by first replacing one of the heat baths by an arbitrary unital channel, and then we
give the exact analytical expression of the characteristic function from which all the cumulants of heat and work
emerge. We prove that under the effect of monitoring, ν2 > ν1 is a necessary condition for positive work, either
for a symmetric or asymmetric-driven Otto cycle. Furthermore, going beyond the average we show that the ratio
of the fluctuations of work and heat is lower and upper-bounded when the system is working as a heat engine.
However, differently from the previous results in the literature, we consider the third and fourth cumulants as
well. It is shown that the ratio of the third (fourth) cumulants of work and heat is not upper-bounded by unity nor
lower-bounded by the third (fourth) power of the efficiency, as is the case for the ratio of fluctuations. Finally, we
consider applying a specific unital map that plays the role of a heat bath in a coherently superposed manner, and
we show the role of the initial coherence of the control qubit on efficiency, on the average work and its relative
fluctuations.
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I. INTRODUCTION

The field of quantum thermodynamics (QT) [1] can simply
be defined as a new research area that is trying to develop
and formulate a consistent theory of thermodynamics valid
at the quantum scale. This new (actually it is old) field has
started with the work of Scovil and Schulz-Duboiz on the
thermodynamics of masers [2]. Masers can be considered
the first prototype of quantum heat engines. Nowadays QT
gains its progress from quantum resource theory to thermo-
dynamics [3,4], fluctuations relations [5–9], thermodynamic
uncertainty relations [10–13], and so on. In this research
area the quantum version of thermal machines either heat
engines or refrigerators, occupy a very important place due
to the role of their classical versions in our society. They
were recently reported experimentally using different plat-
forms, e.g., trapped ions [14] and NMR setting [15]. For
a general overview of other platforms, we recommend the
recently written paper by Cangemi et al. [16]. Quantum Otto
cycle (QOC) [17–19] is the most cycle studied in QT. This
is because the heat and work exchanges are done in differ-
ent strokes which makes their computation easy. This cycle
is composed of two isochoric and two adiabatic quantum
transformations. In previous works, such as Refs. [17,18], the
source of heat is a thermal reservoir. However, it was shown
that quantum measurement can as well provide heat to the
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system as long as its associated operators do not commute
with the measured quantity [20]. This idea of using mea-
surement as a heat source is inspired by Maxwell-demon and
Szilard-engine [21].

Usually in physics, we assume implicitly that events are
causally ordered. More precisely, either the event A is in the
past of B (A�B), or B is in the past of A (B�A), or in
general the events may be space-like separated, i.e., there is
no signaling between the events A and B. However, quantum
mechanics allows for more general processes which have no
definite causal order, and this is because quantum objects can
be in a superposition of different states. This phenomenon
would be useful when one wants to unify two important theo-
ries of the 20 century, i.e., quantum mechanics and general
relativity, as was shown by Lucien Hardy in his works on
indefinite causal order (ICO) and quantum gravity [22,23].
However, differently from ICO, where one focuses on the
order in which the operations are applied [24,25], e.g., E
is before F , F is before E or a superposition of the two
orders, we can consider as well the case which quantum
channel has been applied on the system, e.g., E or F or
in general it may be a superposition of the two. The lat-
ter case is called a coherent superposition (CS) of the two
channels E and F [26]. This is motivated by the fact that
it was recently shown that coherently superposed channels
(CSCs) as well provide an advantage, e.g., in quantum com-
munication [27] and quantum metrology [28–30], and even
more as was shown in Ref. [29] they improve the ICO
in parameter estimation. Furthermore, CSCs have been not
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investigated in other areas such as QT to the authors’ knowl-
edge except [31,32].

As we said before, recently measurement-based quantum
thermal machines [33–40] draw more attention in the field of
QT. However, the previous results on quantum heat engines
were either limited to special unital [33,38,41–43] or nonuni-
tal channels [40,44,45] in the bath stages, or a specific driving
protocol [15] at the work strokes and under the assumption
of the cycle being time-reversal symmetric, i.e., V † = U , an
exception are the results reported in Refs. [46–48]. Even
more, only counted works have considered quantities beyond
averages, such as variance or in general higher cumulants,
which have not been analyzed so far for quantum Otto heat
engines (QOHEs). In this work, we try to fill these gaps.
To do so, inspired by the QOHE studied in Refs. [41,42],
we consider the role of replacing one of the heat baths of
the QOC with an arbitrary unital map on efficiency, heat,
work, their relative fluctuations, skewness, and kurtosis. In the
second part of this paper, when considering applying the unital
channel in a CS, we limit ourselves to the unital map studied in
Refs. [41,42].

For example, in Ref. [49] Saryal et al. have shown that in
the adiabatic regime, the ratio of the nth cumulants of work
and heat (for quantum Otto heat engines with completely
thermalizing reservoirs), is equal to the nth power of the
Otto efficiency and it is upper bounded by the nth power
of the Carnot efficiency. Translated into our notation this
means that, 〈〈W n〉〉/〈〈Qn

M〉〉 = (1 − ν1/ν2)n � (1 − βh/βc)n.
However, the authors did not give an interpretation of these
bounds for n � 3 nor they have considered what would hap-
pen beyond the adiabatic regime. In Ref. [50], Saryal et al.
have proved that for autonomous coupled and continuous
thermal machines in the linear response regime, the ratio of
the nth cumulants of the input and output currents are lower
bounded by the nth power of the efficiency and upper bounded
by the nth power of the Carnot efficiency. As a consequence
of this interesting result, is that the engine’s efficiency re-
ceived a tighter bound than the Carnot bound. Furthermore, in
Ref. [51] the authors have also considered the ratio of the nth
cumulants of an ensemble of noninteracting quantum thermal
machines. Suppose we have i ∈ [1, N] individual machines,
and that the ratio of nth cumulants of every machine satisfy
〈〈W n

i 〉〉/〈〈Qn
Mi〉〉 � (1 − βh/βc)n. Beyond the linear response

limit, the authors have found that the ratio of the sum of the nth
cumulants of individual machines is bounded by the nth power
of the Carnot efficiency, i.e.,

∑N
i=1〈〈W n

i 〉〉/∑N
i=1〈〈Qn

Mi〉〉 �
(1 − βh/βc)n. For an ensemble of noninteracting quantum
refrigerators, they have shown analytically and numerically
under certain different assumptions, that the ratio of the sum
of the nth cumulants has a lower bound as well, given by
the nth power of the efficiency. The lower bound is saturated
for example in the tight coupling limit; see Refs. [50,51].
However, in the heat engine regime, only the upper bound was
respected, but not the lower bound.

The main five messages to take from this paper can be
summarised as follows:

(1) First, considering a QOHE, we neither specify the
driving protocol nor the unital channel replacing the thermal
bath. Then we give the exact analytical expression of the char-
acteristic function (CF) from which all the cumulants of heat

and work would emerge. We show that considering arbitrary
unital channel have a positive influence on heat absorbed,
work and efficiency. Furthermore, we prove that under the
effect of monitoring, changing the gap of the single spin-1/2
is a necessary condition for work extraction. This is true for
either symmetric or asymmetric driven Otto cycle. We trace
this back to the negative influence of projective measurement
used to assess the fluctuations of thermodynamic quantities.
Further, we show that for the asymmetric Otto cycle not only
do the forward and the backward are needed to be treated on
equal footing for meaningful bounds on relative fluctuations
(RFs) [46], but also help in restoring the fact that the Otto
efficiency is still an upper bound.

(2) We prove that when one of the heat baths in the Otto
cycle is replaced by an arbitrary unital map, then the system
cannot work as a refrigerator independently of the parameters.
More precisely, the bath cannot be cooled. This is forbidden
by the second law of thermodynamics in accordance with the
Kelvin-Planck statement that heat only flows spontaneously
from a hotter body to a cooler one.

(3) We show that the ratio of the fluctuations of W and QM

are lower and upper bounded when the system is working as
a heat engine and for some regions when it is working as an
accelerator. This is proved to be true for the symmetric and
asymmetric Otto cycle. We proved as well, that the square
of the Otto efficiency provides a lower bound on the ratio of
fluctuations for the symmetric Otto cycle. Then, numerically
we show that the ratio of the third and the fourth cumulants
can not be lower-bounded by the third (fourth) power of
the efficiency as is the case for the relative fluctuations, nor
they are bounded by unity. The reason behind this is purely
quantum due to the driving as we show later on. Further-
more, the fact that we do not have always, 〈〈W n〉〉/〈〈Qn

M〉〉 �
(〈〈W 〉〉/〈〈QM〉〉)n for n = 3, 4 suggest that the ratio of third
and fourth cumulants can not always provide a bound on the
efficiency as it the case for the second cumulants.

(4) We analyze in detail the effect of considering an ar-
bitrary unital channel on the average work and its relative
fluctuations. We show that the work average can be enhanced
as well as its reliability (note that enhanced reliability is equiv-
alent to decreasing relative fluctuations). When the inverse
temperature is negative, we comment on the positive rule of
nonadiabaticity.

(5) Finally, when considering CSCs we consider the unital
channel studied in Ref. [41]. We show, that when the control
qubit is projected in |−〉c Fourier basis has a positive influence
on the work extracted and its reliability as well as efficiency,
even though, the latter cannot exceed that of the Otto. When
the control qubit is projected in the |+〉c Fourier basis we
see the inverse of these conclusions. Note that efficiency en-
hancement in the nonadiabatic regime could be helpful when
one is interested in both efficiency and power as in real-world
applications.

Our results put forward thoroughly and deeply the ones
reported in Refs. [41,42], by not only considering average
quantities but as well the variance, skewness and kurtosis
which were not considered there. Furthermore, inspired by the
results reported in Refs. [41,42,52]. We will express all the
cumulants of work and heat in terms of only three transitions
probabilities δ, θ and ζ defined below, without specifying the
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FIG. 1. (a) A two-level system undergoing the four strokes of the conventional QOC. A → B an adiabatic expansion ν1 → ν2(> ν1),
B → C the system gets equilibrates with a hot bath, C → D an adiabatic compression ν2 → ν1 and finally D → A gets equilibrate with a cold
bath, thus closing the cycle. In this case, we have two heat baths one at inverse temperature βc and the other at inverse temperature βh. 〈Qc〉um

is the heat exchanged with the cold bath, 〈Qh〉um is the heat exchanged with the hot bath and 〈W1(2)〉um is the work done(extracted) on(from)
the system during the expansion (compression) stroke. From the conservation of energy, i.e., 〈Qc〉um + 〈Qh〉um + 〈W1〉um + 〈W2〉um = 0, the
total work is 〈W 〉um = −(〈W1〉um + 〈W2〉um ) = 〈Qc〉um + 〈Qh〉um. (b) In this work instead of taking the hot bath to be a completely thermalizing
channel, we will change it by a general quantum channel E described by

∑
i Ki(.)K

†
i . Below when studying and analyzing the first four

cumulants, we limit ourselves to the case when this channel is unital, i.e., E (1) = 1. 〈QT 〉um is the heat exchanged with the bath at inverse
temperature β and 〈QM〉um is the heat exchanged with the quantum channel E . In the same manner as before the total work is 〈W 〉um =
−(〈W1〉um + 〈W2〉um ) = 〈QM〉um + 〈QT 〉um. We see below, that monitoring the system between strokes would affect the average quantities
〈W 〉um and 〈QT 〉um for this we used the subscript um (i.e., unmonitored) to distinguish between the average quantities computed when there
is monitoring. Actually, for (a) there is no difference in the averages when monitoring or not the system since the baths are considered to be
completely thermalizing. This is not the case for panel (b).

unital channel providing heat to the system nor the driving
protocol used to change the gap of the system and without
the assumption that the cycle is time-reversal symmetric. In
the main text below, we show the difference between our
work and the one in Refs. [41,42]. Furthermore, note that
skewness and kurtosis have been taken into account here since
they were not analyzed in the previous works on QOHEs
in literature to the authors’ knowledge. However, note that
considering higher cumulants such as the third and fourth
comes with more computational complexity, let alone higher
than the fourth cumulant. For example, here we could not
prove that the ratio of the third (fourth) cumulants is upper
bounded by 1 and lower bounded by the third (fourth) power
of the efficiency since their expressions are too complicated in
terms of the parameters especially those of work. Fortunately,
numerically we found that they do not obey the same bound
as is the case for the ratio of fluctuations.

This paper is structured as follows: In Sec. II, we take the
conventional QOC with two heat baths and replace one of
them with an arbitrary unital qubit channel which would play
the role of a hot bath. We give the exact analytical expression
of the CF. Further, since we use the two-point measurement
to assess fluctuations of work and heat we show that the latter
has a negative effect on the work positive condition. More pre-
cisely, differently from Ref. [41] we show that changing the
frequency of the spin is a necessary condition for 〈〈W 〉〉 > 0.
The efficiency and the first four cumulants of work and heat
are analyzed in detail. In Sec. III, first in Sec. III A we define
what we mean by CSCs, then we apply the unital channel
considered in Ref. [41] in a CS and show the effect of this
on efficiency, work as well as its relative fluctuations. Finally,
in Sec. IV, we give a summary of our results. In the Appendix,

we provide some technical details. Throughout the paper, we
set h̄ = kB = 1.

II. MONITORED QUANTUM UNITAL OTTO CYCLE

Before we dive into the main results of the paper let us
remind the reader of the unmonitored QOC with either two
heat baths or one heat bath and an arbitrary channel.

A. Unmonitored (asymmetric) QOC

For a quantum system, e.g., a two-level system, which we
consider in our work, the steps of the conventional QOC with
two thermal baths are given as follows [see Fig. 1(a)]: First,
the system starts in thermal equilibrium with a cold bath at
inverse temperature βc. At the point A, the state of the sys-
tem and its Hamiltonian are given as follows: ρc = e−βcH1/Zc

and H1 = ν1(|+〉11〈+| − |−〉11〈−|). Zc[= Tr(e−βcH1 )] is the
partition function. Second, from A into B, we isolate the
system from the cold bath, and then an adiabatic expansion
is applied by changing the gap from ν1 to ν2(> ν1). This
external driving is described by a unitary given by U . At
the end of this process, point B, the state and the Hamil-
tonian of the system are given as ρ2 = UρcU † and H2 =
ν2(|+〉22〈+| − |−〉22〈−|). In this unitary stroke an amount of
work 〈W1〉um = E2 − E1 = Tr[ρ2H2] − Tr[ρcH1] is done on
the system. Third, from B into C, we thermalize again our
system with a hot bath at inverse temperature βh. At the
end of this thermalization (point C) the state of the system
is ρh = e−βhH2/Zh, but the Hamiltonian stays fixed. In this
thermalization stroke an amount of heat 〈Qh〉um = E3 − E2 =
Tr[ρhH2] − Tr[ρ2H2] is exchange with the bath. Fourth, from
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point C into D, an adiabatic compression is applied by getting
back the gap of the system into its initial value, i.e., ν1. This
process is described by another unitary given by V . At the end
of this process the state and the Hamiltonian of the system are
given as follows: ρ3 = V ρhV † and H1. Usually, people assume
that V † = U (or V = U )—this equality is dependent on the
expression of the Hamiltonian-which corresponds to the cycle
being time-reversal symmetric, an exception [46–48]. In this
case, there is no difference between running the cycle forward
or backward. In this second unitary process an amount of work
〈W2〉um = E4 − E3 = Tr[ρ3H1] − Tr[ρhH2] is extracted from
the system. And finally, from point D into A, we thermalize
our system again with the cold bath, to close the cycle. In this
latter thermalization step the system will exchange an amount
of heat 〈Qc〉um = E1 − E4 = Tr[ρcH1] − Tr[ρ3H1] with the
cold bath. E1 = Tr[ρcH1], E2 = Tr[ρ2H2], E3 = Tr[ρhH2],
and E4 = Tr[ρ3H1] are the average energies at the points
A, B, C, and D, respectively. The total work is given by,
〈W 〉um = −(〈W1〉um + 〈W2〉um). One of the assumptions that
we can relax is that instead of two heat baths as in Fig. 1(a),
one can replace one of them with a measurement channel as
has been done, e.g., if Refs. [20,33,39,41,42]. Furthermore,
note that the common thing between these works is that the
quantum channels were unital.

In this work, we go a step further and relax two assump-
tions. The first is that we do not assume that V † = U nor do
we specify the protocol used to change the gap ν1 ↔ ν2, and
second instead of considering a specific unital channel replac-
ing the heat hot bath, we consider an arbitrary unital qubit
channel. When V †( �=) = U the cycle is (a)symmetric. Here
we take the convention that if the heat is entering the system
it is positive and if it flowing out it is negative. Actually, what
it means here for the QOC to be asymmetric is that the degree
of nonadiabaticity at the adiabatic expansion/compression
stroke may not be equal. For example, adiabatic compression
can be applied in a quasistatic manner but the expansion in
a nonadiabatic or vice-versa and so on. This shows that an
asymmetric-driven Otto cycle is more general than a symmet-
ric case.

Thus differently from Fig. 1(a), our quantum unital Otto
cycle steps are given as follows [see Fig. 1(b)]: First the
system starts in thermal equilibrium with a heat bath at inverse
temperature β. At the point A, the state and the Hamiltonian
of the system are, respectively, ρ1 = e−βH1/Z and H1. After
this, from the point A into B, a unitary transformation U is
applied on the system, and the state becomes ρ2 = Uρ1U †

and the Hamiltonian is H2. This is an adiabatic expansion.
Then, contrary to Fig. 1(a), from point B into C, an arbitrary
quantum unital channel E defined as E (.) = ∑

j Kj (.)K
†
j , is

applied to the system, and the state of the system becomes
ρ3 = ∑

j Kjρ2K†
j . The Hamiltonian of the system is still H2.

Then from point C into D we apply another unitary V to
the state of the system. In this stroke, the gap of the system
changed back to ν1, and the state of the system becomes ρ4 =
V ρ3V † and the Hamiltonian H1, but in this case, we do not
assume that V = U †. Finally from point D into A we thermal-
ize our system again with the bath at inverse temperature β,
thus closing the cycle. In analogy to Fig. 1(a), E1 = Tr[ρcH1],
E2 = Tr[ρ2H2], E3 = Tr[ρ3H2], and E4 = Tr[ρ4H1] are the
average energies at the points A, B, C and D, respectively,

and the heat averages are: 〈QM〉um = Tr[ρ3H2] − Tr[ρ2H2]
and 〈QT 〉um = Tr[ρ1H1] − Tr[ρ4H1].

