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Topologically constrained fluctuations and thermodynamics regulate nonequilibrium response
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The limits on a system’s response to external perturbations inform our understanding of how physical proper-
ties can be shaped by microscopic characteristics. Here, we derive constraints on the steady-state nonequilibrium
response of physical observables in terms of the topology of the microscopic state space and the strength
of thermodynamic driving. Notably, evaluation of these limits requires no kinetic information beyond the
state-space structure. When applied to models of receptor binding, we find that sensitivity is bounded by the
steepness of a Hill function with a Hill coefficient enhanced by the chemical driving beyond the structural
equilibrium limit.
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I. INTRODUCTION

A useful method for understanding the physical properties
of a system in and out of equilibrium is to analyze how it
responds to external perturbations [1]. For example, material
coefficients, like diffusivity and viscoelasticity, are basic in-
puts into any soft matter description [2–8]. Another example
is how sensitivity to chemical inputs is used as a key perfor-
mance measure for a variety of biophysical processes, from
biochemical sensing [9,10] to gene transcription [11,12] and
beyond [13–25].

When the system is near equilibrium, the fluctuation-
dissipation theorem (FDT) operates as a powerful organizing
principle [1]: Fluctuations and response encode the same in-
formation. The FDT’s utility has led to significant interest
in developing similar predictions valid far from equilib-
rium [26–32]. Some link the response to fluctuations in
particular physical observables [33–42], while others restrict
attention to specific equilibrium-like perturbations [7,43,44]
or preparations [45].

In recent years an alternative approach has emerged,
where tradeoffs or inequalities delineate the limits of pos-
sible behavior [46–48]. One such class of predictions are
the thermodynamic uncertainty relations, which are thermo-
dynamic and kinetic bounds on fluctuations [49–53]. Here,
we build on another class of tradeoffs, a recently estab-
lished collection of thermodynamic bounds on steady-state
response [54–57]. These past predictions are limited by not
accounting for correlations between responses at different mi-
croscopic configurations. Here we include these correlations
and demonstrate that the response of a physical observable
is bounded not just by thermodynamic driving, but also by
a measure of fluctuations sensitive to the topology of the
microscopic state space. Importantly, the only kinetic infor-
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mation required to determine these fluctuations is the structure
of the state-space; no knowledge of the values of kinetic rates
is needed.

Our theoretical tools are graph-theoretic solutions to the
steady-state distribution and its derivatives with respect to
kinetic rates. Such representations have been known for some
time [58,59], and in recent years they have reemerged as
powerful tools for studying the links between kinetics and
thermodynamics in noisy nonequilibrium systems [60–66].

II. DYNAMICS AND THERMODYNAMICS

Consider a system whose dynamics can be modeled as a
Markov jump process, making random transitions among a
collection of states, or configurations, i = 1, . . . , N with rates
Wi j to jump from j → i. For thermodynamic consistency [52],
we will assume every transition is accompanied by its reverse
(Wji �= 0 whenever Wi j �= 0). We can then visualize these dy-
namics occurring on a state-space graph, G, where the vertices
{i} represent the states and the (undirected) edges {emn} rep-
resent allowed transitions in both directions. An example that
will serve to illustrate our results is introduced in Fig. 1(a).

For such models, the probability pi(t ) for the system to
be at state i at time t evolves according to the master equa-
tion [67]

ṗi(t ) =
N∑

j=1

Wi j p j (t ), (1)

where the elements Wii = −∑
j �=i Wji have been introduced

to enforce probability conservation. We will assume that the
graph G is (strongly) connected, which, coupled with our
assumption that every transition has a reverse, guarantees that
pi(t ) relaxes to a unique stationary distribution πi given as the
solution of

∑
j Wi jπ j = 0.

Driven or nonequilibrium dynamics are characterized by
the emergence of nonzero steady-state probability currents
between pairs of states, J̄i j = Wi jπ j − Wjiπi. These flows are
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FIG. 1. Representative example: (a) Five-state house graph with
perturbed edge e12 highlighted in pink. (b) Cycles associated with the
thermodynamic forces FC . Only cycles through the perturbed edge
e12 constrain the response. (c) Topologically consistent splittings V12

with V 1 highlighted in pink and V 2 in blue.

driven by thermodynamic forces—like temperature or chemi-
cal potential differences—and they are linked to the dynamics
by assuming local detailed balance [68,69]. This allows us
to identify these forces through the imbalances of the rates
around cycles: Sequences of edges that connect the initial
vertex to itself without self-intersection [Fig. 1(b)]. Then for
each cycle C = {i0 → i1 → i2 → ⋯ im → i0} we identify a
thermodynamic force, or affinity, as the log-ratio of rates
forward and backward around the cycle [52,58,60]:

FC = ln

(
Wi0im . . .Wi2i1Wi1i0

Wi0i1Wi1i2 . . .Wimi0

)
. (2)

When all cycle forces vanish, then necessarily all steady-state
currents are zero (J̄i j = 0), and the system satisfies detailed
balance, which is a statistical symmetry characteristic of equi-
librium. Put another way, the larger the cycle forces, the
farther from equilibrium is the steady state.

III. RESPONSE

Typically, the experimentally accessible quantity is not the
steady-state distribution, but rather steady-state averages of
observables 〈Q〉 = ∑

i Qiπi. When the steady state is detailed-
balanced, we will use the superscript “eq” to distinguish such
equilibrium averages. It is then our goal to predict how pertur-
bations of the rates affect these averages.

We model perturbations by allowing the rates to depend on
an externally controlled parameter λ. A common, physically
motivated choice for this dependence is to exponentially
reweight the rates Wi j (λ) = Wi jeλdi j through a coupling di j

for i �= j, which may have nonzero symmetric ds
i j = di j + d ji

and asymmetric da
i j = di j − d ji parts [31]. In that case, the

steady-state (or static) response to an external perturbation is
defined by the linear combination of logarithmic derivatives,

∂〈Q〉
∂λ

=
∑
m �=n

dmnWmn
∂〈Q〉
∂Wmn

=
∑

i,m �=n

QidmnWmn
∂πi

∂Wmn
. (3)

A. Equilibrium steady states

For perturbations around equilibrium steady states π eq

where J̄eq
mn = 0, the FDT links the equilibrium response to the

fluctuations [52,68]:

∂〈Q〉eq

∂λ
=

∫ ∞

0
〈Q(t )Jda (0)〉eq dt, (4)

where the two-time correlation function between the observ-
able and the d-weighted current is defined as 〈Q(t )Jda (0)〉 =∑

li j Ql (etW )lida
i jWi jπ j in terms of the transition probability

p(l, t |i, 0) = (etW )li for the system to be at l at time t given it
was initially at i. Importantly, only the asymmetric part of the
coupling da

i j contributes. The symmetric part ds
i j amounts to a

coordinated and equal change in the forward and reverse rates
between a pair of states. It is akin to varying a kinetic barrier,
which cannot alter a system at equilibrium—the equilibrium
Gibbs distribution only depends on the energies and not on
the kinetics. It is worth noting that generically adding an
asymmetric coupling induces a nonconservative force, driving
the system slightly away from equilibrium. The exception is
when the (asymmetric) coupling is derivable from a potential,
da

i j = −(Ui − Uj ): In this case Jda = −U̇ , and the FDT (4)
simplifies to a static equilibrium correlation,

∂〈Q〉eq

∂λ
= −

∫ ∞

0
〈Q(t )U̇ (0)〉eqdt = 〈〈Q,U 〉〉eq, (5)

where the covariance is 〈〈Q,U 〉〉 = 〈QU 〉 − 〈Q〉〈U 〉. This
perturbation is tantamount to varying the system’s energy
landscape by including a new potential Ui.