At this point, an important remark is needed. Note that,
since between the steps that we just described there is no mea-
surement, this cycle is called an unmonitored cycle. This is the
reason behind the notation um. In this work, we will consider
the monitored version of the cycle described in Fig. 1(b), since
we are interested in analyzing higher cumulants of work and
heat as well.

B. The CF of the Otto cycle based on arbitrary qubit channels

Before we give the exact analytical expression of the char-
acteristic function of the forward for the Otto cycle based on
unital qubit channels, let us consider first computing it for
arbitrary qubit channels. Let us first clarify an important issue.
When V † �= U , in this case, we have to take into consideration
both the forward as well as backward cycle and treat them
on an equal footing. The steps of the forward cycle are A →
B → C → D and those of the backward cycle are D → C →
B → A. Otherwise, one would obtain inconsistent results on
the bounds of the RF of work and heat [46]. Below we show
that taking into account the backward cycle is not only neces-
sary to obtain meaningful bounds on fluctuations [46], but as
well one can restore the fact that Otto efficiency is always the
maximum attainable efficiency.

Applying a projective measurements [9] on the Hamil-
tonian along the cycle (A → B → C → D), the stochastic
quantities W1, QM , and W2 are given as follows:

W1 = νm − νn,

QM = νk − νm,

W2 = νl − νk . (1)

Here, νn, νm, νk , and νl are the measured energy at the four
points A, B, C, and D in Fig. 1(b), respectively, and n, m, k,

and l are their corresponding quantum numbers.
By adopting the two-point measurement scheme [5,9], the

joint probability distribution (PD) of the stochastic work W =
−(W1 + W2) and the stochastic heat QM exchanged with an
arbitrary quantum qubit channel with Kraus operators Kj , of
the forward cycle, is given as follows:

P(W, QM )F =
∑

n,m,k,l

e−βνn

Z
|2〈m|U |n〉1|2

∑
j

|2〈k|Kj |m〉2|2|1

× 〈l|V |k〉2|2δ(W + (νm − νn + νl − νk ))

× δ(QM − (νk − νm)). (2)

To get the first, second, or in general higher cumulants of work
and heat we use the CF which follows from the PD, written as

χ (γW , γM )F =
∫

P(W, QM )F eiγW W eiγM QM dW dQM . (3)

This is when W and QM are continuous variables. Using the
expression (2) then the CF becomes

χ (γW , γM )F =
∑

n,m,k,l

e−βνn

Z
|2〈m|U |n〉1|2

∑
j

|2〈k|Kj |m〉2|2|1

× 〈l|V |k〉2|2e−iγW (νm−νn+νl −νk )eiγM (νk−νm ). (4)
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TABLE I. Paths followed by a two-level system and their associated probabilities with the hot bath being replaced by an arbitrary unital
channel with Kraus operators Kj . W and QM are the stochastic work and the heat exchanged with the hot bath corresponding to each path.
Furthermore, note that even though the system can work sometimes as a refrigerator for some paths, on average the system cannot, and this is
forbidden by the second law of thermodynamics. In addition to this one should note that when both the compression and expansion adiabatic
strokes are quasistatically then we have only four possible paths that will be taken by the two-level system: 1, 4, 13, and 16. However, in the
nonadiabatic case, all the paths are possible.

Path Transition from point A to point D in Fig. 1(b) Probability of the path being followed by the system W = −(W1 + W2) QM

1 |−〉1 |−〉2 |−〉2 |−〉1
eβν1

Z |2〈−|U |−〉1|2
∑

j |2〈−|Kj |−〉2|2|1〈−|V |−〉2|2 0 0

2 |−〉1 |−〉2 |−〉2 |+〉1
eβν1

Z |2〈−|U |−〉1|2
∑

j |2〈−|Kj |−〉2|2|1〈+|V |−〉2|2 −2ν1 0

3 |−〉1 |−〉2 |+〉2 |−〉1
eβν1

Z |2〈−|U |−〉1|2
∑

j |2〈+|Kj |−〉2|2|1〈−|V |+〉2|2 2ν2 2ν2

4 |−〉1 |−〉2 |+〉2 |+〉1
eβν1

Z |2〈−|U |−〉1|2
∑

j |2〈+|Kj |−〉2|2|1〈+|V |+〉2|2 2(ν2 − ν1) 2ν2

5 |−〉1 |+〉2 |−〉2 |−〉1
eβν1

Z |2〈+|U |−〉1|2
∑

j |2〈−|Kj |+〉2|2|1〈−|V |−〉2|2 −2ν2 −2ν2

6 |−〉1 |+〉2 |−〉2 |+〉1
eβν1

Z |2〈+|U |−〉1|2
∑

j |2〈−|Kj |+〉2|2|1〈+|V |−〉2|2 −2(ν1 + ν2) −2ν2

7 |−〉1 |+〉2 |+〉2 |−〉1
eβν1

Z |2〈+|U |−〉1|2
∑

j |2〈+|Kj |+〉2|2|1〈−|V |+〉2|2 0 0

8 |−〉1 |+〉2 |+〉2 |+〉1
eβν1

Z |2〈+|U |−〉1|2
∑

j |2〈+|Kj |+〉2|2|1〈+|V |+〉2|2 −2ν1 0

9 |+〉1 |−〉2 |−〉2 |−〉1
e−βν1

Z |2〈−|U |+〉1|2
∑

j |2〈−|Kj |−〉2|2|1〈−|V |−〉2|2 2ν1 0

10 |+〉1 |−〉2 |−〉2 |+〉1
e−βν1

Z |2〈−|U |+〉1|2
∑

j |2〈−|Kj |−〉2|2|1〈+|V |−〉2|2 0 0

11 |+〉1 |−〉2 |+〉2 |−〉1
e−βν1

Z |2〈−|U |+〉1|2
∑

j |2〈+|Kj |−〉2|2|1〈−|V |+〉2|2 2(ν1 + ν2) 2ν2

12 |+〉1 |−〉2 |+〉2 |+〉1
e−βν1

Z |2〈−|U |+〉1|2
∑

j |2〈+|Kj |−〉2|2|1〈+|V |+〉2|2 2ν2 2ν2

13 |+〉1 |+〉2 |−〉2 |−〉1
e−βν1

Z |2〈+|U |+〉1|2
∑

j |2〈−|Kj |+〉2|2|1〈−|V |−〉2|2 2(ν1 − ν2) −2ν2

14 |+〉1 |+〉2 |−〉2 |+〉1
e−βν1

Z |2〈+|U |+〉1|2
∑

j |2〈−|Kj |+〉2|2|2〈+|V |−〉1|2 −2ν2 −2ν2

15 |+〉1 |+〉2 |+〉2 |−〉1
e−βν1

Z |2〈+|U |+〉1|2
∑

j |2〈+|Kj |+〉2|2|1〈−|V |+〉2|2 2ν1 0

16 |+〉1 |+〉2 |+〉2 |+〉1
e−βν1

Z |2〈+|U |+〉1|2
∑

j |2〈+|Kj |+〉2|2|1〈+|V |+〉2|2 0 0

Here, γM and γW are the Fourier conjugate of QM and W,
respectively. The cumulants of heat and work of the forward
cycle follow from χ (γW , γM )F , by the equation

〈〈
W nQm

M

〉〉
F = ∂n∂mln(χ (γW, γM)F)

∂ (iγW )n∂ (iγM )m

∣∣∣∣
γW ,γM=0

. (5)

If we eliminate the logarithmic function, then this ex-
pression would give us the central moments, which are
denoted for an arbitrary stochastic variable φ as 〈φn〉 =
(∂nχ (γφ )F/∂ (iγφ )n)|γφ=0. Actually, for the first three deriva-
tives, i.e., n = 1, 2, and 3, the central moments and cumulants
are the same. However, from the fourth derivative, there is
a difference between central moment and cumulant. 〈〈φ〉〉F ,
〈〈φ2〉〉F , 〈〈φ3〉〉F , and 〈〈φ4〉〉F are, respectively, the first
(average), the second (variance), the third and the fourth cu-
mulants of φ, in the forward cycle, where φ = W, QM . The
normalized quantities 〈〈φ2〉〉/〈〈φ〉〉2, 〈〈φ3〉〉/〈〈φ2〉〉3/2, and
〈〈φ4〉〉/〈〈φ2〉〉2 are, respectively, RFs, skewness, and kurtosis
of φ. 〈〈φ4〉〉/〈〈φ2〉〉2 is kurtosis shifted by −3, which is called

excess kurtosis. Here, we just call it kurtosis. Usually, people
use the notation 〈.〉 to mean the average. In what follows
we use 〈〈.〉〉 for W and QM to mean the average but for the
efficiency we use the ordinary notation, i.e., 〈.〉. We hope this
notation is not confusing. Till this point everything is clear.
However, one should note that there will be a very important
problem when taking into account the backward. This follows,
from the fact that for general maps the adjoint map cannot
be taken to be the reversal, since it may not give a positive
probability, i.e., physical states. For this reason, below we
limit ourselves to unital channels.

Based on Table I in Appendix A and by defining δ =
|2〈+|U |−〉1|2 to be the probability of the system transitioning
from the state |−〉1 into the state |+〉2 in the adiabatic expan-
sion, θ = ∑

j |2〈−|Kj |+〉2|2 the probability of the system in
the state |+〉2 being found in the state |−〉2 after the unital
map has been applied on it and finally ζ = |1〈+|V |−〉2|2 the
transition probability between the states |−〉2 and |+〉1 in the
adiabatic compression, then plugging all this in Eq. (4) (see
Appendix A), one can obtain

χ (γW , γM )F = (1 − δ)(1 − ζ )

(
eβν1

Z
(h − θ ) + e−βν1

Z
(1 − θ )

)
+ (1 − δ)ζ

(
eβν1

Z
e−2iγW ν1 (h − θ ) + e−βν1

Z
e2iγW ν1 (1 − θ )

)

+ (1 − δ)ζ

(
eβν1

Z
(1 − h + θ )e2iγW ν2 e2iγMν2 + e−βν1

Z
e−2iγW ν2 e−2iγMν2θ

)

+ (1 − δ)(1 − ζ )

(
eβν1

Z
(1 − h + θ )e2iγW (ν2−ν1 )e2iγMν2 + e−βν1

Z
e−2iγW (ν2−ν1 )e−2iγMν2θ

)
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+ δ(1 − ζ )

(
eβν1

Z
e−2iγW ν2 e−2iγMν2θ + e−βν1

Z
e2iγW ν2 e2iγMν2 (1 − h + θ )

)

+ δζ

(
eβν1

Z
e−2iγW (ν1+ν2 )e−2iγMν2θ + e−βν1

Z
e2iγW (ν1+ν2 )e2iγMν2 (1 − h + θ )

)

+ δζ

(
eβν1

Z
(1 − θ ) + e−βν1

Z
(h − θ )

)
+ δ(1 − ζ )

(
eβν1

Z
e−2iγW ν1 (1 − θ ) + e−βν1

Z
e2iγW ν1 (h − θ )

)
, (6)

with h = ∑
j 2〈−|KjK

†
j |−〉2. To obtain the CF of the backward cycle χ (γM, γW )B it is not straightforward, since the K†

j cannot
describe a valid channel, i.e., a physical channel. Thus computing the CF of the backward, is difficult, for general qubit maps.
Furthermore, below all thermodynamic quantities will be expressed in terms of δ, θ , and ζ . And below, whenever we omit the
subscript F referring to the forward, it means that the forward and the backward are the same.

C. χ(γM, γW )F of the Otto cycle based on arbitrary unital qubit channels

When the map E is unital, completely positive and trace-preserving, so is its adjoint E†. Therefore, the adjoint E† can be
regarded as another time evolution. Thus, the backward of

E (.) =
∑

j

Kj (.)K
†
j , is − defined − as E†(.) =

∑
j

K†
j (.)Kj . (7)

Furthermore, for a two-level system considered here, one should note that every unital map can be decomposed in terms of Pauli
operators [53], for this reason, unital maps are also called Pauli channels; see Ref. [53]. Thus,

E (.) =
3∑

i=0

piσi(.)σ
†
i , (8)

with
∑3

i=0 pi = 1. The Pauli operators in the basis of the Hamiltonian H2 are given as follows: σ0 = |+〉22〈+| + |−〉22〈−|, σ1 =
|+〉22〈−| + |−〉22〈+|, σ2 = i|−〉22〈+| − i|+〉22〈−|, and σ3 = |+〉22〈+| − |−〉22〈−|. In this case, we have 0 � θ = p1 + p2 � 1,
which shows that the highest possible value of θ is 1. Below, we comment on this in detail. The backward does not mean that we
reverse time, since in the laboratory the reverse process of the forward as well as is run in the forward. The reader should note
that the adjoint of Eq. (8) is itself, i.e., E = E†.

When the map is unital one can easily show that h = 1 (for unital maps we have
∑

j Kj1K†
j = 1 and thus h = 1), in this case,

χ (γM, γW )F get simplified into a more compact form, and we have

χ (γW , γM )F = (1 − θ )

(
1 +

(
2cos((2γW + iβ )ν1)

Z
− 1

)
(δ + ζ − 2δζ )

)

+ θ

(
(1 − δ)

(
ζ

2cos(2(γW + γM)ν2 − iβν1)

Z
+ (1 − ζ )

2cos(2(γW(ν2 − ν1) + γMν2) − iβν1)

Z

)

+ δ

(
(1 − ζ )

2 cos(2(γW + γM )ν2 + iβν1)

Z
+ ζ

2cos(2((ν1 + ν2)γW + γMν2) + iβν1)

Z

))
. (9)

The backward CF follows from this equation, by the correspondence δ ↔ ζ . Note that θF = θB = θ since the channel is unital.
The exact analytical equation (9) is the first main result of the paper. One can check easily that for γM = γW = 0, we have
χ (γW , γM )F = 1, which is nothing but probability conservation.

D. Exact analytical expressions of the first and second cumulants of work and heat

From Eqs. (5) and (9), one can derive the next cumulants for the forward cycle

〈〈QM〉〉F = 2(1 − 2δ)θν2 tanh(βν1), (10)〈〈
Q2

M

〉〉
F = −4θν2

2 [−1 + (1 − 2δ)2θ tanh2 (βν1)], (11)

〈〈QT 〉〉 = −2[θ + (1 − 2θ )(δ + ζ − 2δζ )]ν1 tanh(βν1), (12)

〈〈W 〉〉F = 2{(1 − 2δ)θν2 − [θ + (1 − 2θ )(δ + ζ − 2δζ )]ν1} tanh(βν1), (13)

〈〈W 2〉〉F = 4[θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ )]ν2
1 + 8θ (−1 + δ + ζ )ν1ν2 + 4θν2

2

− 4{[θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ )]ν1 + (−1 + 2δ)θν2}2 tanh2 (βν1). (14)
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Note that when θ = 0 all the cumulants of QM become
null since in this case no energy will be exchanged between
the system and the channel. The third and fourth cumulants
are not reported here since they are cumbersome and not
illuminating at all. Further, the average heat 〈〈QT 〉〉 follows
from the law of energy conservation.

Before we proceed, some important remarks are needed to
be mentioned; first, one can see clearly that when β = 0 (high-
temperature limit) the initial state will be maximally mixed,
and one can show easily that 〈〈W 〉〉F , 〈〈QM〉〉F , and 〈〈QT 〉〉
are null. The same thing for backward quantities. This follows
from the fact that the state along the cycle will always stay a
maximally mixed state, thus no change in the average energy
will be observed. This is true either for the monitored or
unmonitored Otto cycle. This is because the maximally mixed
state is a fixed point of the cycle. This shows that we have
to focus on β �= 0. However, this does not mean necessarily
that higher cumulants will be zero, such as the variance and
fourth cumulant. One can show that all odd cumulants will be
null since this is due to the fact the distribution of heat and
work will be symmetric around the 0 value, which is nothing
but the average value. For example, when β → +∞ or −∞,
the initial state will be pure state [for β → +∞(−∞), the
pure state will be the ground state, i.e., |−〉1(excited state
|+〉1)].

In Appendix B, we prove that for the considered mea-
surement unital channel in Ref. [41], θ cannot exceed 1/2.
However, in our case, we have 0 � θ � 1 as we saw before.
As we show below, this can help in improving the work
extracted, decreasing its relative fluctuations and enhancing
the efficiency. It is already seen from the expression of 〈〈QM〉〉
that when δ < 1/2 and for β > 0, the more we increase θ

the more heat would be provided by the unital channel. The
maximum value is reached when θ = 1.

At this point, we want to emphasize that for p1 + p2 = 1
and when the state is classical, i.e., there are no off-diagonal
elements, e.g., in the adiabatic regime, the unital channel
Eq. (8), will supply the system with energy in the form of work
and not heat, since in this case, the channel will not change the
entropy of the system. Therefore, even though the channel is
a mixture of σ1 and σ2 Pauli operators, the diagonal elements
will only be swapped, thus the entropy of an arbitrary state ρ

and E (ρ) is equal. In the case when p1 = p2 = 0, 〈〈QM〉〉 = 0
as expected, since the Kraus operators (i.e., the identity and
the σ3 Pauli operator,) commute with the Hamiltonian. When
the system state is nondiagonal, i.e., quantum state for exam-
ple in the nonadiabatic regime, and when p1 + p2 = 1, the
bath can provide the system with energy in the form of heat,
as long as p1 and p2 in Eq. (8) are both non vanished. Thus
when the unital channel is a mixture of the σ1 and σ2 Pauli
operators acting on a quantum state, then the channel will
provide the system with heat, since in this case entropy will
be changed. However, when either p1 or p2 is null in this case
the unital channel will be unitary and thus will not change the
entropy of the system. In this latter case, the energy exchanged
would be work and not heat. This analysis shows that in the
adiabatic regime and when p1 + p2 = 1 the unital channel
will exchange energy in the form of work (ordered energy)
with the system. However, beyond that regime, it can be either
heat or work. See Appendix C for more details.

Equation (14) which characterizes the variance of W , is
difficult to be analyzed, e.g., if one wants to know when it
becomes vanishing, in contrast to the variance of QM . This is
because it depends on the parameters in a complicated way.
When δ = ζ = 0, we have

〈〈W 2〉〉 = 4θ (ν2 − ν1)2[1 − θ tanh2(βν1)]. (15)

In this case, we see that the fluctuations of work vanished
in three cases: when ν1 = ν2 or θ = tanh2(βν1) = 1 or when
θ = 0. While the variance of QM when δ = ζ = 0 vanishes
in two cases: θ = 0 or θ = tanh2(βν1) = 1. In this case, the
distributions of W and QM become degenerate and localized
around one fixed value with all other outcomes having zero
probability. Therefore, the variance would be zero. For exam-
ple, when θ = 0 then the only possible value of W and QM is
0. The PD becomes P(W, QM )F = δ(W )δ(QM ) and the CF is
χ (W, QM )F = 1. In this case, the third and fourth cumulants
as well become null. Even higher cumulants than the first
four cumulants become zero since the characteristic function
is constant.

Let us now give a quick comparison between the case when
we have a completely thermalizing channel and an arbitrary
unital channel. When the unital qubit map is completely unital
it describes the thermalization of a system with a heat bath at
infinite temperature, i.e., T = ∞(or β = 0). In this case, the
two levels become populated by 1/2. A heat bath at positive
inverse temperature can make the population of the higher
level with at most 1/2. However, when considering arbitrary
unital channel the higher level can become more populated
than the ground state, especially when the Pauli operators σ1

and σ2 become more dominated than the σ0 and σ3 operators.
Let us show this statement with an example. Suppose the
initial state before the unital channel is given by

ρi =
(

1 − a 0
0 a

)
. (16)

With 0 � 1 − a � 1/2. After applying the unital channel
Eq. (8) on Eq. (16), and with simple steps of calculations one
obtains

E (ρi )

=
(

1−[a+(1−2a)(p1 + p2)] 0
0 a + (1 − 2a)(p1 + p2)

)
.

(17)

In this case one can show that 1 − a � 1 − [a + (1 −
2a)(p1 + p2)] � a. The upper bound is reached when p1 +
p2 = 1, but as we said before in this case the energy difference
is work. Therefore, we see that the population range of, e.g.,
the excited level populated with 1 − a before applying the
unital channel, using an arbitrary unital map can vary from
1 − a to a, thus can exceed 1/2. This shows the strength of
considering arbitrary unital maps.

E. Positive work condition and efficiency bound for symmetric
and asymmetric driven Otto cycle: Heat engine regime

Here we focus on the analysis of the first cumulant of W
and QM . Now, consider ν2 = ν1 and ζ = δ, in such a case we
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have

〈〈QM〉〉 = 2(1 − 2δ)θν1 tanh(βν1),

〈〈QT 〉〉 = −2(θ + 2δ(1 − 2θ )(1 − δ))ν1 tanh(βν1),

and

〈〈W 〉〉 = 4δ(δ + θ − 2δθ − 1)ν1 tanh(βν1) � 0.

The latter inequality follows from the fact that 0 � δ + θ −
2δθ [= δ(1 − θ ) + θ (1 − δ)] � 1. For the asymmetric Otto
cycle case, i.e., δ �= ζ , but we still have ν2 = ν1, we obtain

〈〈W 〉〉F = −2[δ + ζ − 2δζ − 2θζ (1 − 2δ)]ν1 tanh(βν1)

and

〈〈W 〉〉B = −2[δ + ζ − 2δζ − 2θδ(1 − 2ζ )]ν1 tanh(βν1).

Numerical analysis showed that these two expressions sepa-
rately can be either positive or negative, but taking both of the
two quantities into consideration one obtains

〈〈W 〉〉F + 〈〈W 〉〉B

= −4[δ + ζ − 2δζ − θζ + δθ (−1 + 4ζ )]ν1 tanh(βν1).

Simple manipulations further give

〈〈W 〉〉F + 〈〈W 〉〉B = −4[(δ + ζ − 2δζ )(1 − θ )

+ 2δθζ ]ν1 tanh(βν1)(� 0). (18)

The latter inequality follows from the fact that (δ + ζ −
2δζ )(1 − θ ) and 2δθζ are always positive or null. Therefore,
for ν2 = ν1, work cannot be extracted and the system can
only work as either an accelerator (A) for δ < 1/2 or a heater
(H) for δ > 1/2. Thus, the condition ν2 �= ν1 is necessary
for the system to work as a heat engine, independently of
the cycle being symmetric or asymmetric. This is the main
second result of the paper. We trace this to the the negative
effect of the projective measurement on the average energy
E4 = Tr[V

∑
j KjUρ1U †K†

j V
†H2] as we explain further be-

low. This is why the engine in Ref. [41] could extract work
even when ν2 = ν1, i.e., even without changing the frequency
of the spin system. Therefore, our results and theirs are not in
contradiction with each other as one may think from the first
sight. Note that for the asymmetric cycle we have taken both
the forward and backward work averages for a meaningful
study, since as was shown in Ref. [46] for one to obtain
meaningful bounds on fluctuations one needs to take both the
forward as well the backward into account.

For the system to work as a heat engine (E ) when δ = ζ ,
the conditions 〈〈QM〉〉 > 0, 〈〈QT 〉〉 < 0 and 〈〈W 〉〉 > 0 has to
be satisfied. For 〈〈QM〉〉 to be positive we have to ensure δ <

1/2. 〈〈QT 〉〉 as we show below, is always negative or equal
to zero. Thus, for 〈〈W 〉〉 > 0, we have to have, |〈〈QT 〉〉| <

〈〈QM〉〉. However, in terms of the parameters, for 〈〈W 〉〉 > 0
we have the next condition on ν2,

ν2 >

[
θ + 2δ(1 − 2θ )(1 − δ)

θ (1 − 2δ)

]
ν1(� ν1 for δ < 1/2). (19)

This because θ + 2δ(1 − 2θ )(1 − δ) − θ (1 − 2δ)[= 2δ(1 −
δ − θ + 2δθ )] � 0. For an accelerator the conditions are:
〈〈QM〉〉 > 0, 〈〈QT 〉〉 < 0, and 〈〈W 〉〉 < 0. For a heater the
conditions are 〈〈QM〉〉 < 0, 〈〈QT 〉〉 < 0, and 〈〈W 〉〉 < 0. To
satisfy these latter conditions we need to have δ > 1/2 with
all other parameters are nonzero.

Now let us consider the case when ζ �= δ. For the for-
ward cycle to work as a heat engine, the condition δ < 1/2
and ν2 >

θ+(1−2θ )(δ+ζ−2δζ )
θ (1−2δ) ν1 are necessary. For the backward

cycle, we have to ensure as well that ζ < 1/2 and ν2 >
θ+(1−2θ )(δ+ζ−2δζ )

θ (1−2ζ ) ν1. Thus for the forward and backward to
work as a heat engine we need to ensure that δ and ζ <

1/2 and ν2 > max{ θ+(1−2θ )(δ+ζ−2δζ )
θ (1−2δ) ν1,

θ+(1−2θ )(δ+ζ−2δζ )
θ (1−2ζ ) ν1}.

Of course we may have other combinations such that the
overall cycle is a heat engine. For example, the forward could
be a heat engine and the backward an accelerator or vice versa
and so on. In the latter case, when one imposes the positivity
of work only on the sum, i.e., (〈〈W 〉〉F + 〈〈W 〉〉B) to be >0 we
have the next condition on ν2,

ν2 �
(

θ + (1 − 2θ )(δ + ζ − 2δζ )

θ (1 − δ − ζ )

)
ν1(> ν1 for δ + ζ < 1).

(20)

This is when we impose the positivity on only the sum of
〈〈W 〉〉F and 〈〈W 〉〉B and not on them individually.

Now let us look at the efficiency. For ζ = δ, the efficiency
is given by

〈η〉 = 〈〈W 〉〉
〈〈QM〉〉 = 1 − ν1

ν2

θ + 2δ(1 − 2θ )(1 − δ)

(1 − 2δ)θ
. (21)

Since θ + 2δ(1 − 2θ )(1 − δ) − (1 − 2δ)θ = 2δ(1 − (δ +
θ − 2δθ )) � 0, it follows that − ν1

ν2

θ+2δ(1−2θ )(1−δ)
(1−2δ)θ � − ν1

ν2
.

Therefore, the efficiency is limited by the one of the Otto,
i.e., 1 − ν1/ν2. This latter bound is reached only when the
adiabatic parameter δ is null. Analogously when δ �= ζ the
efficiency expression [46] is given by,

〈η〉 = 〈〈W 〉〉F + 〈〈W 〉〉B

〈〈QM〉〉F + 〈〈QM〉〉B

= 1 − ν1

ν2

(θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ ))

(1 − δ − ζ )θ
.

(22)

Further we have, ((θ + ζ − 2θζ + δ(−1 + 2θ )(−1 +
2ζ ))) − ((1 − δ − ζ )θ ) = ((δ + ζ − 2δζ )(1 − θ ) + 2δθζ )
� 0. From the latter inequality one can show that,

〈η〉 = 〈〈W 〉〉F + 〈〈W 〉〉B

〈〈QM〉〉F + 〈〈QM〉〉B
� 1 − ν1

ν2
. (23)

Therefore, for the symmetric and asymmetric Otto cycle, the
efficiency is always less or equal to 1 − ν1/ν2. We should
mention that for the asymmetric cycle, if one does not take
into consideration the backward, then the efficiency can be
greater than that of the Otto, i.e., 1 − ν1/ν2. This means that
not only one should treat the backward and the forward cycle
on equal footing for meaningful bounds on RF as was stated
in Ref. [46], but also to restore the Otto efficiency being the
upper bound of the efficiency as our result [Eq. (23)] shows.

In Fig. 2 we plot the efficiency 〈η〉 (left figure) and work
extracted 〈〈W 〉〉 (right figure) as a function of the adiabatic
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FIG. 2. (a) Plot of efficiency 〈η〉 as a function of δ with ζ = δ, β = 0.5, ν1 = 1 and ν2 = 2. The horizontal dashed red line is the Otto
efficiency which is equal to 0.5. We plot 〈η〉 only for δ ∈ [0, 0.5], since beyond this interval 〈〈QM〉〉 becomes negative. One should note that
differently from Ref. [41] we see that the fact that θ can be higher than 1/2 enhances the efficiency. (b) Plot of extracted work 〈〈W 〉〉 as a
function of δ with ζ = δ with the same value of β, ν1, and ν2 as in panel (a). For the considered parameters we see that considering an arbitrary
unital channel could increase the value of δ above which work becomes negative. Even further, we see that the more we increase θ the more
the extracted work gets enhanced. However, note that increasing δ diminishes the work extracted. This shows that nonadiabatic transitions are
detrimental, but we show these transitions can be harnessed positively under an important circumstance.

parameter δ for the symmetric Otto cycle ζ = δ and for dif-
ferent values of θ . It is seen that work and efficiency get
enhanced as we increase θ . Further, it is found that efficiency
becomes less perturbed by δ, when we increase θ .

F. Monitored (our engine) and unmonitored engine (Ref. [41])

Let us now comment on why our heat engine needs the
condition (19) to output work, in contrast to what has been
shown in Ref. [41]. As we said before, in Ref. [41], the authors
did not consider monitoring the working medium between
the strokes. However, in our case we consider it. Thus we
have that the average work and heats are not equal. Note that
if one considers a completely unital map or a in general a
completely thermalizing map then the two approaches give
the same averages and fluctuations of average energies. There-
fore, monitoring or not monitoring the state of the system
will not change the story. However, since the unital map is
arbitrary, which may not erase the coherence generated by
the unitary U , the monitored and unmonitored heat engines
would be different. Our analysis is in agreement with what has
been shown in Ref. [54], that projective measurement may be
detrimental to efficiency, work and its reliability and power. In
Ref. [55], the authors have considered a two-stroke Otto heat
engine, where the hot bath being replaced by a nonselective
quantum measurement. They have shown that the invariant
state of the cycle is dependent on whether the cycle is being
monitored or not, and consequently the work average and its
fluctuations are different. More precisely, it was found that
depending on the parameters, the work for the unmonitored
cycle can be either greater or less than that of the monitored
cycle. The same thing was found for work reliability. From
our study we conclude that monitoring can have a negative
influence on the performance of the heat engine, and this

is seen above as the engine cannot output work under the
condition ν1 = ν2, either in the symmetric or the asymmetric
Otto cycle.

Let us now show a comparison between the monitored and
unmonitored Otto cycle cases in terms of average energy at
the point D in Fig. 1(b). One can easily show that E1, E2,
and E3, the average energies at the points A, B, and C in
Fig. 1(b), respectively, will not be affected by using projective
measurement to assess the statistics of thermodynamic quan-
tities. Actually, the state ρ3 of the unmonitored Otto cycle can
be written as follows:

ρ3 =
3∑

i=0

piσiρ2σi = (|+〉22〈+| + |−〉22〈−|)

×
(

3∑
i=0

piσiρ2σi

)
(|+〉22〈+| + |−〉22〈−|)

= ρ
deph
3 +

3∑
i=0

piσi(2〈+|ρ2|−〉2|+〉22〈−|

+ 2〈−|ρ2|+〉2|−〉22〈+|)σi. (24)

Note that we have employed Eq. (8). ρ2 = Uρ1U † and
ρ

deph
3 (= 2〈+|ρ3|+〉2|+〉22〈+| + 2〈−|ρ3|−〉2|−〉22〈−|) is the

dephased state ρ3. Let us now forget about the second term.
Similar to Eq. (24) the state ρ4 of the unmonitored Otto cycle
is

ρ4 = ρ
deph
4 + V

∑
i

σi pi(〈+2|ρ2|−2〉|+〉22〈−|

+ 〈−2|ρ2|+2〉|−〉22〈+|)σiV
+. (25)

One can show that the second term in Eq. (24) will not
contribute to the average energy E3. This can be explained by
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the fact that the Kraus operators of an arbitrary unital channel,
which are Pauli operators, do not couple the populations and
coherences, thus the coherence created in the first stroke by
U can only affect E4 and not E3, thus the heat provided by
the unital channel 〈〈QM〉〉 is coherence independent. What this
means is that the difference between the average energies of
the monitored and unmonitored will only be in E4. Further-
more, note that the second term in Eq. (25) will not contribute
to the average energy E4 when ρ2 is diagonal in the basis of
the Hamiltonian H2, since 2〈+|ρ2|−〉2 = 2〈−|ρ2|+〉2 = 0. In
this case, there is no difference between the monitored and un-
monitored heat engines from an energetic point of view. Thus
when the arbitrary unital channel is not completely unital, the
unitary V may couple the populations and coherences such
that the latter would contribute to the average work 〈〈W 〉〉 and
heat exchanged with the bath 〈〈QT 〉〉.

In Appendix D, for the Landau-Zener model, we give a de-
tailed comparison between the work extracted and efficiency
for the monitored and unmonitored single qubit.

G. Negative temperature: Can the system work as a refrigerator
in this case?

Now let us first prove that 〈〈QT 〉〉 is always negative.
We have, 0 � δ + ζ − 2δζ = δ(1 − ζ ) + ζ (1 − δ) � 1,
since 0 � ((1 − δ) and, (1 − ζ )) � 1. The term
[θ + ζ − 2θζ + δ(1 − 2ζ )(1 − 2θ )] can be rewritten
as follows: [θ + ζ − 2θζ + δ(1 − 2ζ )(1 − 2θ )] =
θ + (1 − 2θ )(δ + ζ − 2δζ ). For 0 � θ � 1/2 this term
is clearly positive or null, since δ + ζ − 2δζ and 1 − 2θ

are greater than or equal to zero. To show this for 1/2 <

θ � 1 we have, [θ + ζ − 2θζ + δ(1 − 2ζ )(1 − 2θ )] =
θ − (2θ − 1)(δ + ζ − 2δζ ). (2θ − 1)(δ + ζ − 2δζ ) is � 0.
The biggest value that (2θ − 1)(δ + ζ − 2δζ ) can take,
independently of θ , is when δ + ζ − 2δζ = 1, in this case
we have, θ − max0�δ,ζ�1[ζ − 2θζ + δ(1 − 2ζ )(1 − 2θ )] =
θ − (2θ − 1) = 1 − θ , which is clearly always � 0. Thus,
〈〈QT 〉〉 is always � 0 as in Ref. [41]. Therefore, heat will only
flow out from the system when it will be in interaction with
the heat bath, thus this bath will play the role of a heat-cold
bath and the unital channel the role of hot heat bath. However,
in contrast to them, our proof is valid for arbitrarily monitored
Otto heat engines based on unital qubit channels, not just the
specific measurement unital channel considered there. This is
another main result of our work.

The notion of inverse temperature bath was introduced in
Refs. [56,57]. Above, and in the previous work in Ref. [41]
it was shown that 〈〈QT 〉〉 is always � 0 but this is true only
under the assumption that the temperature of the heat reser-
voir is positive. However, if it is negative, then in this case
the 〈〈QT 〉〉 can be positive, since the sign of tanh(βν1) gets
flipped. When 〈〈QT 〉〉 is negative this means that the average
energy of the system at the point D is bigger than the one
when the system gets equilibrated with its environment, i.e.,
point A, see Fig. 1(b). However, if the temperature is negative,
then in this case E4 will be smaller than E1, thus heat will flow
from the environment into the system. However, in this case,
the system is not a refrigerator as a heat bath with a nega-
tive temperature is hotter than any heat bath with a positive
temperature, thus the bath will act as a hot heat bath [58]. To
summarize the operation modes of the system are

for β > 0 :
E : 〈〈QT 〉〉 < 0, 〈〈QM〉〉 > 0, and 〈〈W〉〉 > 0,

A : 〈〈QT 〉〉 > 0, 〈〈QM〉〉 > 0, and 〈〈W〉〉 < 0,

H : 〈〈QT 〉〉 < 0, 〈〈QM〉〉 < 0, and 〈〈W〉〉 < 0,

and

for β < 0 :
A : 〈〈QT 〉〉 > 0, 〈〈QM〉〉 < 0, and 〈〈W〉〉 < 0,

E : 〈〈QT 〉〉 > 0, 〈〈QM〉〉 < 0, and 〈〈W〉〉 > 0,

E′ : 〈〈QT 〉〉 > 0, 〈〈QM〉〉 > 0, and 〈〈W〉〉 > 0.