B. Nonequilibrium steady states

In light of our discussion, it is natural when studying
nonequilibrium response to individually address changes in
symmetric, asymmetric, or other particular combinations of
rates. Our previous work has identified the following combi-
nations of logarithmic derivatives as useful [54]:

∂

∂Ei
= −

∑
j �=i

Wji
∂

∂Wji
, (6)

∂

∂Bmn
= −Wmn

∂

∂Wmn
− Wnm

∂

∂Wnm
, (7)

∂

∂Fmn
= 1

2

(
Wmn

∂

∂Wmn
− Wnm

∂

∂Wnm

)
. (8)

The E -perturbations (6), which are uniform changes in the
total exit rate from a state, are energy-like or equilibrium-like
in that they satisfy a fluctuation-response equality akin to the
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equilibrium FDT (5), but valid arbitrarily far from equilib-
rium [54],

N∑
i=1

Ui
∂〈Q〉
∂Ei

= 〈〈Q,U 〉〉 (9)

for arbitrary state function Ui. This prediction holds more
generally, applying to diffusion processes as well as time-
dependent response [7,43].

The symmetric B-perturbations (7) are like changes in ki-
netic “barriers,” and the asymmetric F -perturbations (8) are
like shifts in the driving forces. For these perturbations, we
previously demonstrated constraints on ratios of non-negative
observables, Q(1), Q(2) � 0 [54]:∣∣∣∣∂ ln(〈Q(1)〉/〈Q(2)〉)

∂Bmn

∣∣∣∣ � tanh(Fmax/4), (10)

∣∣∣∣∂ ln(〈Q(1)〉/〈Q(2)〉)

∂Fmn

∣∣∣∣ � 1, (11)

where Fmax = maxC�emn FC is the maximum cycle force
through the perturbed edge.

Our focus here is the response of a single observable
〈Q〉 (3), not a ratio. To transform the predictions in (10)
and (11) into bounds on a single observable, let us introduce
notation for the observable’s maximum QM and minimum Qm.
Then, by setting the two positive observables in (10) and (11)
to be Q(1) = Q − Qm � 0 and Q(2) = QM − Q � 0, we arrive
at the relevant predictions∣∣∣∣ ∂〈Q〉

∂Bmn

∣∣∣∣ � (QM − 〈Q〉)(〈Q〉 − Qm)

QM − Qm
tanh(Fmax/4), (12)∣∣∣∣∂〈Q〉

∂Fmn

∣∣∣∣ � (QM − 〈Q〉)(〈Q〉 − Qm)

QM − Qm
. (13)

These predictions do not account for any specific properties of
the network’s topology. In the following, we provide tighter
inequalities that reveal how the topology of G interfaces with
the thermodynamics to limit nonequilibrium response.

IV. SYMMETRIC PERTURBATIONS

A. Single edge

We begin our analysis by determining the maximum re-
sponse to a symmetric perturbation along a single edge emn.
As we noted, symmetric perturbations cannot generate any re-
sponse at equilibrium. So nonequilibrium driving is required,
and as we will show it quantitatively bounds the response.
Here we summarize the derivation; details can be found in
Appendixes A and B.

To proceed, we differentiate the master equation at steady-
state (1) to obtain a set of inhomogeneous linear equations for
the responses of the steady-state distribution,

N∑
j=1

Wi j
∂π j

∂Bmn
= J̄mn(δim − δin). (14)

Our main theoretical tool is then a graph-theoretic solution
to this set of equations in terms of spanning 2-forests of G,
which was originally derived in [70], though we require a
slight modification presented in Appendix A. Substitution of
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FIG. 2. Response ratio RB as a function of the maximum cycle
force Fmax around cycles containing edge e12 of the house graph
(Fig. 1) for 15 000 rate matrices with the logarithmic asymmetric
ln(Wi j/Wji ) and symmetric ln(Wi jWji ) parts sampled uniformly on
[−7, 7] and the observable Qi sampled uniformly on [−4, 4]. All
samples (gray) fall below the predicted bound tanh(Fmax/4) (red).

this graphical representation into (3) allows us to reformulate
the question of bounding the response as a linear optimization
problem. The optima then serve as potential upper bounds.
The form of these optima is inherited from our graph-theoretic
analysis and therefore depends on the topology of the state
space. The required quantity we call a topologically consistent
splitting of the vertices of the graph, V mn ∈ Vmn: Each V mn is
formed by cutting the graph into two connected components
(that are disjoint), one V m which contains vertex m and the
other V n which contains vertex n. We then denote the indicator
function on the states in one of these components as δi(V m),
taking the value 1 when i ∈ V m and 0 otherwise.

Our first main result is that topology and thermodynamics
constrain the maximum response via∣∣∣∣ ∂〈Q〉

∂Bmn

∣∣∣∣ � max
Vmn

|〈〈Q, δ(V m)〉〉| tanh (Fmax/4), (15)

with Fmax = maxC�emn FC . Note that placing the indicator
function on δ(V m) is equivalent to δ(V n) = 1 − δ(V m) due to
the linearity of the covariance and 〈〈Q, 1〉〉 = 0: 〈〈Q, δ(V m)〉〉 =
−〈〈Q, δ(V n)〉〉.

Equation (15) has the character of the FDT, linking
response to fluctuations. Here, however, the covariance mea-
sures the fluctuations of the observable across the two
components of V mn, a topologically dependent noise charac-
teristic. The response is zero whenever all the cycle forces
through the perturbed edge are zero (Fmax = 0). This is possi-
ble away from equilibrium, but it is always true at equilibrium.
It also can occur if there are no cycles through the perturbed
edge because it is a bridge—its removal disconnects G into
two disjoint components. In Fig. 2, we verify (15) by plotting
the response ratio RB = |∂Bmn〈Q〉|/ maxVmn |〈〈Q, δ(V m)〉〉| for
perturbations along e12 of the graph in Fig. 1(a) for random
observables and rates.

B. Multiple edges

When multiple edges are perturbed in the network, we
expect the response to have a more complicated dependence
on the topology. However, there is one situation where our
analysis directly generalizes to multiedge perturbations. That
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(b)(a)

FIG. 3. (a) Representation of a multiedge perturbation for the
illustrative graph. All edges in the subgraph H12, highlighted in gray,
are uniformly perturbed. (b) Cycles that count towards determining
Fmax in the case of multiedge perturbation of H12. Note that the cycle
{1 → 2 → 5 → 1} is not relevant in this case, as it is internal to H12.

is when their combined impact is effectively like a single-edge
perturbation. Here, we have in mind the situation illustrated in
Fig. 3 where we perturb a set of edges in a subgraph Hmn of
G that only connects to the rest of the graph at two vertices,
which we will call m and n, with a slight abuse of notation. In
this case, our analysis carries through with minimal modifica-
tions as described in Appendix C, with the result∣∣∣∣∣∣

∑
ekl ∈Hmn

∂〈Q〉
∂Bkl

∣∣∣∣∣∣ � max
Vmn

|〈〈Q, δ(V m)〉〉| tanh (Fmax/4). (16)

Here, Fmax is the maximum cycle force over all cycles
that straddle the perturbed and unperturbed regions passing
through the two vertices m and n.

C. Design principles and optimal topologies

Analysis of the derivation of (15) allows us to identify
design principles for achieving the maximum response by
determining how we should tune the rates Wi j to saturate the
inequality. By changing the rates, we can effectively change
the network topology of the state-space graph, thus identifying
what effective network structures are optimal.

There are two limits of the rates that we will encounter that
lead to effective changes in the network structure: Sending
the rates to zero or to infinity. If we drive a pair of rates
along a single edge ei j to zero (Wi j = Wji = 0), the resulting
dynamics take place on a state-space graph with that edge
deleted, as transitions along that edge are no longer possible.
On the other hand, if we take a pair of rates on an edge ei j to be
large, the system will relax to a local steady state on the pair
of nodes i and j very quickly: The remaining slow dynamics
evolve on a state-space graph where the nodes i and j have
been contracted into a single node.

We have found that to saturate (15), two conditions are re-
quired. The first is that there is a single cycle passing through
our states m and n. Thus, we have to interrupt all cycles but
one through m and n by deleting at least one of their edges
(without disconnecting the graph) by sending the rates along
that edge to zero. The second condition is that the graph
has a single dominant topologically consistent splitting V mn.
This is accomplished by taking all the rates on each vertex
set V m and V n to be large such that they each form isolated
dynamical islands. These islands are then linked together by
a pair of slow rates that complete the unique cycle in the

slow

slowfast

fast

toward

optimal
topology

FIG. 4. Example of an optimal network topology inherited from
the topologically consistent splitting V 1 = {1, 3, 4}, V 2 = {2, 5}.
The rates on edge e15 are set to zero cutting that edge from the graph,
leaving the system with a unique cycle. States internal to the islands
defined by the topological splitting are contracted into a pair of single
nodes by taking the rates along edges internal to the islands (orange)
to be fast compared to the rates connecting the islands (dashed).

system. For the house graph, this is illustrated in Fig. 4 for
a particular topologically consistent splitting. The emergent
optimal network acts as a two-state system, linked up by a
single cycle.

V. ASYMMETRIC AND ARBITRARY PERTURBATIONS

Nonsymmetric edge perturbations can generate a response
even in equilibrium (4). Thus, we expect thermodynamics
not to be a limiting constraint, and we focus solely on the
influence of network topology. We first will analyze a general
rate perturbation, and then specialize to asymmetric perturba-
tions (8). Details can be found in Appendix D.

Again, we differentiate the master equation (1) to obtain
a set of inhomogeneous linear equations for the responses to
logarithmic perturbations in a single rate constant Wmn,

N∑
j=1

Wi j
∂π j

∂ln Wmn
= Wmnπn(δin − δim). (17)

Utilizing our graph-theoretic representation leads to a linear
optimization problem. Its solution gives an identical topolog-
ical bound for a rate perturbation,∣∣∣∣ ∂〈Q〉

∂ ln Wmn

∣∣∣∣ � max
Vmn

|〈〈Q, δ(V m)〉〉|. (18)

We see the correlation between the observable and the topo-
logically consistent splittings provide the ultimate limit, no
matter how strongly driven the system.

Equation (18) readily leads to a constraint on asymmetric
perturbations as well,∣∣∣∣∂〈Q〉

∂Fmn

∣∣∣∣ = 1

2

∣∣∣∣ ∂〈Q〉
∂ ln Wmn

− ∂〈Q〉
∂ ln Wnm

∣∣∣∣
� max

Vmn
|〈〈Q, δ(V m)〉〉|, (19)

after noting that the covariance bound is symmetric with re-
spect to Wmn and Wnm.

This inequality is particularly interesting when applied to
asymmetric perturbations around equilibrium steady states. In
this case, we can apply the FDT (4) to get a nontrivial bound
on the two-time correlation function between any observable
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and the current Jmn (da
i j = δmiδn j) on the perturbed edge,∣∣∣∣

∫ ∞

0
〈Q(t )Jmn(0)〉eq dt

∣∣∣∣ � max
Vmn

|〈〈Q, δ(V m)〉〉eq|. (20)

Structure quantifiably constrains fluctuations near equilibrium
as well.

VI. OPERATIONAL LIMITS

Each of our bounds depends on a covariance with the in-
dicator function δ(V m). Measuring such correlations requires
access to the occupation statistics of the states. This may be
challenging even for moderately sized systems, where only
coarser observations are possible. Thus, we now turn to de-
riving weakened, operational bounds on the covariance that
depend only on observable properties of Q: Its average 〈Q〉,
variance 〈〈Q2〉〉, maximum QM , and minimum Qm.

To bound the covariance, we note that each δ(V m) is non-
negative and bounded by 1 [0 � δ(V m) � 1]. Let us consider
the set of all such bounded observables, BO = {A|0�Ai � 1},
of which δ(V m) is a member. Then, the correlation we wish
to constrain can trivially be bounded by the maximum over
all steady states πi and all bounded observables, keeping the
average 〈Q〉 and variance 〈〈Q2〉〉 fixed:

max
Vmn

|〈〈Q, δ(V m)〉〉| � max
{π,A∈BO|〈Q〉,〈〈Q2〉〉}

|〈〈Q, A〉〉|. (21)

This weaker optimization can be carried out (Appendix E),
with a result that depends on �Q = min{QM − 〈Q〉, 〈Q〉− Qm,√

〈〈Q2〉〉} via

max
Vmn

|〈〈Q, δ(V m)〉〉| � �Q〈〈Q2〉〉
�2

Q + 〈〈Q2〉〉 , (22)

where the variance is required to fall below 〈〈Q2〉〉 � (QM −
〈Q〉)(〈Q〉 − Qm). Saturation occurs when πi is nonzero on
only two states whose precise values depend on the value of
�Q.

To make contact with the bounds (12) and (13) derived
in [54], we relax the constraint on the variance. Observing
that (22) is a monotonically increasing function of the vari-
ance, we can bound it by setting the variance to its maximum
value 〈〈Q2〉〉 = (QM − 〈Q〉)(〈Q〉 − Qm):

max
Vmn

|〈〈Q, δ(V m)〉〉| � (QM − 〈Q〉)(〈Q〉 − Qm)

QM − Qm
(23)

� 1

4
(QM − Qm), (24)

where in the second line we have further maximized over
all Qm � 〈Q〉 � QM . The first bound (23) is saturated when
πi is nonzero on only two states: One of the states, call it
i = M, where Qi reaches its maximum value QM , and another
state, i = m, where the observable reaches its minimum value
Qm. The weaker bound (24) saturates when the probability is
evenly split between those two states, πM = πm = 1/2.

By arriving at the previously derived bounds (12) and (13)
through our more refined inequalities, we uncover how they
emerge as the maximum response over all steady-state dis-
tributions with the mean observable held fixed. Under these
conditions, the steady-state distribution is peaked at only two
states. Thus, our more refined bounds provide the limits to

ligand

receptor
(a) (b)

FIG. 5. Receptor binding: (a) Ligands (yellow) bind to a macro-
molecule (green) with NB = 2 binding sites. In the N = 4 state
kinetic model, only the binding rates (pink) are proportional to
the ligand concentration c. (b) Decomposition of a c-perturbation
into E -perturbations (blue tones) and a multiedge B-perturbation
(red tones).

steady-state response for an arbitrary steady-state distribu-
tion that can be spread among multiple states, accounting for
how the response at different states must be related through
topology as manifested through fluctuations across the topo-
logically consistent splittings. One could further imagine
tighter operational bounds that constrain additional cumulants
of the observables Q and δ(V m).

VII. ILLUSTRATIVE EXAMPLE: RECEPTOR BINDING

A central biochemical motif is the cooperative binding of
ligands to a larger macromolecule [71,72]. A relevant theoret-
ical and experimental question is how sensitively this system
responds to changes in the ligand concentration c, and how
that depends on the number of binding sites NB as well as
other structural and thermodynamic characteristics [73]. In a
kinetic model, like the one in Fig. 5, each state i is identified
by the collection of binding sites in the macromolecule oc-
cupied by a ligand, with the number of bound sites denoted
by the ligand-occupation number ni. Binding rates kαc are
taken to be proportional to c, whereas unbinding rates k̃α are
concentration independent; beyond that, the rates are fixed in
accordance with local detailed balance (2). It is then common
to study normalized observables, 0 � fi � 1: The fraction of
bound sites fi = ni/NB is one example [59], or in the context
of gene regulation fi could represent a (normalized) transcrip-
tion rate [24,25,74].