For β negative, we only have to reverse the sign of work
and heats given in the above equation. Therefore, when β →
−β a heat engine becomes an accelerator, an accelerator
becomes a heat engine and a heater becomes a heat engine
E ′, but the latter comes with unit efficiency since the system
will absorb heat from both baths and transform it into work,
thus 〈η〉 = 〈〈W 〉〉/(〈〈QT 〉〉 + 〈〈QM〉〉) = 1. This latter case is
possible because of two reasons: the first one is the nonadi-
abaticity and the second is the negativity of the temperature
of the bath. Since a heater is not possible in the adiabatic
case, i.e., a nonequilibrium thermal machine. However, note
that if the cost of preparing baths at negative temperatures-

nonequilibrium baths-is taken into account, then there will
be no inconsistency with the laws of thermodynamics, see
Refs. [59,60] and the efficiency would be less than 1. The
fact that the efficiency of a two-level Otto cycle with two heat
baths, one of them with a positive temperature and the other
with a negative temperature-being enhanced in the nonadia-
batic regime, which seems counterintuitive, was also noted in
Ref. [52].

Thus refrigeration is not allowed even when the temper-
ature is negative. Furthermore, note that the heater is not
possible as well, when β is negative, since a heater demands
the next conditions: 〈〈QT 〉〉 < 0, 〈〈QM〉〉 < 0 and 〈〈W〉〉 < 0,
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which is not possible, since when β < 0, 〈〈QT 〉〉 will always
be � 0. We have demonstrated in Eq. (18) that a positive
work condition is not possible when ν2 = ν1 and when the
inverse temperature is positive. However, as we see in this
section, when the inverse temperature is negative we may
have, 〈〈W 〉〉 > 0 either for symmetric or asymmetric Otto
cycle.

Until now we only considered the first cumulants of work
and heat. Let us now take a step further toward higher cu-
mulants such as variance, skewness and kurtosis which are
defined as measures of fluctuations, asymmetry and tailedness
and peakedness of a probability distribution, respectively.

H. A lower and upper bound on the ratio of the fluctuations
of W and QM

In this section, we prove rigorously that the ratio of the
fluctuations of W and QM is lower bounded by the square

of the efficiency and upper bounded by 1. We show when
these bounds are respected either for the symmetric or the
asymmetric Otto cycle. Furthermore, for the symmetric Otto
cycle, we prove that the square of the Otto efficiency gives a
tighter lower bound on the ratio of fluctuations than the one
derived from the square of the efficiency of the engine.

1. Symmetric Otto cycle

The authors of Ref. [46] have shown that for a symmetric
and asymmetric Otto cycle based on two heat baths, the ratio
〈〈W 2〉〉/〈〈Q2

M〉〉 is lower and upper bounded when the system
is working as a heat engine. Since our Otto cycle is different
from theirs we want to know if this is still true here as well.
Let us consider 〈〈W 2〉〉/〈〈W 〉〉2 − 〈〈Q2

M〉〉/〈〈QM〉〉2. We now
only consider the case ζ = δ. After messy but straightforward
steps of calculations which are not important to be included
here, we obtain

〈〈W 2〉〉
〈〈W 〉〉2

−
〈〈

Q2
M

〉〉
〈〈QM〉〉2

= 2(1 − δ)δν1(−(θ + 2δ(1 − δ)(1 − 2θ ))ν1 + 2θ (1 − 2δ)ν2) coth2(βν1)

θ (1 − 2δ)2((θ + 2δ(1 − δ)(1 − 2θ ))ν1 − θ (1 − 2δ)ν2)2

= (1 − δ)δν1(〈〈W 〉〉 + 2(1 − 2δ)ν2 tanh(βν1)) coth3(βν1)

θ (1 − 2δ)2((θ + 2δ(1 − δ)(1 − 2θ ))ν1 − θ (1 − 2δ)ν2)2
. (26)

This equation can be either positive, equal to zero or negative.
The denominator is always � 0. For Eq. (26) to be � 0 we
have to ensure that

ν2 � (θ + 2δ(1 − δ)(1 − 2θ ))

2(1 − 2δ)θ
ν1. (27)

When this latter condition is met we have

〈〈W 2〉〉
〈〈W 〉〉2

�
〈〈

Q2
M

〉〉
〈〈QM〉〉2

. (28)

Furthermore, note that the lower bound (θ+2δ(1−δ)(1−2θ ))
2(1−2δ)θ ν1 on

ν2 is half of the necessary condition needed for the system
to work as a heat engine. Thus this condition does not en-
sure that the system is working as a heat engine. This shows
that 〈〈W 2〉〉/〈〈W 〉〉2 � 〈〈Q2

M〉〉/〈〈QM〉〉2 can still be valid even
when the system is not working as a heat engine, such as an
accelerator as we found numerically, to be shown later on.
However, when the system is working as a heater, then we
have

〈〈W 2〉〉
〈〈W 〉〉2

<

〈〈
Q2

M

〉〉
〈〈QM〉〉2

. (29)

This is because for the system to work as a heater we
need δ > 1/2, and under this constraint, one can show that
2(−(θ + 2δ(1 − δ)(1 − 2θ ))ν1 + 2θ (1 − 2δ)ν2)( = (〈〈W 〉〉
+ 2(1 − 2δ)ν2 tanh(βν1))/ tanh(βν1)) < 0, since 〈〈W 〉〉 <

0. Therefore, we conclude that 〈〈W 2〉〉/〈〈W 〉〉2 �
〈〈Q2

M〉〉/〈〈QM〉〉2 is always respected (violated) when the
system as a heat engine (heater), but it can or cannot be
violated when it is an accelerator. The violation depends on
the parameters. Straightforwardly from Eq. (28) it follows

that

〈〈W 2〉〉〈〈
Q2

M

〉〉 � 〈〈W 〉〉2

〈〈QM〉〉2
= 〈η〉2. (30)

This equation tells us that when Eq. (27) is satisfied, the ratio
of the fluctuations of W and QM is always greater or equal to
the square of efficiency. In the heat engine region, the lower
bound is reached in the adiabatic limit. Now let us see if the
ratio of the relative fluctuations of W and QM has any upper
bound as in Ref. [46]. In the latter reference, it was shown that
for a symmetric and asymmetric QOHE with two completely
thermalizing baths that 〈〈W 2〉〉/〈〈Q2

M〉〉 < 1. Let us now in-
vestigate under which condition 1 − 〈〈W 2〉〉/〈〈Q2

M〉〉 is � 0.
To do this, this inequality can be modified into checking if
〈〈Q2

M〉〉 − 〈〈W 2〉〉 � 0. We have

〈〈
Q2

M

〉〉 − 〈〈W 2〉〉
= 4ν1(2δ2(−1 + 2θ )ν1 + θ (ν1 − 2ν2) + 2δ(ν1 − 2θν1

+ 2θν2))(−1 + (θ + 2(−1 + δ)δ(−1 + 2θ )) tanh2(βν1))

= 4ν1(〈〈W 〉〉 + (θ + 2(−1 + δ)δ(−1 + 2θ ))ν1 tanh(βν1))

× (1−(θ+2(−1+ δ)δ(−1 + 2θ )) tanh2(βν1)) coth(βν1).
(31)

The term (−1 + (θ + 2(−1 + δ)δ(−1 + 2θ )) tanh2 (βν1)) is
� 0, since (θ + 2(−1 + δ)δ(−1 + 2θ )) tanh2 (βν1) is � 1,
thus for 〈〈Q2

M〉〉 − 〈〈W 2〉〉 to be � 0 one has to ensure that,
(2δ2(−1 + 2θ )ν1 + θ (ν1 − 2ν2) + 2δ(ν1 − 2θν1 + 2θν2)) is
� 0 which is equivalent into ν2 � (θ+2δ(1−δ)(1−2θ ))

2(1−2δ)θ ν1, which is
nothing, but the condition given in Eq. (27). Therefore, under
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the condition (27), we have

〈η〉2 = 〈〈W 〉〉2

〈〈QM〉〉2
� 〈〈W 2〉〉〈〈

Q2
M

〉〉 � 1. (32)

This equation is the first main result of this section. It
shows that the ratio of the fluctuations of W and QM is
lower and upper-bounded. Therefore, similarly to the previ-
ous analysis on the lower bound, we have 〈〈W 2〉〉/〈〈Q2

M〉〉 <

1 is always respected when the system as a heat engine,
since 〈〈Q2

M〉〉 − 〈〈W 2〉〉 > 0 from the heat engine conditions,
but it can or cannot be violated when it is an accelerator.
The violation depends on the parameters, and to be pre-
cise whenever Eq. (27) is violated then 〈〈W 2〉/〈Q2

M〉 � 1.
Under the conditions of a heat engine (δ < 1/2 and ν2 >

((θ + 2δ(1 − 2θ )(1 − δ))/(θ (1 − 2δ)))ν1), Eq. (31) is always
positive, which means that the upper bound in Eq. (32) is not
achieved, it is reached only when the system is working as an
accelerator depending on the values of the parameters.

Let us now give an interpretation to Eq. (32). In the adi-
abatic regime, the ratio of the fluctuations of W and QM

saturates to its lower bound which is the square of the Otto
efficiency. However, when 0 < δ < 1/2 then the more we
increase δ, but not exceeding 1/2, the more the ratio of fluc-
tuations increases until the upper bound 1 is violated in the
accelerator regime depending on the parameters. In the heat
engine region, it means that the fluctuations of W are always
less than those of QM , but the lower bound on the ratio of the
fluctuations cannot be arbitrary. However, when the system is
working as an accelerator then the fluctuations of W can be
either less, greater or equal to those of QM .

Note that equation can be interpreted also as a witness
of the operational regime. More precisley when the ratio of
fluctuations does not respect Eq. (32), then this indicates that
the system now starts working as a useless machine, such as a
heater or an accelerator.

Actually, one can show that the square of the Otto
efficiency provide a tighter lower bound on the ratio of fluc-
tuations of W and QM than the square of the efficiency of the
engine. After messy but strauthforward algebra one can find
that,

〈〈W 2〉〉ν2
2 − 〈〈

Q2
M

〉〉
(ν2 − ν1)2

= 8δν1ν
2
2 ((1 − δ)ν1 + 2δθν1 + 2θ (ν2 − ν1)).

+ 16δν1ν
2
2 (1 − δ − θ + 2δθ )((1 − 2δ)θν2

− (1 − δ)(δ + θ − 2δθ )ν1) tanh2 (βν1). (33)

For ν2 � ν1, one can easily see that 8δν1ν
2
2 ((1 − δ)ν1 +

2δθν1 + 2θ (ν2 − ν1)) � 0. However, for (1 − 2δ)θν2 − (1 −
δ)(δ + θ − 2δθ )ν1 to be greater or equal to zero, this trans-
lates into

(1 − 2δ)θν2 � (1 − δ)(δ + θ − 2δθ )ν1. (34)

For a positive work we already have proved that we need (1 −
2δ)θν2 � (θ + 2δ(1 − 2θ )(1 − δ))ν1, see Eq. (19). We have,

(θ + 2δ(1 − 2θ )(1 − δ))ν1 − (1 − δ)(δ + θ − 2δθ )ν1

= δ(1 − δ − θ + 2δθ )ν1 � 0. (35)

Since the necessary condition for positive work is always
greater or equal to the one necessary (Eq. 34) for the term
in the second line in Eq. (33) to be � 0, this means that
even when the positive work condition is not satisfied still
the second tem in Eq. (33) can be � 0. Therefore, under the
condition Eq. (34) we have

〈〈W 2〉〉〈〈
Q2

M

〉〉 � (1 − ν1/ν2)2. (36)

We already have proved that efficiency is limited by the Otto
efficiency, see Eq. (20). Therefore, we have

〈η〉2 = 〈〈W 〉〉2

〈〈QM〉〉2
� (1 − ν1/ν2)2 � 〈〈W 2〉〉〈〈

Q2
M

〉〉 < 1. (37)

This is another central result of this section. Unfortunately,
below, we could not generalize this result to the asymmetric
Otto cyclc. From Eq. (38) we have

〈η〉 � (1 − ν1/ν2) �
√

〈〈W 2〉〉〈〈
Q2

M

〉〉 < 1. (38)

This means that the square root of the ratio of fluctuations
can also provide an upper bound on the efficiency, however,
it is not tighter than the Otto efficiency. In Refs. [50,51],
the authors have found for autonomous continuous thermal
machines, that the square root of the ratio of the second
cumulants provide a tighter bound on the efficiency than the
Carnot efficiency. A result that we see does not hold here for
driven discrete quantum heat engines.

2. Asymmetric Otto cycle

Using the Mathematica software, one can show that for the
case when ζ �= δ we have

2(〈〈W 2〉〉F + 〈〈W 2〉〉B)

(〈〈W 〉〉F + 〈〈W 〉〉B)2
− 2(

〈〈
Q2

M

〉〉
F

+ 〈〈
Q2

M

〉〉
B

)

(〈〈QM〉〉F + 〈〈QM〉〉B)2

= ν1(−(θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ ))ν1 + 2θ (1 − δ − ζ )ν2)

θ (−1 + δ + ζ )2

× −(θ (δ − ζ )2(θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ )) + (δ2θ + δ(−1 + 2ζ − 2θζ ) + ζ (−1 + θζ )) coth2(βν1))

((θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ ))ν1 + θ (−1 + δ + ζ )ν2)2
. (39)

Note that we used the properly symmetrized expression
of the relative fluctuations introduced in Ref. [46].

One can show that −(θ (δ − ζ )2(θ + ζ − 2θζ + δ(−1 +
2θ )(−1 + 2ζ )) + (δ2θ + δ(−1 + 2ζ − 2θζ ) + ζ (−1 + θζ ))
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coth2(βν1)) is � 0. Let us now prove this latter
inequality.

We have θ (δ − ζ )2(θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2
ζ )) � 0 and −(δ2θ + δ(−1 + 2ζ − 2θζ ) + ζ (−1 + θζ ))
coth2(βν1) = −(θ (δ−ζ )2−(δ+ζ − 2δζ )) coth2(βν1). One
can show that θ (δ − ζ )2 − (δ + ζ − 2δζ ) � 0. This
latter inequality follows from a simple maximization
over θ , since both (δ − ζ )2 and (δ + ζ − 2δζ ) are � 0.
From this one can conclude that −(δ2θ + δ(−1 + 2ζ −
2θζ ) + ζ (−1 + θζ )) coth2(βν1) = −(θ (δ − ζ )2 − (δ + ζ −
2δζ )) coth2(βν1) � 0. The terms θ (−1 + δ + ζ )2 and ((θ +
ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ ))ν1 + θ (−1 + δ + ζ )ν2)2

are � 0.
Now let us define the parameter A to be given as follows:

A = − (δ2θ + δ(−1 + 2ζ − 2θζ ) + ζ (−1 + θζ )) coth2(βν1)

− θ (δ − ζ )2(θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ )).
(40)

In such a case our task for proving that A � 0, reduce to
checking that

− (δ2θ + δ(−1 + 2ζ − 2θζ ) + ζ (−1 + θζ )) coth2(βν1)

� θ (δ − ζ )2(θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ )).
(41)

Actually, to prove the latter inequality it is sufficient to prove
it for the lowest value of coth2(βν1) which is one. In this case
[i.e., coth2(βν1) = 1] Eq. (40) reduces into

A = − (θ (δ − ζ )2 − (δ + ζ − 2δζ )) − θ (δ − ζ )2(θ + ζ

− 2θζ + δ(−1 + 2θ )(−1 + 2ζ )). (42)

From this, after a simple algebra, we have

A = (δ + ζ − 2δζ ) − θ (δ − ζ )2(1 + θ

+ (1 − 2θ )(δ + ζ − 2δζ )). (43)

One can show that (δ + ζ − 2δζ ) and θ (δ − ζ )2(1 + θ +
(1 − 2θ )(δ + ζ − 2δζ ) are always positive or equal to zero.
Further the highest value of θ (δ − ζ )2(1 + θ + (1 − 2θ )(δ +
ζ − 2δζ ) for arbitrary δ and ζ is when θ = 1. This letter state-
ment can be checked easily by using the first and the second
derivative with respect to θ . In this case Eq. (43) becomes

A = δ(1 − δ) + ζ (1 − ζ ) − (δ − ζ )2(1 − δ − ζ + 2δζ ).
(44)

After simple steps of calculations, one can find that

A = (1 − 2δ)(ζ 3 + δ(1 − ζ 2))

+ (1 − 2ζ )(δ3 + ζ (1 − δ2)) + 2δζ . (45)

This equation is more simple to be analyzed by looking at
it. Taking into account the fact that for a heat engine to be
possible in the forward as well as in the backward cycle, δ and
ζ need to be less than 1/2. Imposing this condition is only
necessary but not sufficient as we have seen before. Since
this leaves the possibility of an accelerator as well. From this
constraint, it is straightforward to show that A � 0. There-
fore, for 2(〈〈W 2〉〉F + 〈〈W 2〉〉B)/(〈〈W 〉〉F + 〈〈W 〉〉B)2 �
2(〈〈Q2

M〉〉F + 〈〈Q2
M〉〉B)/(〈〈QM〉〉F + 〈〈QM〉〉B)2 one need to

ensure that

ν2 � θ + (1 − 2θ )(δ + ζ − 2δζ )

2(1 − δ − ζ )θ
ν1. (46)

Actually, this lower bound θ+(1−2θ )(δ+ζ−2δζ )
2(1−δ−ζ )θ ν1 on ν2 is half

of the necessary condition for (〈〈W 〉〉F + 〈〈W 〉〉B) � 0, see
Eq. (20). Analogously to the symmetric Otto cycle, let us
now look at (〈〈Q2

M〉〉F + 〈〈Q2
M〉〉B) − (〈〈W 2〉〉F + 〈〈W 2〉〉B).

The explicit expression of the latter difference is given as(〈〈
Q2

M

〉〉
F + 〈〈

Q2
M

〉〉
B

) − (〈〈W 2〉〉F + 〈〈W 2〉〉B)

= −8ν1((θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ ))ν1

+ 2θ (−1 + δ + ζ )ν2)(1 − (θ + ζ − 2θζ

+ δ(−1 + 2θ )(−1 + 2ζ )) tanh2(βν1))

= 4ν1(〈〈W 〉〉F + 〈〈W 〉〉B

+ 2(θ + (1 − 2θ )(δ + ζ − 2δζ ))ν1 tanh(βν1))

× (1 − (θ + (1 − 2θ )(δ + ζ − 2δζ ))

× tanh2(βν1)) coth(βν1). (47)

Since (1 − (θ + ζ − 2θζ + δ(−1 + 2θ )(−1 + 2ζ )) tanh2

(βν1)) � 0, one can show that the condition (46) is necessary
in this case as well for (〈〈Q2

M〉〉F + 〈〈Q2
M〉〉B) − (〈〈W 2〉〉F +

〈〈W 2〉〉B) to be � 0. Therefore, when Eq. (46) is satisfied we
have

〈η〉2 =
( 〈〈W 〉〉F + 〈〈W 〉〉B

〈〈QM〉〉F + 〈〈QM〉〉B

)2

� 〈〈W 2〉〉F + 〈〈W 2〉〉B〈〈
Q2

M

〉〉
F + 〈〈

Q2
M

〉〉
B

� 1.