Before addressing nonequilibrium situations, we recall
the equilibrium limits to cooperative binding. Statistical
physics (5) predicts that the sensitivity of an arbitrary nor-
malized observable fi is given by the correlation with the
ligand-occupation number ni,

∂〈 f 〉eq
c

∂ ln c
= 〈〈 f , n〉〉eq � NB〈 f 〉eq

c (1 − 〈 f 〉eq
c ) � NB/4. (25)

Here, we have bounded the covariance using (23) after rec-
ognizing ni/NB � 1. This allows us to recover the classic
prediction that the slope of the binding curve is limited by
the number of binding sites NB [59].

When driven away from equilibrium, binding can be
more sensitive, as first demonstrated numerically in [18] in
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FIG. 6. Saturating the inequalities in receptor binding: (a) Representation of the optimal network corresponding to the topologically
consistent splitting is V 2 = {1, 4}, V 2 = {2, 3}. The rates internal to the islands (pink and blue ovals) are fast compared to the rates connecting
the islands (dashed). (b) For the optimal network in (a), the deviation of the response from the equilibrium prediction (gray) is compared to the
bounds imposed by (26) (dashed dark red), (27) (dotted orange), and (28) (red) as a function of concentration c for two observables f = n/2
(top) and f = δ(V 2) (bottom) at two values of thermodynamic driving, �μ/kT = 1 (left) and �μ/kT = 5 (right). (c) 〈 f 〉c as a function of c
for both observables at the two values of thermodynamic driving. Parameter values are listed in Appendix F.

binding models with NB � 3 binding sites. With the predic-
tions presented above, we are limited to the model depicted in
Fig. 5(a) with NB = 2. To incorporate nonequilibrium driving,
we imagine that the binding is coupled to ATP hydrolysis so
that the sole thermodynamic driving force can be related to the
chemical potential difference between ATP and its products:
FC = �μ/kT .

Now, a logarithmic perturbation of c can be divided into
E -perturbations (6) and a multiedge symmetric perturbation,
as in Fig. 5(b). Thus, by combining (9) and (16) we can bound
the deviation of the sensitivity from the equilibrium-like pre-
diction 〈〈 f , n〉〉 [cf. (25)],∣∣∣∣∂〈 f 〉c

∂ ln c
− 〈〈 f , n〉〉

∣∣∣∣ � max
V24

|〈〈 f , δ(V 2)〉〉| tanh(�μ/4kT ). (26)

This can be simplified using the operational bounds (22)
and (23),∣∣∣∣∂〈 f 〉c

∂ ln c
− 〈〈 f , n〉〉

∣∣∣∣ � � f 〈〈 f 2〉〉
�2

f + 〈〈 f 2〉〉 tanh(�μ/4kT ) (27)

� 〈 f 〉c(1 − 〈 f 〉c) tanh(�μ/4kT ), (28)

with � f = min{〈 f 〉, 1 − 〈 f 〉,
√

〈〈 f 2〉〉}. We illustrate these in-
equalities in Fig. 6 for the representative optimal topology
in Fig. 6(a) where V 2 = {2, 3} and V 4 = {1, 4}. Our bound
singles out two normalized observables of potential interest:
When the observable is proportional to the ligand-occupation
number, fi = ni/2, or when it is equal to the indicator func-
tion, fi = δi(V 2). For both observables, we plot in Fig. 6(b)
the deviation of the response from the equilibrium-like expec-
tation with the limits imposed by (26)–(28) as a function of the
concentration c for a lower level of thermodynamic driving
�μ/kT = 1 and a higher level of driving �μ/kT = 5. We

observe that the covariance bound (26) is only saturated at
one point. However, over the entire binding curve the bounds
tend to be tighter with increasing thermodynamic driving,
leading to an overall steeper binding curve as illustrated in
Fig. 6(c). Of the two observables, the bounds are tighter when
the observable is equal to the indicator function fi = δi(V 2),
when further the observable’s variance equals the operational
limit, 〈〈δ2〉〉 = 〈δ〉(1 − 〈δ〉).

For observables that monotonically increase with concen-
tration, (26) bounds the sensitivity

∂〈 f 〉c

∂ ln c
� 〈〈 f , n〉〉 + max

V24
|〈〈 f , δ(V 2)〉〉| tanh(�μ/4kT ) (29)

� � f 〈〈 f 2〉〉
�2

f + 〈〈 f 2〉〉 [2 + tanh(�μ/4kT )] (30)

� 〈 f 〉c(1 − 〈 f 〉c)[2 + tanh(�μ/4kT )]. (31)

While these bounds saturate only at a single point along the
binding curve, it is still worthwhile to investigate what con-
centration dependence 〈 f 〉c would require in order to have the
maximum steepness, saturating (31), along the entire binding
curve. Assuming equality in (31) leads to a differential equa-
tion for the optimal binding curve whose solution is the Hill
function [59],

〈 f 〉opt
c = cH

KH + cH
, H = 2 + tanh(�μ/4kT ), (32)

where the arbitrary constant K fixes the location of the curve
via 〈 f 〉opt

K = 1/2. The Hill coefficient H is enhanced beyond
the structural equilibrium limit (NB = 2) by the chemical
driving, offering a thermodynamic refinement of the support
bound derived in [55], which reads H � 2NB − 1 = 3. Di-
rect comparison to the numerical observations of [18] is not
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FIG. 7. Nonequilibrium response in the receptor binding model: (a) Normalized response for 15 000 random rate matrices with c = 1,
logarithmic asymmetric ln(kα/k̃α ) and symmetric ln(kα k̃α ) parts sampled uniformly on [−7, 7], and f1 = 0, f3 = 1, with f2 = f4 uniform in
[0.4,0.6]. All samples fall below the predicted bound (31), red. The green line is the maximum equilibrium response 2. (b) 〈 f 〉c as a function
of c/K for three distinct rate matrices [purple points (a)] with �μ/kT = 2, which need not be Hill functions. The orange curve corresponds to
the optimal Hill function (32). Inset: For any 〈 f 〉c, sensitivity is bounded by the steepness of the Hill function, with a maximum of H/4. For
details, refer to Appendix F.

possible, however, since only models with NB � 3 are con-
sidered. In Fig. 7(a), we verify the prediction in (31). The
optimality of the Hill function (32) is illustrated in Fig. 7(b).
Notably this curve does not bound any other binding curve,
but for any given value of 〈 f 〉, it is the steepest.

VIII. CONCLUSION

We have demonstrated that the maximum response over
all rates holding the steady-state distribution fixed is given
by the maximal fluctuations of the observable across the
system’s topologically consistent splittings. For symmetric
edge perturbations, this is further constrained by the degree
of nonequilibrium driving as measured by the thermodynamic
force. These tradeoffs quantify the role network topology
plays in shaping the connection between response and fluc-
tuations away from equilibrium.

We can also view our predictions through the lens of the
FDT. In the FDT, the relevant metric of fluctuations is be-
tween the observable and a perturbation-dependent, conjugate
observable, e.g., Ui in (5). In the predictions derived here, the
perturbation-dependent quantity that appears in the covariance
is the indicator function for a topologically consistent split-
ting. In this way, the topologically consistent splittings act as a
kind of optimal conjugate observable, whose fluctuations help
us organize our observations about response.

Our predictions suggest that the deep connection between
response, fluctuations, and network structure can be fruit-
fully quantified in some generality. One next step in this
program is to go beyond single-edge perturbation and incor-
porate correlated, multiedge perturbations, which is necessary
to apply our results to binding models with more than two
sites [18,22,55]. Another direction is to move beyond the state
variables we have analyzed to include current observables,
which are themselves functions of the rates, like the inequality
between mobility and diffusion derived in [47,48]. Finally,
extending these predictions to time-dependent response could
help in rationalizing observations about transcription in eu-
karyotes where growing evidence is suggesting that timing is
an important factor in regulation [24,75].
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APPENDIX A: GRAPHICAL SOLUTIONS FOR DISCRETE
MARKOV PROCESSES

The matrix-tree theorem (MTT) as well as its
generalizations—the all minors matrix-tree theorem [76]
or the matrix-forest theorem [77]—offer powerful graphical
methods for organizing solutions of homogeneous and
inhomogeneous linear equations that arise in the context
of discrete Markov processes. These solutions are built by
associating to a discrete Markov process with transition
rate matrix W = {Wi j}, a weighted transition graph G with
vertices {i} and directed edges {ei j} weighted by Wi j . Note
that in the Appendixes it will prove convenient to largely use
directed edges, but label undirected edges as ēi j = {ei j, e ji}.
Then certain collections of subgraphs of G will provide the
desired solutions.

To this end, for any subgraph G′ ⊆ G, we will denote its
vertex set as V (G′) and its edge set as E (G′). We assign it a
weight as the product of the weights of all its edges, E (G′) =
{i → j, k → l, . . . }, as

w(G′) = WjiWlk⋯. (A1)

If a subgraph has no edges, we will define its weight to be 1.
If it does not exist, its weight is 0. Furthermore, the weight of
a set of subgraphs G = {G′

1, G′
2, . . . } is given by the sum over

the weights of each subgraph, w(G) = w(G1) + w(G2) +⋯.
Graphical solutions are then built out of spanning n-forests,

which are subgraphs of G composed of a collection of n
disjoint individually connected components with no cycles
such that each vertex is in exactly one component. In each
component, we can choose a vertex, r1, . . . , rn, called the root,
and orient all edges in each component along the unique path
towards that root. The resultant subgraph we call a rooted
spanning n-forest, and we will denote it as fr1 � fr2 �⋯ frn .
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(a)

(b)

FIG. 8. (a) All spanning trees, T , for the house graph, Fig. 1. (b) All spanning 2-forests, F12, for the house graph. Note that there exist
forest components that are composed of only one vertex. The representation of the topologically consistent splitting of the vertices, V12, is also
reproduced here. The set V 1, highlighted in pink, contains vertex 1, and V 2, highlighted in blue, contains vertex 2.

When there is only one component, we will call them trees as
opposed to 1-forests and denote them as Tr . To illustrate these
concepts throughout, we will use the house graph (Fig. 1),
whose spanning trees and 2-forests are depicted in Fig. 8.

1. Homogeneous linear equations

The MTT states that the steady-state solution of the mas-
ter equation

∑
j Wi jπ j = 0 can be written as a sum over all

spanning trees T ,

πi = 1

N
∑
T

w(Ti ), (A2)

with normalization constant N = ∑
T ,k w(Tk ) = w(T ). This

is illustrated in Fig. 9 for the house graph.
Equation (A2) also leads to a graphical representation of

the steady-state currents J̄mn = Wmnπn − Wnmπm [59]. This
representation is obtained by substituting (A2) into the def-
inition of J̄mn. As explained in Ref. [59], most terms cancel
except for those that correspond to specific subgraphs of G,
which we call (spanning) cycle graphs Cmn, formed by a single
cycle, oriented along the edge n → m, with every other vertex
linked by a unique path oriented towards the cycle: They are
formed by adding the edge emn to a tree Tn that did not have the
edge enm. When a cycle is oriented in the opposite direction,
we will at times write C̃mn = Cnm. The set of all cycle graphs
we denote Cmn. Then the steady-state current is the difference

FIG. 9. Graphical representation of the matrix-tree theorem (A2) for the house graph. The steady-state probability of any state i, in this
case i = 1, is given by a normalized sum of all the weights of spanning trees rooted at vertex i (highlighted in pink).
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of oriented cycle graphs,

Jmn = 1

N
∑
Cmn

w(Cmn) − w(C̃mn) = 1

N [w(Cmn) − w(Cnm)].

(A3)

This formulation also offers a deep connection with the cycle
forces. Noting that the only difference between a cycle graph
Cmn and its reverse C̃mn is the weights along the cycle, we can
identify the cycle forces as

F (Cmn) = ln
w(Cmn)

w(C̃mn)
, (A4)

because all the edge weights not in the cycle cancel. Substi-
tuting into the steady-state current,

Jmn = 1

N
∑
Cmn

w(Cmn)(1 − e−F (Cmn ) ), (A5)

leads to the conclusion that nonzero currents require nonzero
cycle forces, confirming our expectation that nonequilibrium
flows require driving [59].

2. Inhomogeneous linear equations

The other class of linear equations we will confront are of
the form

N∑
j=1

Wi jr j = δim − δin, (A6)

with the additional condition
∑

j r j = 0. A graphical solution
to these inhomogeneous equations can be developed in terms
of the 2-forests f m � f n ∈ Fmn, where component f m has
vertex m and component f n has vertex n,

r j = 1

N
∑
Fmn,l

w
(

f m
l � f n

j

) − w
(

f m
j � f n

l

)
. (A7)

Here, we follow the solution method presented in Ref. [70],
based on Hill’s graphical proof of the MTT [59]. A slight
modification of the argument is needed, and for completeness
we include it in the following. This approach can be seen
to complement more general statements based on algebraic
arguments found in Refs. [76,77].

To see that (A7) solves (A6), we note that (A6) can be
divided into three different types of equations depending on
the value of i:∑

j �=m

Wm jr j −
∑
j �=m

Wjmrm = 1, (A8)

∑
j �=n

Wn jr j −
∑
j �=n

Wjnrn = −1, (A9)

∑
j �=h

Wh jr j −
∑
j �=h

Wjhrh = 0, h �= m, n, (A10)

where conservation of probability is used to expand the diag-
onal elements of the rate matrix, Wii = −∑

j �=i Wji.

We now check that (A7) is the solution by direct calcula-
tion. First, substituting into (A8), we arrive at the pair of sums∑

j �=m

Wm jr j = 1

N
∑
Fmn,l
j �=m

Wm j
[
w
(

f m
l � f n

j

)−w
(

f m
j � f n

l

)]
(A11)

−
∑
j �=m

Wjmrm = 1

N
∑
Fmn,l
j �=m

Wjmw
(

f m
m � f n

l

)
. (A12)

Now, each term in (A11) and (A12) corresponds to the weight
of a subgraph formed from the addition of a single edge to a
2-forest. We address each sum in turn. The terms of the form
Wm jw( f m

l � f n
j ) correspond to the weight of a subgraph con-

structed by adding em j to the 2-forest f m
l � f n

j , which forms
a rooted spanning tree such that along the unique sequence
of undirected edges linking n and m, the edge incident to m
is oriented into m. We call the set of trees with this prop-
erty T m�n. All trees in the set are formed in this manner:
The removal of the unique edge into m leads to the 2-forest
f m
l � f n

j . Next, the terms in the second sum of (A11) have the
form Wm jw( f m

j � f n
l ). Here, the addition of the edge em j to the

2-forest f m
j � f n

l closes a cycle in the f m component, leaving
the f n component unaltered. This set of subgraphs we denote
CmFn, where again the entire set is formed via this construc-
tion. The last type of term Wjmw( f m

m � f n
l ) appearing in (A12)

corresponds to the addition of e jm to f m
m � f n

l , leading to one
of two possibilities. The first possibility is that j ∈ V ( f m) is in
the same component as m. In this case, the resulting subgraph
is an element of CmFn, the sum in (A12) spanning over the
entire set. The other possibility is that j /∈ V ( f m) is not in the
same component as m, and e jm links the two components of
the forest forming a rooted spanning tree with the property
that in the unique sequence of undirected edges linking n and
m, the edge incident to m is oriented out of m. This set we call
T m↝n. Putting everything together, we can write (A8) as∑

j �=m

Wm jr j −
∑
j �=m

Wjmrm

= 1

N [w(T m�n) − w(CmFn) + w(T m↝n) + w(CmFn)]

= w(T )

N = 1, (A13)

where we recognized that T m�n ∪ T m↝n, since in any tree
along the path linking n and m the edge incident to m can
only be oriented either into or out of m. Verification that (A7)
solves (A9) follows along similar lines, so we omit the argu-
ment.