(48)

This shows that the ratio of the fluctuations of W and
QM is still lower and upper-bounded even in the asym-
metric case. Equation (48) is a generalization of Eq. (32)
to the asymmetric driven Otto cycle. Furthermore, note
that the upper bound value 1, is not achieved when
the system is working as a heat engine. This follows
from imposing the heat engine conditions on the for-
ward and the backward. These conditions are: 〈〈W 〉〉F (B) >

0 and δ(ζ ) < 1/2. In that case one can easily show
that (1−(θ + (1 − 2θ )(δ + ζ − 2δζ )) tanh2(βν1)) coth(βν1)
and 4ν1(〈〈W 〉〉F + 〈〈W 〉〉B + 2(θ + (1 − 2θ )(δ+ζ−2δζ ))ν1

tanh(βν1)) are >0. From Eq. (48), and analogously to Eq. (38)
we have

〈η〉 �

√√√√(
〈〈W 2〉〉F + 〈〈W 2〉〉B〈〈

Q2
M

〉〉
F

+ 〈〈
Q2

M

〉〉
B

)
< 1, (49)

which is less than the upper bound 1 allowed by the law of
energy conservation. Even though we could not prove it, we
believe that the square root of the ratio of fluctuations of the
asymmetric Otto cycle does not provide a tighter bound on the
efficiency of the engine than the Otto efficiency.

I. The ratio of the third and fourth cumulants of W and QM

We have proved before, that the efficiency of the asymmet-
ric Otto cycle is limited by the one of the Otto if we take into
account both the forward and backward and treat them on an
equal footing. Then we have proved the ratio of fluctuations
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FIG. 3. Plot of 〈〈Q3
M〉〉/〈〈Q2

M〉〉3/2 − 〈〈W 3〉〉/〈〈W 2〉〉3/2 (top figures) and 〈〈Q4
M〉〉/〈〈Q2

M〉〉2 − 〈〈W 4〉〉/〈〈W 2〉〉2 (bottom figures). The param-
eters are: β = 0.7, ν1 = 1, ν2 = 2, and ζ = δ. In panels (a) and (c) θ = 0.2, and in panels (b) and (d) θ = 0.7. The dashed red vertical
line in panels (a) and (c) corresponds to δ = 0.10685 and in panels (b) and (d) corresponds to δ = 0.31125. In the left (right) figures when
δ � 0.10685 (� 0.31125) the system stops working as a heat engine for the considered parameters. (a) For δ � 0.10685 the skewness order

of W and QM is 〈〈Q3
M〉〉/〈〈Q2

M〉〉3/2 � 〈〈W 3〉〉/〈〈W 2〉〉3/2 not 〈〈W 3〉〉/〈〈W 2〉〉3/2 � 〈〈Q3
M〉〉/〈〈Q2

M〉〉3/2
as one may expect by analogy to the

order of the RFs. (b) For δ � 0.10685: 〈〈Q3
M〉〉/〈〈Q2

M〉〉3/2 � 〈〈W 3〉〉/〈〈W 2〉〉3/2 then 〈〈W 3〉〉/〈〈W 2〉〉3/2 � 〈〈Q3
M〉〉/〈〈Q2

M〉〉3/2
. (c) The kurtosis

order for δ � 0.10685 is: 〈〈W 4〉〉/〈〈W 2〉〉2 � 〈〈Q4
M〉〉/〈〈Q2

M〉〉2
and then 〈〈Q4

M〉〉/〈〈Q2
M〉〉2 � 〈〈W 4〉〉/〈〈W 2〉〉2. (d) The kurtosis order is always:

〈〈W 4〉〉/〈〈W 2〉〉2 � 〈〈Q4
M〉〉/〈〈Q2

M〉〉2
.

is lower and upper bounded. In Ref. [50] Saryal et al. and in
Ref. [51] Gerry et al. have proved that for continuous thermal
machines, the ratio of the nth cumulants has a lower and
upper bound, where the lower bound is defined by the nth
power of the efficiency and the upper bound by the nth power
of the Carnot efficiency. The lower bound was shown to be
saturated in the tight coupling limit. Therefore, analogously to
the bounds on the ratio of the second cumulants for quantum
unital Otto heat engines, let us ask if the ratio of the third
(fourth) cumulants can be lower bounded by third (power)
power of the efficiency and upper bounded by 1, as it is the
case for autonomous continuous thermal machines?

The standardized third and fourth cumulants are, respec-
tively, the skewness and kurtosis. Skewness is a measure of
the asymmetry of a distribution. When it is negative (positive)
it means that the left tail (right tail) of a distribution is longer
than the one on the right (left) side. For kurtosis (or excess
kurtosis) it is a measure of the tailedness and peakedness of a
distribution. These two quantities have to do with the shape of
the distribution. In the quasistatic limit, the ratio of the third
and fourth cumulants of heat and work are given as follows:

〈〈W 3〉〉〈〈
Q3

M

〉〉 =
(

1 − ν1

ν2

)3

and,
〈〈W4〉〉〈〈

Q4
M

〉〉 =
(

1 − ν1

ν2

)4

. (50)

This is still valid even for higher cumulants in the adiabatic
regime. Furthermore, what these two relations tell us, is that
the sign of the third and fourth cumulants of heat and work
are the same in the quasistatic limit, and that the third (fourth)
cumulant of QM is greater than that of W . However, beyond
this regime, their signs can be different, which makes this
regime more interesting to be investigated. We will return to
this point in a moment.

In Fig. 3 we plot the skewness difference 〈〈Q3
M〉〉/

〈〈Q2
M〉〉3/2 − 〈〈W 3〉〉/〈〈W 2〉〉3/2 and kurtosis difference

〈〈Q4
M〉〉/〈〈Q2

M〉〉2 − 〈〈W 4〉〉/〈〈W 2〉〉2 as a function of δ for
θ = 0.2 and θ = 0.7. We found that the order of skewness
and kurtosis of W and QM can be arbitrary and not like their
relative fluctuations when the system is working as a heat
engine [see Eq. (28)].

Note that in the numerical simulation, we do not plot the
cumulants for the case when β < 0, since in this regime one
can show that the sign of odd cumulants such as average
and skewness get flipped but that of even cumulants such as
kurtosis preserve their sign. This means that the order of the
relative fluctuations of W and QM we have proved before will
stay the same, but the order of the skewness will be flipped.

From Fig. 3, we see that we have either
〈〈W 3〉〉/〈〈W 2〉〉3/2 � 〈〈Q3

M〉〉/〈〈Q2
M〉〉3/2

or 〈〈W 3〉〉/〈〈W 2〉〉3/2
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FIG. 4. Eff refers to efficiency 〈η〉, Eq. (21). RCSs = ratio of the second cumulants (red solid line), RTCs = ratio of the third cumulants
(blue dashed line) and RFCs = ratio of the fourth cumulants (green dotted line) of W and QM as a function of θ . The parameters are:
δ = ζ = 0.1, ν1 = 1, ν2 = 2 and β = 0.5. The black vertical dotted line corresponds to θ = 0.1875. For θ < 0.1875 the system is working
as an accelerator and for θ > 0.1875 as a heat engine. The red dotted line corresponds to 〈η〉2, cyan dashed line 〈η〉3 and brown dotted line
corresponds to 〈η〉4. We see that the ratio of fluctuations is greater than 〈η〉2 and lesser than 1 in the heat engine region as expected. This is
still valid even in some regions of the accelerator, in agreement with Eqs. (32) and (48). The ratio of the third (fourth) cumulants can be out of
〈η〉3 � . < 1 (〈η〉4 � . < 1).

� 〈〈Q3
M〉〉/〈〈Q2

M〉〉3/2
. Using the already proved analytical

lower and upper bound on the ratio of fluctuations,
i.e., Eq. (32), we obtain from 〈〈W 3〉〉/〈〈W 2〉〉3/2 �
〈〈Q3

M〉〉/〈〈Q2
M〉〉3/2

that

〈〈W 3〉〉〈〈
Q3

M

〉〉 �
(

〈〈W 2〉〉〈〈
Q2

M

〉〉
)3/2

�
( 〈〈W 〉〉

〈〈QM〉〉
)3

= 〈η〉3. (51)

For the case when 〈〈W 3〉〉/〈〈W 2〉〉3/2 � 〈〈Q3
M〉〉/〈〈Q2

M〉〉3/2
we

obtain

〈〈W 3〉〉〈〈
Q3

M

〉〉 �
(

〈〈W 2〉〉〈〈
Q2

M

〉〉
)3/2

< 1. (52)

The same thing can be concluded for the ratio of the fourth
cumulants. This suggests that analogously to the ratio of fluc-
tuations, the ratio of the third and fourth cumulants may have a
lower and upper bound. However, from Fig. 4 we see that this
is not the case. The reason behind this is purely of quantum
origin, since as we showed in Eq. (50) when the adiabatic
parameter is zero then the ratio of the cumulants is equal to
the nth power of Otto efficiency. However, when δ �= 0 then
the ratio of the third (fourth) cumulants is not lower bounded
by the third (fourth) power of the Otto efficiency nor it is upper
bound by 1. This shows that the lower and upper on ratio of the
second cumulants remains robust against nonadiabaticity but

not the ratio of the third and fourth cumulants. This is another
central result of the paper.

Another strong motivation for considering the ratio of the
third and fourth cumulants other than giving us information
about the shape of the distribution of thermodynamic quan-
tities such as work and heat, is to investigate if their ratios
can provide a bound on the efficiency as it is the case for the
second cumulants, Eq. (49). From Fig. 5 we see that they can
sometimes provide a bound on the efficiency which can be
tighter than the one provided by the ratio of fluctuations, even
sometimes it could be tighter than the Otto efficiency; see
Fig. 5(d). However, in general, this is parameter dependent
and not valid for all heat engine regimes, i.e., not universal
as the bound derived from the ratio of fluctuations. This is
because these cumulants can have different signs due to nona-
diabatic transitions.

An immediate consequence of the results reported in
Ref. [51], is that the nth root of the ratio of the nth cumulants
gives a tighter bound on efficiency than the Carnot efficiency.
The tighest bound was provided by the ratio of fluctuations.
In Ref. [46], and in our work, we see that the ratio of second
fluctuations also provides a bound on efficiency albeit not
being tighter than the one of the Otto. However, we have seen
numerically that sometimes the third and fourth cumulants
ratio can provide a tighter bound than that derived from the
ratio of fluctuations. Even further, it can be tighter than Otto
efficiency. Unfortunately, this is not universal.
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FIG. 5. Eff and R(S,T,F)Cs as in Fig. 4. (a) θ = 0.2, ν1 = 1, ν2 = 2, and β = 0.5. (b) θ = 0.2, ν1 = 1, ν2 = 2, and β = 5. (c) θ = 0.7,
ν1 = 1, ν2 = 2, and β = 0.25. (d) θ = 0.2, ν1 = 1, ν2 = 2.5, and β = 0.5. In panels (a) and (b) we see that the efficiency is upper bounded by
the ratio of the second and fourth cumulants. But note that in general, they are above the Otto efficiency, i.e., 0.5. In panel (c) the ratio of the
fourth cumulants can provide a tighter bound on the Otto efficiency, than the ratio of the second and third cumulants, and even it can be tighter
than the Otto efficiency, but only for a very small domain of δ. In panel (d) we see that all the ratios of the cumulants bound the efficiency. And
we see that the ratio of the third cumulants provides a tighter bound that the other two cumulants, and even more, a tighter bound than the Otto
efficiency for wide-range values of δ. Unfortunately, this is not universal, i.e., not valid for all heat engine regime parameters.

We have checked that for the single-spin (quantum Otto
cycle) studied by Mohanta et al. [46], the skewness and kurto-
sis order is arbitrary and that the ratio of the third (fourth)
cumulants can violate as well the bounds 〈η〉3 � . � (1 −
βh/βc)3 (〈η〉4 � . � (1 − βh/βc)4), where 1 − βh/βc is the
Carnot efficiency. The reason behind this is also the nonadi-
abaticity. But we note that one can easily show this from our
results as well. For example, if we take βh = 0 in Ref. [46],
then in this case, the bath becomes completely unital, i.e., it
maps an arbitrary state to a mixed state, which is a special
case of our results. Then one can easily check our statements
under the condition θ = 1/2. Already from the Fig. 4 we see
that the ratio of the third and fourth cumulants are negative,
thus violating the bounds 〈η〉3 and 〈η〉4 which are positive.

J. Numerical analysis of the average work and its relative
fluctuations

Let us now show that considering arbitrary unital channels
can have a positive influence on average work as well as its
relative fluctuations.

From Fig. 6(a) we see that the average work extracted when
θ = 0.7 is higher than the case when θ = 0.2, and even more
the value of the adiabatic parameter δ above which work be-
comes negative get increased, that is for θ = 0.7 it is 0.31125
and for θ = 0.2 it is 0.10685. Furthermore, we see that the
average work gets lowered as we increase δ as expected. And

we see that the more we increase δ the more work becomes
negative. However, if the bath temperature is negative, then
this nonadiabaticity increase can be beneficial as we showed
already.

For the relative fluctuations of work, Fig. 6(b), we see
that for θ = 0.7 and δ � 0.10685 the RF is less than the RF
for θ = 0.2. This shows that increasing θ not only enhanced
the amount of work extracted but also diminishes its relative
fluctuations thus increasing its reliability. Of course, increas-
ing θ increases the variance of W , i.e., 〈〈W 2〉〉(for θ = 0.7)
> 〈〈W 2〉〉(for θ = 0.2), but the relative fluctuations as we see
get lowered, thus work become more reliable. However, note
that for 0.10685 � δ � 0.31125 the RFs of W for θ = 0.7 can
be lower or higher than the RFs of W for θ = 0.2. Fortunately,
in this regime, the system is not working as a heat engine for
θ = 0.2. Further, we see when we increase δ then the RFs first
diverge and then start to decrease again. For θ = 0.2 (θ = 0.7)
the divergence happens for δ = 0.10685 (δ = 0.31125). Of
course, both cumulants are finite, and the divergence is a
consequence of the fact that work becomes zero.

Now let us comment on the case when the β is negative,
i.e., instead of β = 0.7 in Fig. 6 we use β = −0.7. When it is
positive the maximum amount of work extracted is when δ =
0. It is equal to 0.241747 (0.846115) for θ = 0.2 (θ = 0.7).
The RF is 12.6889 (2.9111) for θ = 0.2 (θ = 0.7). However,
the maximum amount of work extracted when β is negative
is when θ = 1. It is equal to 0.725241 (2.53834) for θ = 0.2
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FIG. 6. Plot of average work (a) and RFs (b), for θ = 0.2 (blue solid line) and θ = 0.7 (orange dashed-dotted line). The vertical dashed
red line corresponds to 0.10685 and the vertical dashed green line corresponds to 0.31125.

(θ = 0.7). The RFs are the same for the case when δ = 0. This
shows that negative temperatures can help in extracting higher
amounts of work with fixed relative fluctuations.

III. USING THE UNITAL MAP IN REF. [41] IN A CS

A. Coherently superposed channels

In contrast to ICO [24,25,61,62], here, we no longer are
interested in the order in which the operations are applied. We
only care about which operation has been applied on the state
of the system ρs. More precisely, suppose that in addition to
our system of interest, we have an additional system, that we
call a control system, and depending on its state we act on
the system of interest. For example, if the control qubit is in
the ground state denoted as |0〉c, then we apply the channel
E defined as E (.) = ∑

i Ki(.)K
†
i , and if it is in the excited

state denoted as |1〉c, then we apply the channel F defined as
F (.) = ∑

j K̃ j (.)K̃
†
j . Ki and K̃ j are known as Kraus operators.