Lastly, we have to check (A10). We proceed by analyzing
the pair of sums∑

j �=h

Wh jr j = 1

N
∑
Fmn,l

j �=h

Wh j
[
w
(

f m
l � f n

j

) − w
(

f m
j � f n

l

)]
,

(A14)

−
∑
j �=h

Wjhrh = − 1

N
∑
Fmn,l

j �=h

Wjh
[
w
(

f m
l � f n

h

) − w
(

f m
h � f n

l

)]
.

(A15)
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Again, sums on the right-hand sides correspond to the weights
of a set of subgraphs. The three sets that emerge are as follows:

(i) T n
h
↭m: Spanning trees such that the sequence of undi-

rected edges connecting n and m pass through h, obtained by
adding an edge incident to h that joins the two components of
a 2-forest.

(ii) Cm,hFn: Spanning subgraphs composed of a cycle
graph component containing the vertex m and a cycle through
h, plus a tree component containing the vertex n. They are
formed by adding an edge incident to h to a 2-forest f m � f n,
where the edge links two vertices in the f m component.

(iii) FmCn,h: Spanning subgraphs composed of a cycle
graph component containing the vertex n and a cycle through
h, plus a tree component containing the vertex m. They are
formed by adding an edge incident to h to a 2-forest f m � f n,
where the edge links two vertices in the f n component.

With this notation, we separately combine the positive and
negative terms in the sums in (A14) and (A15), so that they
can be equated to the weights of these sets as∑

Fmn,l
j �=h

Wh jw
(

f m
l � f n

j

) + Wjhw
(

f m
h � f n

l

)

= w(FmCn,h) + w(Cm,hFn) + w(T n
h
↭m), (A16)

−
∑
Fmn,l

j �=h

Wh jw
(

f m
j � f n

l

) + Wjhw
(

f m
l � f n

h

)

= −w(Cm,hFn) − w(FmCn,h) − w(T n
h
↭m). (A17)

It is easy to see that both sums generate the entire sets FmCn,h

and Cm,hFn. Furthermore, every element of T n
h
↭m is indeed

contained in the sums on the left-hand sides. To see this, let us
follow the sequence of undirected edges from m to n in order.
If we remove the unique edge immediately following vertex h,
we obtain a 2-forest where m and h are in the same component,
which corresponds to terms in one of the two sums in (A16),
either Wh jw( f m

j � f n
l ) or Wjhw( f m

h � f n
l ) depending on the

orientation of the edge. Similarly, if we remove the edge
immediately prior to the vertex h, we obtain a term in (A17)
where n and h share a component. Clearly, the sum of (A16)
and (A17) is zero completing the argument.

APPENDIX B: SYMMETRIC EDGE PERTURBATION

In this Appendix, we prove the thermodynamic bound
in (15). The plan is to first utilize the graphical solutions to
linear equations described above to arrange the expression for
the observable response into a convenient form. This form
will allow us to state our problem of bounding the response
as a linear optimization problem, whose optima provide the
desired limits.

1. Response as a linear optimization problem

To begin, we observe that the response of the average
〈Q〉 = ∑

i Qiπi of an observable,

∂〈Q〉
∂Bmn

=
N∑

i=1

Qi
∂πi

∂Bmn
, (B1)

is determined by how the steady-state distribution responds.
By differentiating the master equation (1), we find that
these derivatives can be obtained as the solution of the
inhomogeneous linear equations

N∑
j=1

Wi j
∂π j

∂Bmn
= J̄mn(δim − δin). (B2)

These equations have the form previously introduced in (A6),
and thus the solution can be compactly organized in terms of
2-forests (A7) as

∂πi

∂Bmn
= J̄mn

N
∑
Fmn, j

w
(

f m
j � f n

i

) − w
(

f m
i � f n

j

)
, (B3)

which is illustrated in Fig. 10.
Inserting this expression into (B1), rearranging the sum,

then multiplying and dividing by two factors—πiπ j and(√
w(Cmn) + √

w(Cnm)
)2

—we arrive at the sought-after form∣∣∣∣ ∂〈Q〉
∂Bmn

∣∣∣∣ = M
∣∣∣∣∑

i, j

(
Qj − Qi

)
πiπ jPi j

∣∣∣∣, (B4)

where we have separated out an overall magnitude

M = |w(Cmn) − w(Cnm)|(√
w(Cmn) + √

w(Cnm)
)2 (B5)

and a collection of structural coefficients

Pi j =
(√

w(Cmn) +
√

w(Cnm)
)2

Pi j,

where Pi j =
∑

Fmn w
(

f m
i � f n

j

)∑
T w(Ti )

∑
T w(Tj )

(B6)

are forest-tree ratios. Note that the subscripts align with the
forest notation, so that the left subscript i is in the f m compo-
nent and the right subscript j is in the f n component.

Equation (B4) allows us to divide the problem into two. In
Appendix B 2, we show that the overall magnitude is bounded
by the thermodynamic driving force,

M � tanh(Fmax/4), (B7)

where Fmax = maxCmn |F (Cmn)| is the maximum over all cycle
forces through the perturbed edge. Then in Appendix B 3,
we use graph-theoretic arguments to deduce linear relation-
ships among the structural coefficients, demonstrating that the
structural coefficients Pi j are confined to a convex polytope.
As a result, the fundamental theorem of linear program-
ming [78] implies that the vertices of this polytope, which
turn out to be topologically consistent splittings, are potential
optima, and

max
Pi j

∣∣∣∣∑
i, j

(
Qj − Qi

)
πiπ jPi j

∣∣∣∣ � max
Vmn

|〈〈Q, δ(V m)〉〉|. (B8)

Together these inequalities imply our main result (15).
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FIG. 10. Graphical representation of the solution to the class of linear equations (A7), which provides a convenient expression for the
symmetric edge perturbation (B3) of the steady-state probability distribution. We again consider the house graph with a symmetric edge
perturbation on edge ē12. The response of π3 is composed of two terms: A positive one, which is a sum of weights of all rooted 2-forests
f 1
l � f 2

3 (both roots are highlighted in pink), and a negative one, which is a sum of weights on all rooted 2-forests f 1
3 � f 2

l .

2. Bounding the response magnitude

Factoring the numerator of the response magnitude (B5),
we find

M =
∣∣∣∣
√

w(Cmn) − √
w(Cnm)√

w(Cmn) + √
w(Cnm)

∣∣∣∣ = tanh

(
1

4

∣∣∣∣ln w(Cmn)

w(Cnm)

∣∣∣∣
)

.

(B9)

Then an application of the log-sum inequality [79] to the sums
over cycle graphs and the definition of cycle force (A4) leads
to the sequence of bounds

M� tanh

(
1

4 w(Cmn)

∑
Cmn

w(Cmn)|F (Cmn)|
)
� tanh(Fmax/4).

(B10)

3. Bounding the structural coefficients

The structural coefficients (B6) are formed from spanning
forests and therefore are not independent. In this section,
we will first demonstrate that the forest-tree ratios Pi j (and
therefore the structural coefficients Pi j) are constrained by a
collection of linear equalities and inequalities, and thus are
confined to a convex polytope. This will allow us to apply the
machinery from optimization theory to deduce our bounds on
response.