Therefore, when the qubit is in an equal superposition of
these two states, i.e., (|1〉c + |0〉c)/2, we can no longer talk
about which operation has been applied [see Fig. 7]. And
mathematically we have a new big channel—which acts on
both the system and the control qubit—with Kraus operators
defined as

Ti j = Ki ⊗ |0〉cc〈0| + Kj ⊗ |1〉cc〈1|. (53)

In this work, we only limit ourselves to the case of applying
the same channel in a CS, i.e., Ki and K̃ j are the same when
i = j. Furthermore, note that the Kraus operators defined in
Eq. (53) are not normalized. If i and j range from 1 to N , then
one can show that∑

i, j

T †
i j Ti j =

∑
i, j

(
K†

i Ki ⊗ |0〉cc〈0| + K̃†
j K̃ j ⊗ |1〉cc〈1|)

=
∑

j

(∑
i

K†
i Ki

)
⊗ |0〉cc〈0| +

∑
i

⎛
⎝∑

j

K̃†
j K̃ j

⎞
⎠

⊗ |1〉cc〈1| = N1, (54)

which is a nontrivial constant, with 1 is the identity opera-
tor. We can normalize

∑
i, j T †

i j Ti j , by dividing it by N , thus∑
i j T †

i j Ti j/N = 1. The new Kraus operators, which are nor-
malized, are defined as follows:

T ′
i j = Ti j√

N
= 1√

N
(Ki ⊗ |0〉cc〈0| + K̃j ⊗ |1〉cc〈1|). (55)

Now suppose that the initial state of the control qubit is
a given as follows, ρc = |ψc〉〈ψc|, where |ψc〉 = √

α|0〉c +√
1 − α|1〉c. Therefore, the action of E in a coherently super-

posed manner is given as follows:

S(ρs ⊗ ρc) =
∑
i, j

T ′
i j (ρs ⊗ ρc)T ′†

i j . (56)

FIG. 7. This figure shows a CS of the channel E and the channel
F . More precisely, depending on the state of the control qubit ρc we
would act on the state of the system ρs: When the control qubit is in
the ground state |0〉c it will be affected only by E and when it is in
the excited state |1〉c it will be affected only by F . If the system
is in a probabilistic mixture of the ground and the excited state,
i.e., p|0〉cc〈0| + (1 − p)|1〉cc〈1|, then, in this case, we have a mixture
of the two situations, i.e., pE (ρs ) + (1 − p)F (ρs ) with p ∈ [0, 1].
However, one should note that this is different from the coherent
superposition in the case when the control qubit is in a superposition.
More precisely, in the latter case, we have an interference effect
between the two quantum channels, which is not possible in the case
of a mixture of them.
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Expanding the latter using Eq. (55), we obtain

S(ρs ⊗ ρc) = 1

N

∑
i, j

(KiρsK
†
i ⊗ α|0〉cc〈0| + K̃jρsK̃

†
j

⊗ (1 − α)|1〉cc〈1| +
√

α(1 − α)(KiρsK̃
†
j

⊗ |0〉cc〈1| + K̃jρsK
†
i ⊗ |1〉cc〈0|)). (57)

The last two terms are the interference between the Kraus
operators which would be absent when α = 0 or α = 1. Af-
ter measuring the control qubit in the Fourier basis {|+〉c =
(|1〉c + |0〉c)/

√
2, |−〉c = (|1〉c − |0〉c)/

√
2} and normalizing

the state we obtain

c〈±|S(ρs ⊗ ρc)|±〉c

p±

= 1

2N p±

∑
i, j

(αKiρsK
†
i + (1 − α)KjρsK̃

†
j

±
√

α(1 − α)(KiρsK̃
†
j + K̃ jρK†

i ))

= 1

p±

⎛
⎝1

2

∑
i

KiρsK
†
i ±

√
α(1 − α)

N

∑
i j

(KiρsK̃
†
j )

⎞
⎠,

(58)

with p± = 1
2 ±

√
α(1−α)

N Tr(
∑

i, j KiρK̃†
j ). Note that ICO chan-

nels need three important ingredients for the final state of
the system to be different from the one when the quantum
channels are used in a definite causal order. First, the control
qubit is in superposition. Second, the Kraus operators of the
channels need to be noncommuting, of course not all of them,

and finally, we have to measure the control qubit in the Fourier
basis {|+〉c, |−〉c}, i.e., we have to avoid to project it in the
{|1〉c, |0〉c} basis. However, CSCs, need only the control qubit
to be in a superposition and the measurement to be done in the
{|+〉c, |−〉c} basis. Furthermore, note that our study is not a
comparison between indefinite causal ordered and coherently
superposed channels. This is just to explain the difference
between them.

B. Applying the unital map in Ref. [41] in a CS

Our goal in this section is to apply the unital map, which
already plays the role of a heat bath, in a CS and investigate
the role of coherence on the heats, efficiency, and the first
two cumulants of work. Different from the previous section,
we consider and limit ourselves to the unital map studied in
Ref. [41]. The Kraus operators of this channel are defined as
follows:

π1 = |ψ1〉〈ψ1| and π2 = |ψ2〉〈ψ2|, (59)

with π
†
1 = πT

1 = π1, π
†
2 = πT

2 = π2, and, π1 + π2 = 1. Here
T is the transpose. Note that the expressions of |ψ1〉 and
|ψ2〉 are not necessary to be specified. When these Kraus
operators πi characterizing the measurement heat bath are
used in ICO [24], nothing will be changed since they are
commuting and satisfy πiπi = πi, since they are projectors,
however, when used in a CS, the state of the working system
along the Otto cycle will be different from the one obtained
when πi are used in a definite causal order. From Eq. (58) the
state and the Hamiltonian of the system at points A, B, C,

and D of the Otto cycle in Fig. 1(b) are given, respectively, as
follows:

{
ρ1

H1
→

{
ρ2 = Uρ1U †

H2
→

{
ρ±

3 = 1
2p±

ρ3 ±
√

α(1−α)
2p±

ρ2

H2

→
{

ρ±
4 = 1

2p±
ρ4 ±

√
α(1−α)
2p±

V ρ2V †

H1

, (60)

with p± = 1
2 (1 ± √

α(1 − α)), ρ1 = e−βH1/Z , ρ3 = ∑
j π jUρ1U †π j , and ρ4 = V (

∑
j π jUρ1U †π j )V †. This is the unmonitored

case, i.e., when no projective measurement is applied to the system between the strokes. The ± refers to which basis the control
qubit has been projected.

C. The exact analytical expression of the CF χ(γW , γM )±F
To differentiate between the already computed CF [Eq. (9)], the new one will be denoted by χ (γW , γM )±F . As we said above

the notation ± is used to distinguish between the case when the control qubit is either projected in the |+〉c or the |−〉c Fourier
basis. Let us now compute the CF. The joint PD of the forward when the unital map (59) is used in a CS is given as follows:

P(W, QM )±F =
∑

n,m,k,l

e−βνn

Z
|2〈m|U |n〉1|2 1

2p±

⎛
⎝∑

j

|2〈k|π j |m〉2|2 ±
√

α(1 − α)|2〈k|m〉2|2
⎞
⎠|1〈l|V |k〉2|2δ(W

+ (νm − νn + νl − νk ))δ(QM − (νk − νm)). (61)

This expression can be decomposed into

P(W, QM )±F = 1

2p±

⎛
⎝ ∑

n,m,k,l

e−βνn

Z
|2〈m|U |n〉1|2

∑
j

|2〈k|π j |m〉2|2|1〈l|V |k〉2|2δ(W + (νm − νn + νl − νk ))δ(QM − (νk − νm))

⎞
⎠

±
√

α(1 − α)

2p±

⎛
⎝∑

n,m,l

e−βνn

Z
|2〈m|U |n〉1|2|2〈l|V |m〉2|2δ(W − (νn − νl ))

⎞
⎠. (62)
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This joint PD is a mixture of a PD of a heat engine when the channel (59) is applied in definite causal order and the second PD
when the unital channel is the identity, i.e., the trivial unital channel. From (62), one can straightforwardly show that the compact
form of the CF is given as follows:

χ (γW , γM )±F =
(

1 − θ

2p±
±

√
α(1 − α)

2p±

)(
1 +

(
2cos((2γW + iβ )ν1)

Z
− 1

)
(δ + ζ − 2δζ )

)

+ θ

2p±

(
(1 − δ)

(
ζ

2cos(2(γW + γM)ν2 − iβν1)

Z
+ (1 − ζ )

2cos(2(γW(ν2 − ν1) + γMν2) − iβν1)

Z

)

+ δ

(
(1 − ζ )

2cos(2(γW + γM)ν2 + iβν1)

Z
+ ζ

2cos(2((ν1 + ν2)γW + γMν2) + iβν1)

Z

))
. (63)

One can check that χ (γW = 0, γM = 0)±F = 1.

D. The first cumulants of work and heats and efficiency enhancement and degradation

From Eq. (63), the first cumulants of heats and work can be written as follows:

〈〈QM〉〉±F = 2(1 − 2δ)θν2 tanh(βν1)

1 ± √
α(1 − α)

, (64)

〈〈QT 〉〉± = −2(θ + ζ − 2θζ + δ(1 − 2ζ )(1 − 2θ ))ν1 tanh(βν1)

1 ± √
α(1 − α)

∓ 2
√

α(1 − α)(ζ + δ − 2δζ )ν1 tanh(βν1)

1 ± √
α(1 − α)

, (65)

and

〈〈W 〉〉±F = 2(1 − 2δ)θν2 tanh(βν1)

1 ± √
α(1 − α)

+ −2(θ + ζ − 2θζ + δ(1 − 2ζ )(1 − 2θ ))ν1 tanh(βν1)

1 ± √
α(1 − α)

∓ 2
√

α(1 − α)(ζ + δ − 2δζ )ν1 tanh(βν1)

1 ± √
α(1 − α)

. (66)

As we said before since the considered map is unital, the back-
ward quantities, will follow from those by the correspondence
δ ↔ ζ . Note that the expression of the second, the third and
the fourth cumulants are not reported because they are too
long and complicated and not illuminating. Below, we analyze
numerically the first two cumulants for work.

If we consider δ = ζ which corresponds to the symmetric
Otto cycle, then one can easily show that the efficiency ex-
pression is given as follows:

〈η〉± = 〈η〉α=0 ∓ ν1

ν2

√
α(1 − α)2δ(1 − 2δ)

(1 − 2δ)θ
. (67)

The expression of 〈η〉α=0 is given in Eq. (21). For the asym-
metric case, we have

〈η〉± = 〈η〉α=0 ∓ ν1

ν2

√
α(1 − α)(δ + ζ − 2δζ )

(1 − (δ + ζ ))θ
. (68)

The expression of 〈η〉α=0 is given in Eq. (22). The enhance-
ment in efficiency can be easily seen from Eqs. (67) and (68).
The enhancement when the control qubit is projected in the
|−〉c Fourier basis can be understood from the expressions
of the heat absorbed 〈〈QM〉〉− and the heat released 〈〈QT 〉〉−
to the cold bath, i.e., Eqs. (64) and (65), respectively. For
〈〈QM〉〉− we see that it get increases when we increase α

and it reaches the maximal value for α = 1/2. For the one
released to the cold bath 〈〈QT 〉〉−, we see that the first term
gets increased by the same magnitude of 〈〈QM〉〉− but we see
that there is a second term which is always positive which
would decrease the amount of heat released thus efficiency

enhancement. In this case, we have work enhancement as
well. When the control qubit is projected in the |+〉c Fourire
basis, efficiency gets degraded, since in this case, the system
will absorb less heat from the hot bath, because of the denom-
inator 1 + √

α(1 − α), and the heat released to the cold bath
would increase thus work and efficiency decrease.

We should mention that the enhancement of the effi-
ciency is possible only in the nonadiabatic regime, i.e.,
δ and ζ being different from zero as Eqs. (67) and (68)
show. To see this, one can set δ = ζ = 0, in this case we
have, 〈〈QM〉〉± = 2θν2 tanh(βν1 )

1±√
α(1−α)

, 〈〈QT 〉〉± = −2θν1 tanh(βν1 )
1±√

α(1−α)
, and

〈〈W 〉〉± = 2θ (ν2−ν1 ) tanh(βν1 )
1±√

α(1−α)
. This shows that 〈〈QM〉〉±, 〈〈W 〉〉±,

and 〈〈QT 〉〉± get increased or decreased by the same magni-
tude, and therefore efficiency gets reduced to the Otto one,
i.e., 1 − ν1/ν2. This analysis shows that coherence can be
beneficial in the presence of nonadiabaticity. Since as we
showed it can improve the work extracted as well as the
efficiency. This means that if one is interested in efficiency and
power, i.e., running the cycle in finite time, and not quasistatic
as required in the adiabatic regime, coherence can be used
advantageously depending on which basis the control qubit
has been projected. This is the drawback of this protocol is that
it gives an enhancement only probabilistically. More precisley,
when we increase α toward 1/2, p− = (1 − √

α(1 − α))/2
get decreased toward its lower value 1/4.

E. Heat engine conditions and negativity of 〈〈QT 〉〉±

For 〈〈QM〉〉± > 0 it is still δ < 1/2, since coherence affects
only the denominator. For δ = ζ and for 〈〈W 〉〉± > 0, we have
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FIG. 8. The plot of work average 〈〈W 〉〉 (a), (c) and its RFs 〈〈W 2〉〉/〈〈W 〉〉2 (b, d), as a function of the adiabatic parameter δ(= ζ ). In all
figures: β = 0.7, ν1 = 1, ν2 = 2, α = 1/2 (blue dashed line, when the control qubit is being projected in the |−〉c Fourier basis), α = 0 (orange
dotted line, i.e., no coherence), and α = 1/2 (green dashed-dotted line, when the control qubit is being projected in the |+〉c Fourier basis).
In panels (a), (b) θ = 0.2, the red vertical line corresponds to δ = 0.070290, the cyan vertical line δ = 0.10685, and the magenta vertical
line δ = 0.20871. In panels (c, d) θ = 0.5, the red vertical line corresponds to δ = 0.17712, the cyan vertical line δ = 0.25, and the magneta
vertical line δ = 0.36603.

to ensure that

ν2 >
θ + 2δ(1 − δ)(1 − 2θ )

θ (1 − 2δ)
ν1 ± 2δ(1 − δ)

√
α(1 − α)

θ (1 − 2δ)
ν1.

(69)

This equation shows that when the control qubit is projected
in the |−〉c Fourier basis, the consumed coherence will be
beneficial, since the value of ν2 under which no work can

be extracted gets lowered. However, when it is projected in
the |+〉c basis, the lowest value of ν2, get increased. That is
the bigger we increase α toward 1/2 the more the minimum
of ν2 gets increased. This shows that coherence can be either
beneficial or detrimental. When δ = ζ = 0, the positive work
condition is not altered by the presence of coherence. Further-
more, in this case as well one can prove that 〈〈QT 〉〉± is � 0.
We have

〈〈QT 〉〉± = −2(θ + ζ − 2θζ + δ(1 − 2ζ )(1 − 2θ ))ν1 tanh(βν1)

1 ± √
α(1 − α)

∓ 2
√

α(1 − α)(ζ + δ − 2δζ )ν1 tanh(βν1)

1 ± √
α(1 − α)

= −2(θ + (1 − 2θ ± √
α(1 − α))(δ + ζ − 2δζ ))ν1 tanh(βν1)

1 ± √
α(1 − α)

. (70)

Since 0 � θ � 1/2 and 0 � √
α(1 − α) � 1/2, we

have 0 � 1 − 2θ + √
α(1 − α) � 3/2 and −1/2 �

1 − 2θ − √
α(1 − α) � 1. Furthermore, since the maximum

value of δ + ζ − 2δζ is 1, we obtain

〈〈QT 〉〉± = −2(1 − θ ± √
α(1 − α))ν1 tanh(βν1)

1 ± √
α(1 − α)

.

And since we have 1/2 � 1 − θ + √
α(1 − α) � 3/2 and

0 � 1 − θ − √
α(1 − α) � 1, thus we have 〈〈QT 〉〉± � 0, un-

der the assumption that β � 0. Until now we have only

considered the first cumulants of work and heat. Next, we
analyze work and its relative fluctuations.

F. Numerical analysis of the average work and its relative
fluctuations

In Fig. 8 we plot the average work and its relative fluctua-
tions as a function of the adiabatic parameter δ. From Fig. 8(a)
we see that when the control qubit is projected in minus basis
(blue dashed line) then work is better than when projected in
plus basis (green dashed-dotted line) as well as in the absence
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of coherence, i.e., α = 0 (orange dotted line). Further, we see
that coherence enhances the value of δ above which work
becomes negative. If we consider the temperature being nega-
tive, e.g., β = −0.7, then the maximal possible value of work
is reached when δ = 1 and when the control qubit is projected
in the minus basis. This shows that nonadiabatic transitions
can act as a resource when the temperature is negative, in
contrast to the case when the temperature is positive where
they become detrimental.

From Fig. 8(b) we see that the RFs for δ � 0.10685 and
α = 1/2 (blue dashed line) is always less than the RFs when
α = 0 (orange dotted line) and α = 1/2 (green dashed-dotted
line). If we keep increasing δ, then the RFs (blue dashed line)
can be higher or lower than those of green dashed-dotted and
orange dotted lines. Furthermore, for example for β = −0.7
and for δ = 1 one would extract the maximal possible amount
of work with the same RFs at δ = 0. We mention the RFs at
δ = 0 and 1 are equal. But note that reversing the sign of β

does not change the RFs. At the points 0.07029, 0.10685, and
0.20871, the RFs diverge as a consequence of work becoming
null.

From these two figures, one can conclude that when the
control qubit is measured in the minus basis not only enhances
the work average but as well the latter can have lesser relative
fluctuations. Of course, the variance can increase when we
increase δ, but relative to the square of the average we have
a decrease. When the control qubit is measured in the plus
basis we see that the average work becomes worse and even
further it has increased associated relative fluctuations, thus
less reliability.

In Figs. 8(c) and 8(d) analogously to what we said for the
Figs. 8(a) and 8(b), we see that when increasing θ from 0.2
to 0.5 the average works gets increased. For the RFs, we see
that for α = 1/2 (blue dashed line) and for δ � 0.25 the RFs
are always less than that of α = 0 (orange dotted line) and
α = 1/2 (green dashed-dotted line).

In the heat engine region, we note that similarly to Fig. 4,
we found (not shown here for brevity) violations of the bounds
〈η〉3 � . < 1 (〈η〉4 � . < 1) for the ratio of third (fourth) cu-
mulants, when the control qubit is projected either in the plus
or the minus Fourier basis.

IV. CONCLUSION

In the first part of this work, a QOHE was considered,
where one of the heat baths was replaced by an arbitrary
unital map. This is the first time it has been done to our
knowledge. Further, we neither specified the driving protocol
in the adiabatic stages nor the unital channel which makes our
results interesting. First, we have calculated the exact analyti-
cal expression of the CF from which all cumulants emerge. By
considering an arbitrary unital map we have seen that work
and efficiency can be more enhanced. Our results shed light
as well on the negative role of projective measurement used
to assess the fluctuations of heat and work. We have seen
that differently from Ref. [41] our engine needs the condition
ν2 > ν1 to function as a heat engine. We trace this back to
the erasure of coherence. More precisely since we have con-
sidered an arbitrary unital map that is not completely unital
and if projective measurement is not used then the amount

of coherence created by U can be transferred to the stroke
C → D, which when V can couple the populations and coher-
ences then this coherence can be beneficial. We have shown
that the system cannot work as a refrigerator independently
of the chosen parameters. We proved mathematically, for a
symmetric and asymmetric Otto cycle, that the ratio of the
fluctuations of W and QM is lower and upper-bounded. The
same was not true for the ratio of the third and fourth cumu-
lants. We have seen how the order of relative fluctuations is
robust against nonadiabatic transitions, from which it follows
Eqs. (32) and (48). This result was not possible for the third
and fourth cumulants for quantum unital Otto heat engines,
highlighting the difference between autonomous continuous
quantum thermal machines [50,51] and driven discrete quan-
tum Otto engines.

Note that the exact analytical expression of the CF [Eq. (6)]
is as well one of the main results of the paper. However, we
have limited our analysis to only the case when the channels
are unital because the time reversal of an arbitrary nonunital
channel is not easy to be defined, since the adjoint may not
be a valid process as it is for unital channels. Therefore, we
cannot take the adjoint of a nonunital channel in the backward
cycle as a valid physical channel. This open question, we leave
it to the future. In considering negative inverse temperature we
have seen that the nonadiabaticity can act as a resource, for
efficiency enhancement, for more work extracted with fixed
relative fluctuations. It would be interesting to extend these
results to, e.g., two coupled spins [33,39,63] and investigate
how the coupling would affect the results reported here on the
cumulants.

In the second part concerning the coherent control of chan-
nels we have limited ourselves to the channel considered
in Ref. [41]. We have shown that efficiency and the work
extracted can be enhanced by coherence when the control
qubit gets projected in the |−〉c Fourier basis. The numerical
simulation revealed that work reliability gets enhanced as
well. When it is projected in the |+〉c Fourier basis we have
the inverse of these conclusions. Further, we have shown how
nonadiabatic transitions can be a resource when the tempera-
ture of the bath is negative.

Our QOHE based on arbitrary unital qubit channels is not
just a mathematical curiosity but it can be realized experimen-
tally. We propose the NMR [15,40,45] and optical [64,65]
settings as candidates to verify the results and the analysis
reported here. We hope our study motivates further interest
in the first four cumulants in the field of quantum thermody-
namics on quantum thermal machines.

As a consequence of the proved relation (32) we have〈〈
Q2

M

〉〉 × 〈η〉2 � 〈〈W 2〉〉 <
〈〈

Q2
M

〉〉
. (71)

This shows that the fluctuations of work can never be above
those of heat nor they can be equal in the heat engine regime.
Further, they are lower bounded by the square of the efficiency
and the fluctuations of QM . The lower bound is reached in the
quasistatic limit. If this relation was also possible, for quantum
unital Otto heat engines for higher cumulants, i.e.,〈〈

Qn
M

〉〉 × 〈η〉n � 〈〈W n〉〉 <
〈〈

Qn
M

〉〉
, (72)

as for continuous thermal machines studied in Refs. [50,51],
then this would mean the third and fourth cumulants of work
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W are bounded by those of heat absorbed QM . Furthermore,
the cumulants would have the same sign as a consequence
of the fact that the lower bound 〈η〉n and upper bound 1—
(analogously to 〈η〉n and 〈η〉n

c in Refs. [50,51] for continuous
thermal machines, where 〈η〉c is the Carnot efficiency)—are
positive. However, here due to external driving the sign of
third (fourth) cumulants of work W and heat QM can be
different.

We believe that quantum unital Otto heat engines can have
great utility. For example, in Appendix D we have seen how
they can work as a heat engine even without an energy gap
change as was mentioned in Ref. [41], and even more with
an efficiency that can go to unity. However, we should note
that in the bath stage where it has been replaced by an arbi-
trary unital channel, then we only focused on the input and
output states without caring about how this physical process
has happened, and assuming it to be instantaneous. The same
thing we have assumed in the thermalization stroke. For the
physical implementation of the unital map, we can take a spin
and couple it to an environment at zero inverse temperature,
i.e., infinite temperature, and then derive its corresponding
Linbladian, i.e., the operator that describes the evolution of
the state of the system in time. The bath can be either an
ensemble of uncoupled spins or a collection of uncoupled
harmonic oscillators. We believe that this could bring some
usefulness to the power output of the heat engine as well. The
authors of Ref. [66] have done good work for the derivation
of the Linbladian, i.e., the generator of the evolution of a
single spin (as we considered in our work) immersed in a
bath of uncoupled and unpolarized spins. This reference is
a good starting point to have a deep understanding of the
efficiency and power of quantum unital Otto heat engines and
the trade-off between them.

Finally, beyond our results showing a great difference be-
tween the bounds on the cumulants of autonomous quantum
thermal machines and driven discrete quantum heat engines,
our study would open the door to consider other types of
quantum noises than unital ones that we have considered here

and study their role on important metrics of quantum thermal
machines, such as work, efficiency, power, and their relative
fluctuations. For example, Farahmand et al. [67] have shown
how quantum noises can enhance heat bath algorithmic cool-
ing over noiseless algorithmic cooling, a result that one would
not expect, as it is usually assumed that noises are detrimental
especially, from quantum information theory perspective.
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APPENDIX A: THE COMPUTATION OF THE CF OF THE
FORWARD χ(γW , γM )F FOR AN ARBITRARILY DRIVEN

TWO-LEVEL SYSTEM: THE HOT BATH BEING
REPLACED WITH AN ARBITRARY UNITAL MAP

Here we compute the CF χ (γW , γM )F , from which all the
cumulants of heat and work follow. Our working medium
is a two-level system with eigenenergies ±νi and their cor-
responding eigenvectors |±〉i, with i = 1, 2. But before we
compute χ (γW , γM )F let us make an important remark. First,
when we change one of the baths with an arbitrary qubit
channel we do not know if it will play the role of a hot or cold
bath. However, when we make the assumption of unitality
one can show that the unital channel will play the role of the
hot bath, since as we showed in Sec. II F, the heat exchanged
with the bath at inverse temperature β is always negative, thus
it acts as a sink bath. Hence the name “the hot bath being
replaced with arbitrary unital map.”

Let us first calculate the expression of χ (γW , γM )F for an
arbitrary qubit channel E with Kraus operators Kj . We have

χ (γW , γM )F =
∑

n,m,k,l

e−βνn

Z
|2〈m|U |n〉1|2

∑
j

|2〈k|Kj |m〉2|2|1〈l|V |k〉2|2e−iγW (νm−νn+νl −νk )eiγM (νk−νm ). (A1)

Our main goal is to express χ (γW , γM )F in terms of the next transitions probabilities δ, θ, and ζ that we define as follows:

δ = |2〈+|U |−〉1|2, θ =
∑

j

|2〈−|Kj |+〉2|2, and ζ = |1〈+|V|−〉2|2. (A2)

From Table I and Eq. (4), we get

χ (γW , γM )F = eβν1

Z

(
(1 − δ)(h − θ )(1 − ζ ) + (1 − δ)(h − θ )ζe−2iγW ν1 + (1 − δ)(1 − h + θ )ζe2iγW ν2 e2iγMν2

+ (1 − δ)(1 − h + θ )(1 − ζ )e2iγW (ν2−ν1 )e2iγMν2 + δθ (1 − ζ )e−2iγW ν2 e−2iγMν2 + δθζe−2iγW (ν1+ν2 )e−2iγMν2

+ δ(1 − θ )ζ + δ(1 − θ )(1 − ζ )e−2iγW ν1
)

+ e−βν1

Z

(
(1 − δ)(1 − θ )(1 − ζ ) + (1 − δ)(1 − θ )ζe2iγW ν1 + (1 − δ)θζe−2iγW ν2 e−2iγMν2

+ (1 − δ)θ (1 − ζ )e−2iγW (ν2−ν1 )e−2iγMν2 ) + δ(1 − h + θ )(1 − ζ )e2iγW ν2 e2iγMν2 + δ(1 − h + θ )ζe2iγW (ν1+ν2 )e2iγMν2

+ δ(h − θ )ζ + δ(h − θ )(1 − ζ )e2iγW ν1
)
, (A3)
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where h = ∑
j 2〈−|KjK

†
j |−〉2. Rearranging this expression one obtains

χ (γW , γM )F = (1 − δ)(1 − ζ )

(
eβν1

Z
(h − θ ) + e−βν1

Z
(1 − θ )

)
+ (1 − δ)ζ

(
eβν1

Z
e−2iγW ν1 (h − θ ) + e−βν1

Z
e2iγW ν1 (1 − θ )

)

+ (1 − δ)ζ

(
eβν1

Z
(1 − h + θ )e2iγW ν2 e2iγMν2 + e−βν1

Z
e−2iγW ν2 e−2iγMν2θ

)

+ (1 − δ)(1 − ζ )

(
eβν1

Z
(1 − h + θ )e2iγW (ν2−ν1 )e2iγMν2 + e−βν1

Z
e−2iγW (ν2−ν1 )e−2iγMν2θ

)

+ δ(1 − ζ )

(
eβν1

Z
e−2iγW ν2 e−2iγMν2θ + e−βν1

Z
e2iγW ν2 e2iγMν2 (1 − h + θ )

)

+ δζ

(
eβν1

Z
e−2iγW (ν1+ν2 )e−2iγMν2θ + e−βν1

Z
e2iγW (ν1+ν2 )e2iγMν2 (1 − h + θ )

)

+ δζ

(
eβν1

Z
(1 − θ ) + e−βν1

Z
(h − θ )

)

+ δ(1 − ζ )

(
eβν1

Z
e−2iγW ν1 (1 − θ ) + e−βν1

Z
e2iγW ν1 (h − θ )

)
. (A4)

It is still a cumbersome equation. This equation can be simplified more under the assumption that the map is unital, i.e.,∑
j Kj1K†

j = 1. Under this condition, we have h = 1 and after some simple algebra one can show

χ (γW , γM )F = (1 − θ )

(
1 +

(
2cos((2γW + iβ )ν1)

Z
− 1

)
(δ + ζ − 2δζ )

)

+ θ

(
(1 − δ)

(
ζ

2cos(2(γW + γM)ν2 − iβν1)

Z
+ (1 − ζ )

2cos(2(γW(ν2 − ν1) + γMν2) − iβν1)

Z

)

+ δ

(
(1 − ζ )

2cos(2(γW + γM)ν2 + iβν1)

Z
+ ζ

2cos(2((ν1 + ν2)γW + γMν2) + iβν1)

Z

))
. (A5)

When δ �= ζ , the backward CF χ (γW , γM )B follows, directly from χ (γW , γM )F by the correspondence δ ↔ ζ . Thus, the explicit
expression of χ (γW , γM )B is

χ (γW , γM )B = (1 − θ )

(
1 +

(
2cos((2γW + iβ )ν1)

Z
− 1

)
(δ + ζ − 2δζ )

)

+ θ

(
(1 − ζ )

(
δ

2cos(2(γW + γM)ν2 − iβν1)

Z
+ (1 − δ)

2cos(2(γW(ν2 − ν1) + γMν2) − iβν1)

Z

)

+ ζ

(
(1 − δ)

2cos(2(γW + γM)ν2 + iβν1)

Z
+ δ

2cos(2((ν1 + ν2)γW + γMν2) + iβν1)

Z

))
. (A6)

APPENDIX B: PROOF OF 0 � θ � 1/2 FOR THE UNITAL
MAP CONSIDERED IN REF. [41]

The unital map considered in Ref. [41] has a number of
Kraus operators equal to two. The latter are given as π1 =
|ψ1〉〈ψ1| and π2 = |ψ2〉〈ψ2|. Thus, we see that they are Her-
mitian and satisfy

π1 + π2 = 1. (B1)

After a simple algebra one can show that θ (=∑
i 2〈−|πi|+〉22〈+|πi|−〉2) is given as follows:

θ = |2〈−|ψ1〉|2|〈ψ1|+〉2|2 + |2〈−|ψ2〉|2|〈ψ2|+〉2|2. (B2)

And by defining p1 = |2〈−|ψ1〉|2 and p2 = |2〈−|ψ2〉|2, one
can find that

θ = p1(1 − p1) + p2(1 − p2). (B3)

This follows from the microreversibility principle, i.e.,

|2〈+|ψ1〉|2 = |〈ψ1|+〉2|2
= 〈ψ1|+〉22〈+|ψ1〉
= 〈ψ1|(1 − |−〉22〈−|)|ψ1〉
= 1 − |2〈−|ψ1〉|2
= 1 − p1. (B4)

In the same manner one can show easily |2〈+|ψ2〉|2 = 1 − p2.
Furthermore, one can find as well that p2 = 1 − p1. Thus, we
obtain

θ = 2p1(1 − p1). (B5)

From the fact that 0 � p1, p2 � 1, we conclude that

0 � θ � 1/2. (B6)
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This is because the maximum value of p1(1 − p1) is 1/4,
which correspond to the case of p1 = 1/2. This concludes the
proof.

APPENDIX C: NATURE OF THE ENERGY PROVIDED BY
THE UNITAL CHANNEL TO THE WORKING SUBSTANCE

Here we give a detailed analysis of the nature of energy
provided by the unital channel to the working substance. First
the Hamiltonian of the system given by H2 = ν2(|+〉22〈+| −
|−〉22〈−|) stays fixed in the stroke B → C. When the adiabatic
parameter δ = 0, in this case, the state before applying the
unital channel is just the thermal state given in the basis
{|+〉2, |−〉2} as

ρth =
(

1 − p 0
0 p

)
, (C1)

with p = eβν1

e−βν1 +eβν1
. When p1 + p2 = 1, in this case, the two

Pauli operators just swap the populations. Therefore, we have

E (ρth ) = p1σ1ρthσ1 + p2σ2ρthσ2 = (p1 + p2)ρ ′
th = ρ ′

th,

(C2)

with

ρ ′
th =

(
p 0
0 1 − p

)
. (C3)

Since the entropy of ρth and ρ ′
th are the same, thus the energy

exchanged in this stroke, i.e.,

Tr[(E (ρth) − ρth)H2] = 2ν2(1 − 2p), (C4)

is work and not heat. We can write any one qubit density
matrix be it pure or mixed as

ρ = 1

2

(
1 + vxσx + vyσy + vzσz

)

=
(

(1 + vz )/2 (vx − ivy)/2

(vx + ivy)/2 (1 − vz )/2

)
. (C5)

When v2
x + v2

y + v2
z = 1 the state ρ is pure, and when v2

x +
v2

y + v2
z < 1 the state ρ is the mixed state. After applying E

on the state ρ the latter becomes

E (ρ) =
(

(1 − vz )/2 (p1 − p2)(vx + ivy)/2

(p1 − p2)(vx − ivy)/2 (1 + vz )/2

)
.

(C6)

One can check that the eigenvalues of ρ and E (ρ) are the
same only when either p1 or p2 is zero. In this case, the unital

channel is just characterized by one unitary operator either
σ1 or σ2, and therefore entropy stays conserved. Therefore, if
either p1 or p2 is null, then the exchanged energy is work,
since this transformation is entropy-conserving. And when
both of them are nonnull then there is entropy change.

APPENDIX D: A COMPARISON BETWEEN THE
MONITORED AND UNMONITORED LANDAU-ZENER

MODEL

For a two-level system where the protocol driving is linear
in time one can show from the results of Refs. [54,68–70] on
the Landau-Zener model and from the Supplemental Material
of Ref. [71], that the unitary operator U that governs the
evolution in the expansion stroke A → B is given as follows:

U = √
1 − δ(e−iφ |+〉21〈+| + eiφ|−〉21〈−|)

+
√

δ(|−〉21〈+| − |+〉21〈−|), (D1)

where φ is a phase. Limiting ourselves to the case when the
cycle is symmetric, i.e., δ = ζ , the unitary operator character-
izing the compression stroke C → D is given by

V = CU †C = √
1 − δ(e−iφ|+〉12〈+| + eiφ |−〉12〈−|)

−
√

δ(|−〉12〈+| − |+〉12〈−|). (D2)

C here is the complex conjugation operator. Note that for the
considered comparison we do not need to specify the expres-
sions of δ and φ. For the unital channel fueling the engine
we consider the one studied by Shanhe et al. in Ref. [41].
The quantum measurement channel is defined by |π1〉〈π1| and
|π2〉〈π2|, where

|π1〉 = e−iχ sin (α/2)|+〉2 − cos (α/2)|−〉2 (D3)

and

|π2〉 = cos (α/2)|+〉2 + eiχ sin (α/2)|−〉2, (D4)

with 0 � α � π and 0 � χ � 2π . One can show that for the
monitored Otto cycle we have

θ = sin (α)2/2(� 1/2). (D5)

We see that for α = 0 we have θ = 0, thus 〈〈QM〉〉 = 0, since
the Kraus operators commute with the Hamiltonian H2. Note
that for the considered unmonitored case we did not consider
arbitrary unital channel, but we limit ourselves to the unital
channel considered by Shanhe et al. [41], since in this case, it
becomes difficult to compute the average energies, especially
E4. The average quantities for the monitored case are given as
follows:

〈〈QM〉〉 = (1 − 2δ) sin2 (α)ν2 tanh(βν1), (D6)

〈〈QT 〉〉 = −2(sin2 (α)/2 + 2δ(1 − sin2 (α))(1 − δ))ν1 tanh(βν1), (D7)

and

〈〈W 〉〉 = 2((1 − 2δ) sin2 (α)ν2/2 − (sin2 (α)/2 + (1 − sin2 (α))2δ(1 − δ))ν1) tanh(βν1). (D8)

When there is no monitoring we have

〈QM〉um = ν2 sin(α)(2
√

δ(1 − δ) cos(α) cos(φ + χ ) + sin(α) − 2δ sin(α)) tanh(βν1). (D9)
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FIG. 9. In all plots we have ν1 = 0.4 and β = 0.5. (a) ν2 = 0.4, α = π/4, φ = 0, and χ = 0. (b) ν2 = 0.4 =, α = π/3, φ = 0.1, and
χ = 0.1. (c) ν2 = 0.9, α = π/4, φ = 0, and χ = 0. (d) ν2 = 1.2, α = π/3, φ = 0.1, and χ = 0.1. (e) ν2 = 0.4 =, α = π/4, φ = 0, and
χ = 0. (f) ν2 = 0.9, α = π/3, φ = 0.1, and χ = 0.1. First we see that when ν2 = ν1 (a, b), only the unmonitored heat engine can still work as
a heat engine in agreement with our results and Ref. [41]. We see that when ν2 > ν1 (c, d), both of them can work as a heat engine; however,
the unmonitored one can work as a heat engine in a big domain of δ, which is not the case for the monitored one. Furthermore, note that
the unmonitored one work can still be positive, even when δ � 1/2, something that was not possible in the previous results in the literature,
see, e.g., Ref. [72] when we have an Otto cycle based on two completely thermalizing baths. In panel (e) only the average efficiency of the
unmonitored case is positive and we see that it can even be equal to unity. In panel (f) we see that the monitored one can be higher than the
unmonitored one only for very small values of θ . However, it could not exceed the efficiency, a result that we have proved already. However,
the efficiency of the unmonitored engine could exceed the Otto efficiency and can reach values up to unity as we see in panel (e).

One can check easily that when δ = 0 we have 〈QM〉um =
〈〈QM〉〉. The expressions of 〈QT 〉um and 〈W 〉um are long so we
do not report their analytical expressions here. See Fig. 9 for a
comparison between the work extracted and the efficiency of
the monitored and unmonitored Landau-Zener model.