First, we note that due to their definition, the forest-tree
ratios are non-negative, Pi j � 0. A number of them are also
trivially zero,

Pim = 0, i �= m, (B11)

Pni = 0, i �= n, (B12)

Pii = 0, (B13)

since a vertex can only be in one component, and the 2-forests
f m

j � f n
m and f m

n � f n
i with m or n in the opposite component

are not possible. In the following, we will show that the forest-
tree ratios are further related by

Pi j � Pm j, Pin, (B14)

Pmi + Pi j = Pm j + Pji, (B15)

Pin + Pji = Pjn + Pi j, (B16)

which naturally extend to the structural coefficients Pi j that
determine the response. Furthermore, we will demonstrate
that the structural coefficient

Pmn � 1 (B17)

is bounded, which also constrains all other structural coeffi-
cients Pi j � 1 (B14).

Our main tool for deducing the above relationships we call
the Root-Swap map. It is an invertible function that maps a
rooted spanning tree and a rooted spanning 2-forest (Ti, f m

k �
f n
l ) to another such pair keeping the total weight fixed, but

interchanging the roots of the tree and the forest:

w(Ti )w
(

f m
k � f n

l

) Root−Swap−−−−−−→ {
w(T ′

k )w
(

f ′m
i � f ′n

l

)
or w(T ′

l )w
(

f ′m
k � f ′n

i

)}
. (B18)

Notably, which root of the forest ends up getting swapped
depends on the input tree Ti. Regardless of the case, however,
the output of the map is unique.

To construct this map, we need to introduce additional
definitions:

Source of directed edge: Denoted s( f )—the starting vertex of
a directed edge f .
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Start
identify edge

swap edge and 
identify edge identify edge

swap edge and 
identify edge

End
swap edge and 

swap edge 

FIG. 11. Example application of the Root-Swap map taking the pair (T3, f 1
1 � f 2

5 ) as input and outputting the pair (T ′
5 , f ′1

1 � f ′2
3 ). Each

panel contains one step of the Edge-Swap operation.

Target of directed edge: Denoted t (e)—the ending vertex of a
directed edge e.

Doubly rooted spanning 2-forest: Denoted f m
k � f n

l p,q—a sub-
graph of G which is a spanning 2-forest formed as follows.
The first component f m

k contains vertex m and is rooted at k.
The second component f n

l p,q contains vertex n and is doubly
rooted with roots l and p split by a branch point q, i.e., every
edge is directed as in f n

l and f n
p when those directions coin-

cide, and otherwise directed toward l if between q and l and
toward p if between q and p. Note that f m

k � f n
l coincides with

any doubly rooted 2-forest of the type f m
k � f n

pl,p or f m
k � f n

l p,p
for any p.

The Root-Swap map is then built from repeated applica-
tions of the Edge-Swap operation:

Edge-Swap: Input (Tq, f m
k � f n

l p,q ). Remove from f n
l p,q the

unique edge e pointing out of the branch point q towards
p, the vertex in the middle position. This splits f n

l p,q into
two disjoint components: D, which contains vertex n, and D̄,
which does not. Insert e into Tq, thereby creating a cycle C
oriented from q = s(e) to t (e). Note that this cycle may be
formed by only two edges, e and another edge in the opposite
orientation. Starting from t (e), march along the links of this
cycle C following its orientation until you find the first edge
f that reconnects D̄ back to D or to the other component f m

k .
Remove f to form a new rooted tree T ′

s( f ), and insert f back
into the pieces of the 2-forest to form either f ′m

kp,s( f ) � f ′n
l , f ′m

k �
f ′n
l p,s( f ), or f ′m

lk,s( f ) � f ′n
p . Output the result: (T ′

s( f ), f ′m
kp,s( f ) � f ′n

l ),
(T ′

s( f ), f ′m
k � f ′n

l p,s( f ) ), or (T ′
s( f ), f ′m

lk,s( f ) � f ′n
p).

With these tools in hand, we implement the Root-Swap
map on the pair (Ti, f m

k � f n
l ) as follows [where we assume

without loss of generality that i ∈ V ( f n) initially]. An illus-
tration is presented in Fig. 11:

Root-Swap (Ti, f m
k � f n

l ):

(1) Identify the input with the doubly rooted forest as
(Ti, f m

k � f n
il,i ).

(2) Repeatedly apply Edge-Swap until there is no edge point-
ing out of the branch point in the appropriate direction, which
occurs when the branch point becomes one of the original
roots with pair (T ′

k , f ′m
ik,k � f ′n

l ) or (T ′
l , f ′m

k � f ′n
il,l ).

(3) Output the result, either (T ′
k , f ′m

i � f ′n
l ) or (T ′

l , f ′m
k � f ′n

i ).

The above algorithm always terminates. When the initial
edge e is removed during the first application of Edge-Swap,
the component D containing n may also include the original
root l , or the original root may be in D̄ with D instead rooted
at i. In the first instance, we initially have tree-components Dl

and D̄i, and every subsequent application of Edge-Swap will
grow the component D̄i by marching the branch point closer to
l or k, until the branch point merges with one of the original
roots, and the algorithm terminates. In the second instance,
after removal of e we have components Di and D̄l , with each
application of Edge-Swap shrinking D̄l until the branch point
merges with l , terminating the algorithm. This second instance
is what is illustrated in Fig. 11.

Root-Swap is also invertible. Each step of Edge-Swap can
be reversed, as we can always find the swapped edge by
following the cycle C along its reverse orientation. Moreover,
the starting point can be identified since the root of the tree
serves as the first branch point, which we see by looking at the
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terminal configurations, (T ′
k , f ′m

ik,k � f ′n
l ) or (T ′

l , f ′m
k � f ′n

il,l ). We would begin by removing the unique edge pointing into k or l .
Finally the weights are conserved, as edges are merely swapped; no edges are created, destroyed, or reoriented.
With Root-Swap in hand, we now utilize it to derive (B14)–(B17):
(1) Derivation of Pi j � Pm j, Pin (B14): The derivation proceeds by using the Root-Swap map to change the subscripts in the

forest-tree weights. With this in mind, we begin by manipulating the definition of Pm j (B6) by multiplying and dividing by the
weight all spanning trees rooted at i, and then apply the Root-Swap map:

Pm j = 1∑
T w(Tm)

∑
T w(Ti )

∑
T w(Tj )

[∑
T

∑
Fmn

w(Ti )w
(

f m
m � f n

j

)]
(B19)

= 1∑
T w(Tm)

∑
T w(Ti )

∑
T w(Tj )

⎡
⎢⎣ ∑

{Tm, f m
i � f n

j }∈RS

w(Tm)w
(

f m
i � f n

j

) +
∑

{Tj , f m
m � f n

i }∈RS

w(Tj )w
(

f m
m � f n

i

)⎤⎥⎦. (B20)

Now importantly, application of the Root-Swap map does not necessarily generate every weighted product of trees and forests,
but in general only a subset of T × Fmn. This is notated in (B20) by confining the sum to the set RS of tree-forest pairs
generated by application of Root-Swap to (B19). We now claim that in fact all pairs in the first term, which are of the form
w(Tm)w( f m

i � f n
j ), are generated under Root-Swap and that the sum actually extends over all tree-forest pairs. This follows by

imagining there is a tree-forest pair w(Tm)w( f m
i � f n

j ) not generated by Root-Swap (not in RS). We can then apply the inverse
Root-Swap map, which can only generate a pair of the form w(Ti )w( f m

m � f n
j ) (as m cannot be in the f n component). Due to

the uniqueness of the Root-Swap map, this term had to be present in the original sum in (B19), and therefore there are no pairs
w(Tm)w( f m

i � f n
j ) not in RS. Thus, we have

Pm j = 1∑
T w(Tm)

∑
T w(Ti)

∑
T w(Tj )

⎡
⎢⎣ ∑

T ,Fmn

w(Tm)w
(

f m
i � f n

j

) +
∑

{Tj , f m
m � f n

i }∈RS

w(Tj )w
(

f m
m � f n

ji

)⎤⎥⎦ (B21)

� Pi j, (B22)

where we have identified Pi j (B6) and noted the remaining terms are positive. A similar argument leads to the conclusion that
Pin � Pi j as well.