Now after showing how monitoring can influence work and
efficiency negatively, let us compare our results with some
interesting results in the literature. In Ref. [72] Solfanelli
et al. have done a detailed study on the operation regimes
of engine/refrigerator/accelerator and heater. Translated into
our notation, it was shown that for δ � 1/2, the system cannot
work as a heat engine. Here we see that quantum unital Otto
engines have different properties such as the capability of
working as a useful machine for δ � 1/2 and that they are
not limited by the Otto efficiency, i.e., ηOtto = 1 − ν1/ν2. This
makes this type of engine interesting to be studied.

For example, in the work of Camati et al. [73], the au-
thors have considered a quantum Otto heat engine with some
similarities to our quantum unital Otto engine. They have
considered an Otto cycle where the hot bath is not com-
pletely thermalizing. This has been shown to not erase all
the coherence created in the first unitary stroke and therefore
can interfere either constructively or destructively with the
coherence created in the second unitary stroke. They have

found that this phenomenon can have either a positive or a
negative influence on thermodynamic metrics such as power
and efficiency, depending on the parameters of the cycle.
The similarity between our work and theirs is in the sense
that when there is no monitoring, some coherence can be
transferred from stroke A → B to stroke C → D. However,
in our work, we are considering monitored quantum Otto heat
engines based on arbitrary unital channels. Furthermore, in
Ref. [73] it has been found that, even though considering a
nonthermalizing environment, the efficiency was still to be
limited by the Otto. For the case of monitored quantum unital
Otto heat engines, we already have proved (23), that they are
also limited by the Otto bound. However, for the nonmoni-
tored cycle, we see from Figs. 9(e) and 9(f), that the efficiency
can exceed the Otto efficiency and even go to unity. And in
addition to this, we see that from Figs. 9(a) and 9(b), that work
can still be extracted even when ν2 = ν1, an interesting result
that has already been shown by the authors of Ref. [41].

As a final remark we note that our results on the cumulants
of monitored quantum unital Otto heat engines do not depend
on the decomposition given in Eq. (8). The results only depend
on the assumption of unitality. Furthermore, we already have
shown that under the decomposition Eq. (8), the populations
and coherences cannot be coupled, thus coherence created in
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the first stroke, i.e., A → B, cannot affect 〈QM〉um, but some
of it can be transferred to the other unitary stroke, i.e., C →
D. For this, we have considered the Kraus operators (D3)
and (D4) which in general are not diagonal in the basis of the

Hamiltonian H2, thus can couple the populations and coher-
ences. This means that the expression of 〈QM〉um in Eq. (D9),
is in general affected by the coherences created by the unitary
operator U , given in Eq. (D1).

[1] S. Vinjanampathy and J. Anders, Quantum thermodynamics,
Contemp. Phys. 57, 545 (2016).

[2] H. E. D. Scovil and E. O. Schulz-Dubois, Three-level masers as
heat engines, Phys. Rev. Lett. 2, 262 (1959).

[3] N. Yunger Halpern, Toward physical realizations of thermo-
dynamic resource theories, in Information and Interaction:
Eddington, Wheeler, and the Limits of Knowledge, edited by
I. T. Durham and D. Rickles (Springer International Publishing,
Cham, 2017), pp. 135–166.

[4] M. Lostaglio, An introductory review of the resource theory
approach to thermodynamics, Rep. Prog. Phys. 82, 114001
(2019).

[5] M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium
fluctuations, fluctuation theorems, and counting statistics in
quantum systems, Rev. Mod. Phys. 81, 1665 (2009).

[6] C. Jarzynski, Equalities and inequalities: Irreversibility and the
second law of thermodynamics at the nanoscale, Annu. Rev.
Condens. Matter Phys. 2, 329 (2011).

[7] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001
(2012).

[8] G. E. Crooks, Entropy production fluctuation theorem and the
nonequilibrium work relation for free energy differences, Phys.
Rev. E 60, 2721 (1999).

[9] M. Campisi, P. Hänggi, and P. Talkner, Colloquium: Quantum
fluctuation relations: Foundations and applications, Rev. Mod.
Phys. 83, 771 (2011).

[10] A. C. Barato and U. Seifert, Thermodynamic uncertainty rela-
tion for biomolecular processes, Phys. Rev. Lett. 114, 158101
(2015).

[11] A. M. Timpanaro, G. Guarnieri, J. Goold, and G. T. Landi,
Thermodynamic uncertainty relations from exchange fluctua-
tion theorems, Phys. Rev. Lett. 123, 090604 (2019).

[12] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England,
Dissipation bounds all steady-state current fluctuations, Phys.
Rev. Lett. 116, 120601 (2016).

[13] J. Horowitz and T. Gingrich, Thermodynamic uncertainty rela-
tions constrain nonequilibrium fluctuations, Nat. Phys. 16, 15
(2020).

[14] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz,
F. Schmidt-Kaler, and K. Singer, A single-atom heat engine,
Science 352, 325 (2016).

[15] J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza,
R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental
characterization of a spin quantum heat engine, Phys. Rev. Lett.
123, 240601 (2019).

[16] L. M. Cangemi, C. Bhadra, and A. Levy, Quantum engines and
refrigerators, arXiv:2302.00726.

[17] R. Kosloff and Y. Rezek, The quantum harmonic Otto cycle,
Entropy 19, 136 (2017).

[18] T. D. Kieu, The second law, Maxwell’s demon, and work deriv-
able from quantum heat engines, Phys. Rev. Lett. 93, 140403
(2004).

[19] H. T. Quan, Y.-X. Liu, C. P. Sun, and F. Nori, Quantum ther-
modynamic cycles and quantum heat engines, Phys. Rev. E 76,
031105 (2007).

[20] J. Yi, P. Talkner, and Y. W. Kim, Single-temperature quantum
engine without feedback control, Phys. Rev. E 96, 022108
(2017).

[21] H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Infor-
mation, Computation, Computing (Princeton University Press,
Princeton, NJ, 1990).

[22] L. Hardy, Probability theories with dynamic causal structure:
A new framework for quantum gravity, arXiv:gr-qc/0509120.

[23] L. Hardy, Quantum gravity computers: On the theory of
computation with indefinite causal structure, Quantum Real-
ity, Relativistic Causality, and Closing the Epistemic Circle,
The Western Ontario Series in Philosophy of Science, Vol 73
(Springer, Dordrecht, 2009), pp. 379–401.

[24] O. Oreshkov, F. Costa, and C. Brukner, Quantum correlations
with no causal order, Nat. Commun. 3, 1092 (2012).

[25] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron,
Quantum computations without definite causal structure, Phys.
Rev. A 88, 022318 (2013).

[26] Y. Aharonov, J. Anandan, S. Popescu, and L. Vaidman, Super-
positions of time evolutions of a quantum system and a quantum
time-translation machine, Phys. Rev. Lett. 64, 2965 (1990).

[27] A. A. Abbott, J. Wechs, D. Horsman, M. Mhalla, and C.
Branciard, Communication through coherent control of quan-
tum channels, Quantum 4, 333 (2020).

[28] F. Chapeau-Blondeau, Quantum parameter estimation on co-
herently superposed noisy channels, Phys. Rev. A 104, 032214
(2021).

[29] D. Xie, C. Xu, and A. M. Wang, Quantum metrology with
coherent superposition of two different coded channels, Chin.
Phys. B 30, 090304 (2021).

[30] G. Chiribella and X. Zhao, Heisenberg-limited metrol-
ogy with coherent control on the probes’ configuration,
arXiv:2206.03052.

[31] G. Rubino, G. Manzano, L. A. Rozema, P. Walther, J. M. R.
Parrondo, and C. Brukner, Inferring work by quantum super-
posing forward and time-reversal evolutions, Phys. Rev. Res. 4,
013208 (2022).

[32] G. Rubino, G. Manzano, and C. Brukner, Quantum superposi-
tion of thermodynamic evolutions with opposing time’s arrows,
Commun. Phys. 4, 251 (2021).

[33] A. Das and S. Ghosh, Measurement based quantum heat engine
with coupled working medium, Entropy 21, 1131 (2019).

[34] C. Elouard, D. Herrera-Martí, B. Huard, and A. Auffèves, Ex-
tracting work from quantum measurement in Maxwell’s demon
engines, Phys. Rev. Lett. 118, 260603 (2017).

[35] J. J. Park, K.-H. Kim, T. Sagawa, and S. W. Kim, Heat engine
driven by purely quantum information, Phys. Rev. Lett. 111,
230402 (2013).

[36] C. Elouard and A. N. Jordan, Efficient quantum measurement
engines, Phys. Rev. Lett. 120, 260601 (2018).

044114-26

https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1103/PhysRevLett.2.262
https://doi.org/10.1088/1361-6633/ab46e5
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.123.090604
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1103/PhysRevLett.123.240601
http://arxiv.org/abs/arXiv:2302.00726
https://doi.org/10.3390/e19040136
https://doi.org/10.1103/PhysRevLett.93.140403
https://doi.org/10.1103/PhysRevE.76.031105
https://doi.org/10.1103/PhysRevE.96.022108
http://arxiv.org/abs/arXiv:gr-qc/0509120
https://doi.org/10.1038/ncomms2076
https://doi.org/10.1103/PhysRevA.88.022318
https://doi.org/10.1103/PhysRevLett.64.2965
https://doi.org/10.22331/q-2020-09-24-333
https://doi.org/10.1103/PhysRevA.104.032214
https://doi.org/10.1088/1674-1056/ac0bae
http://arxiv.org/abs/arXiv:2206.03052
https://doi.org/10.1103/PhysRevResearch.4.013208
https://doi.org/10.1038/s42005-021-00759-1
https://doi.org/10.3390/e21111131
https://doi.org/10.1103/PhysRevLett.118.260603
https://doi.org/10.1103/PhysRevLett.111.230402
https://doi.org/10.1103/PhysRevLett.120.260601


MONITORED NONADIABATIC AND … PHYSICAL REVIEW E 108, 044114 (2023)

[37] S. Chand and A. Biswas, Measurement-induced operation of
two-ion quantum heat machines Phys. Rev. E 95, 032111
(2017).

[38] L. Buffoni, A. Solfanelli, P. Verrucchi, A. Cuccoli, and M.
Campisi, Quantum measurement cooling, Phys. Rev. Lett. 122,
070603 (2019).

[39] M. F. Anka, T. R. de Oliveira, and D. Jonathan, Measurement-
based quantum heat engine in a multilevel system, Phys. Rev. E
104, 054128 (2021).

[40] V. F. Lisboa, P. R. Dieguez, J. R. Guimaraes, J. F. G. Santos,
and R. M. Serra, Experimental investigation of a quantum heat
engine powered by generalized measurements, Phys. Rev. A
106, 022436 (2022).

[41] Z. Lin, S. Su, J. Chen, J. Chen, and J. F. G. Santos, Suppress-
ing coherence effects in quantum-measurement based engines,
Phys. Rev. A 104, 062210 (2021).

[42] S. Su, Z. Lin, and J. Cheny, Thermal divergences of quantum
measurement engine, arXiv:2109.10796.

[43] L. Bresque, P. A. Camati, S. Rogers, K. Murch, A. N. Jordan,
and A. Auffèves, Two-qubit engine fueled by entanglement and
local measurements, Phys. Rev. Lett. 126, 120605 (2021).

[44] N. Behzadi, Quantum engine based on general measurements,
J. Phys. A: Math. Theor. 54, 015304 (2021).

[45] P. R. Dieguez, V. F. Lisboa, and R. M. Serra, Thermal devices
powered by generalized measurements with indefinite causal
order, Phys. Rev. A 107, 012423 (2023).

[46] S. Mohanta, M. Saha, B. P. Venkatesh, and B. K. Agarwalla,
Bounds on nonequilibrium fluctuations for asymmetrically
driven quantum Otto engines, Phys. Rev. E 108, 014118
(2023).

[47] Y. Zheng, P. Hanggi, and D. Poletti, Occurrence of disconti-
nuities in the performance of finite-time quantum Otto cycles,
Phys. Rev. E 94, 012137 (2016).

[48] R. Shastri and B. P. Venkatesh, Optimization of asymmetric
quantum Otto engine cycles, Phys. Rev. E 106, 024123 (2022).

[49] S. Saryal and B. K. Agarwalla, Bounds on fluctuations for finite-
time quantum Otto cycle, Phys. Rev. E 103, L060103 (2021).

[50] S. Saryal, M. Gerry, I. Khait, D. Segal, and B. K. Agarwalla,
Universal bounds on fluctuations in continuous thermal ma-
chines, Phys. Rev. Lett. 127, 190603 (2021).

[51] M. Gerry, N. Kalantar, and D. Segal, Bounds on fluctuations
for ensembles of quantum thermal machines, J. Phys. A: Math.
Theor. 55, 104005 (2022).

[52] R. J. de Assis, T. M. de Mendonça, C. J. Villas-Boas, A. M. de
Souza, R. S. Sarthour, I. S. Oliveira, and N. G. de Almeida,
Efficiency of a quantum Otto heat engine operating under a
reservoir at effective negative temperatures, Phys. Rev. Lett.
122, 240602 (2019).

[53] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, UK, 2000).

[54] J. Son, P. Talkner, and J. Thingna, Monitoring quantum Otto
engines, PRX Quantum 2, 040328 (2021).

[55] M. Sahnawaz Alam and B. Prasanna Venkatesh, Two-stroke
quantum measurement heat engine, arXiv:2201.06303.

[56] E. M. Purcell and R. V. Pound, A nuclear spin system at nega-
tive temperature, Phys. Rev. 81, 279 (1951).

[57] N. F. Ramsey, Thermodynamics and statistical mechanics at
negative absolute temperatures, Phys. Rev. 103, 20 (1956).

[58] M. Baldovin, S. Iubini, R. Livi, and A. Vulpiani, Statistical
mechanics of systems with negative temperature, Phys. Rep.
923, 1 (2021).

[59] H. Struchtrup, Work storage in states of apparent negative ther-
modynamic temperature, Phys. Rev. Lett. 120, 250602 (2018).

[60] D. Frenkel and P. B. Warren, Gibbs, Boltzmann, and negative
temperatures, Am. J. Phys. 83, 163 (2015).

[61] C. Branciard, Witnesses of causal nonseparability: An introduc-
tion and a few case studies, Sci. Rep. 6, 26018 (2016).

[62] C. Mukhopadhyay, M. K. Gupta, and A. K. Pati, Superposition
of causal order as a metrological resource for quantum ther-
mometry, arXiv:1812.07508.

[63] A. El Makouri, A. Slaoui, and M. Daoud, Enhancing the per-
formance of coupled quantum Otto thermal machines without
entanglement and quantum correlations, J. Phys. B: At. Mol.
Opt. Phys. 56, 085501 (2023).

[64] M. Karpinski, C. Radzewicz, and K. Banaszek, Fiber-optic re-
alization of anisotropic depolarizing quantum channels, J. Opt.
Soc. Am. B 25, 668 (2008).

[65] A. Shaham and H. S. Eisenberg, Quantum process tomography
of single-photon quantum channels with controllable decoher-
ence, Phys. Scr. T147, 014029 (2012).

[66] S. Bhattacharya, A. Misra, C. Mukhopadhyay, and A. K. Pati,
Exact master equation for a spin interacting with a spin bath:
Non-Markovianity and negative entropy production rate, Phys.
Rev. A 95, 012122 (2017).

[67] Z. Farahmand, R. A. Saem, and S. Raeisi, Quantum noise can
enhance algorithmic cooling, Phys. Rev. A 105, 022418 (2022).

[68] S. N. Shevchenko, S. Ashhab, and F. Nori, Landau–Zener–
Stückelberg interferometry, Phys. Rep. 492, 1 (2010).

[69] J. Thingna, F. Barra, and M. Esposito, Kinetics and thermo-
dynamics of a driven open quantum system, Phys. Rev. E 96,
052132 (2017).

[70] J. Thingna, M. Esposito, and F. Barra, Landau-Zener Lindblad
equation and work extraction from coherences, Phys. Rev. E 99,
042142 (2019).

[71] T. Denzler, and E. Lutz, Efficiency fluctuations of a quantum
heat engine, Phys. Rev. Res. 2, 032062(R) (2020).

[72] A. Solfanelli, M. Falsetti, and M. Campisi, Nonadiabatic single-
qubit quantum Otto engine, Phys. Rev. B 101, 054513 (2020).

[73] P. A. Camati, J. F. G. Santos, and R. M. Serra, Coherence effects
in the performance of the quantum Otto heat engine, Phys. Rev.
A 99, 062103 (2019).

044114-27

https://doi.org/10.1103/PhysRevE.95.032111
https://doi.org/10.1103/PhysRevLett.122.070603
https://doi.org/10.1103/PhysRevE.104.054128
https://doi.org/10.1103/PhysRevA.106.022436
https://doi.org/10.1103/PhysRevA.104.062210
http://arxiv.org/abs/arXiv:2109.10796
https://doi.org/10.1103/PhysRevLett.126.120605
https://doi.org/10.1088/1751-8121/abca74
https://doi.org/10.1103/PhysRevA.107.012423
https://doi.org/10.1103/PhysRevE.108.014118
https://doi.org/10.1103/PhysRevE.94.012137
https://doi.org/10.1103/PhysRevE.106.024123
https://doi.org/10.1103/PhysRevE.103.L060103
https://doi.org/10.1103/PhysRevLett.127.190603
https://doi.org/10.1088/1751-8121/ac4c10
https://doi.org/10.1103/PhysRevLett.122.240602
https://doi.org/10.1103/PRXQuantum.2.040328
http://arxiv.org/abs/arXiv:2201.06303
https://doi.org/10.1103/PhysRev.81.279
https://doi.org/10.1103/PhysRev.103.20
https://doi.org/10.1016/j.physrep.2021.03.007
https://doi.org/10.1103/PhysRevLett.120.250602
https://doi.org/10.1119/1.4895828
https://doi.org/10.1038/srep26018
http://arxiv.org/abs/arXiv:1812.07508
https://doi.org/10.1088/1361-6455/acc36d
https://doi.org/10.1364/JOSAB.25.000668
https://doi.org/10.1088/0031-8949/2012/T147/014029
https://doi.org/10.1103/PhysRevA.95.012122
https://doi.org/10.1103/PhysRevA.105.022418
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1103/PhysRevE.96.052132
https://doi.org/10.1103/PhysRevE.99.042142
https://doi.org/10.1103/PhysRevResearch.2.032062
https://doi.org/10.1103/PhysRevB.101.054513
https://doi.org/10.1103/PhysRevA.99.062103