(2) Derivation of Pmi + Pi j = Pm j + Pji (B15) and Pin + Pji = Pjn + Pi j (B16): We rearrange the sum Pmi + Pi j as

Pmi + Pi j = 1∑
T w(Tm)

∑
T w(Ti )

∑
T w(Tj )

⎡
⎣ ∑

T ,Fmn

w(Tj )w
(

f m
m � f n

i

) +
∑

T ,Fmn

w(Tm)w
(

f m
i � f n

j

)⎤⎦, (B23)

so that we can apply the Root-Swap map to interchange the subscripts

Pmi + Pi j = 1∑
T w(Tm)

∑
T w(Ti )

∑
T w(Tj )

⎡
⎢⎣ ∑

{Tm, f m
j � f n

i }∈RS′
w(Tm)w

(
f m

j � f n
i

) +
∑

{Ti, f m
m � f n

j }∈RS′
w(Ti )w

(
f m
m � f n

j

)⎤⎥⎦, (B24)

with RS′ the image of the Root-Swap map applied to (B23). Again, we claim that the sums actually extend over all tree-forest
pairs, T × Fmn. Indeed, one can check, for example, that if there were a pair w(Tm)w( f m

j � f n
i ) /∈ RS′, application of the inverse

Root-Swap map would generate a term in one of the sums in (B23), leading to a contradiction. Thus, we have

Pmi + Pi j = 1∑
T w(Tm)

∑
T w(Ti )

∑
T w(Tj )

⎡
⎣ ∑

T ,Fmn

w(Tm)w
(

f m
j � f n

i

) +
∑

T ,Fmn

w(Ti )w
(

f m
m � f n

j

)⎤⎦ (B25)

= Pji + Pm j . (B26)

An identical argument holds for Pin + Pji = Pjn + Pi j (B16).
(3) Derivation of Pmn � 1(B17): From the definition of the structural coefficients (B6), we have

Pmn =
(√

w(Cmn) +
√

w(Cnm)
)2

∑
Fmn w

(
f m
m � f n

n

)∑
T w(Tm)

∑
T w(Tn)

. (B27)
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(a)

(b)

(c)

feasible polytope

FIG. 12. (a) Triangle graph with perturbed edge ē12 (highlighted in pink). (b) 2-forests F12. (c) Feasible polytope: The only structural
coefficients that are not trivially zero are P12, P13, and P32. As there is only one linearly independent equality constraint, P12 = P13 + P32, the
feasible polytope has dimension d = 2. Its vertices are the trivial case (0,0,0), as well as (1,1,0) and (1,0,1), which are each associated with a
2-forest.

Next, we expand the denominator into sums of trees with the perturbed edge T mn ∈ T mn and those without Smn ∈ Smn

(irrespective of orientation), and then we apply the inequality of arithmetic and geometric means (AM-GM inequality),

∑
T

w(Tm)
∑
T

w(Tn) =
[∑
T mn

w
(
T mn

m

) +
∑
Smn

w(Smn
m )

][∑
T mn

w
(
T mn

n

) +
∑
Smn

w
(
Smn

n

)]
(B28)

�

⎛
⎝√∑

T mn

w
(
T mn

m

)∑
Smn

w(Smn
n ) +

√∑
T mn

w
(
T mn

n

)∑
Smn

w(Smn
m )

⎞
⎠2

. (B29)

Now, take the terms inside the first square root
w(T mn

m )w(Smn
n ). Because T mn

m is rooted at m, edge emn

linking m and n must indeed be oriented towards m. Removal
of this edge emn from T mn

m forms a 2-forest, f m
m � f n

n . If
we then add that edge to Smn

n , we form a cycle-graph Cmn.
Thus, w(T mn

m )w(Smn
n ) = w(Cmn)w( f m

m � f n
n ). Applying this

argument to every term above, we find∑
T

w(Tm)
∑
T

w(Tn)

�
(√

w(Cmn) +
√

w(Cnm)
)2 ∑

Fmn

w
(

f m
m � f n

n

)
, (B30)

which implies the desired result.
The linear relationships between the structural coefficients

implied by (B14)–(B17) confine the Pi j to a convex polytope,
called the feasible polytope. For the three-state triangle graph
we can visualize this polytope; see Fig. 12. Limits to the
response can then be deduced by identifying the values of the
Pi j inside this polytope that maximize the response. Namely,
we can collect the constraints in (B14)–(B17) together to
frame our question as the linear optimization problem:

max
Pi j

∣∣∣∣∑
i, j

(
Qj − Qi

)
πiπ jPi j

∣∣∣∣ such that for all i �= j �= m, n,

(B31)

0 � Pi j � Pm j � Pmn � 1, (B32)

0 � Pi j � Pin � Pmn � 1, (B33)

Pmn = Pmi + Pin, (B34)

Pmi + Pi j = Pm j + P ji, (B35)

Pin + P ji = P jn + Pi j . (B36)

The fundamental theorem of linear programming then states
that the solution to this optimization problem will be one of
the vertices of the feasible polytope [78].

To determine the vertices of the feasible polytope, we first
determine its dimension d given by the number of trivially
nonzero structural coefficients less the number of linearly
independent equality constraints:

d =
Pmn︷︸︸︷
1 +

Pmi,Pin (i �=m,n)︷ ︸︸ ︷
2(N − 2) +

Pi j (i �= j �=m,n)︷ ︸︸ ︷
(N − 2)(N − 3)

−
(B34)︷ ︸︸ ︷

(N − 2) −
(B35),(i> j)︷ ︸︸ ︷

(N − 2)(N − 3)/2

= 1 + N − 2 + (N − 2)(N − 3)/2. (B37)

A vertex is then the unique solution to a subset of at least d
of the inequalities in (B32) and (B33) solved as equalities.
In the following, we show that at these vertices all structural
coefficients Pi j are either one or zero, that is, they form a
subset of the vertices of the positive unit hypercube.

We only need to focus on a collection of d linearly inde-
pendent structural coefficients, which we choose to be Pmn,
Pmi (i �= m, n), and Pi j (i > j; i �= j �= m, n). We then ex-
press all the inequalities in (B32) and (B33) in terms of our
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independent variables. After eliminating any redundant in-
equalities, we find for i > j; i �= j �= m, n,

0 � Pi j � Pm j � Pmn � 1, (B38)

Pmi + Pi j � Pmn, (B39)

Pm j � Pmi + Pi j . (B40)

Clearly, if Pmn = 0, then all structural coefficients are zero,
leading to a trivial solution that clearly cannot be a maximum.
Thus, Pmn �= 0.

So we consider the case in which Pmn �= 0. We will now
argue that at every vertex all the structural coefficients are
either 0 or 1. To determine the vertices, we systematically
choose one inequality to saturate and use that equality to
fix a structural coefficient. Doing that d times leads to the
conditions for a vertex, as long as the solution is consistent
with all other inequalities. We will begin by carrying out this
program only for the string of inequalities in (B38), identify-
ing a collection of vertices on the unit hypercube. Any other
vertices can then be obtained by starting from a known vertex
and then marching along every edge of the feasible polytope
until arriving at another vertex, in the spirit of the simplex
algorithm [78]. It will turn out that starting from any known
vertex, every edge connects it to another already-identified
vertex on the unit hypercube.

First, we fix Pmn = 1, saturating one inequality. For each
remaining structural coefficient we can fix its value by saturat-
ing either the upper or lower inequality in (B38). Specifically,
we can choose either Pm j = 1 or Pm j = Pi′ j for some i′ > j.
If we fixed a particular structural coefficient via the second
equality, Pm j = Pi′ j , then the only way to fix Pi′ j using one of
the remaining inequalities in (B38) is to set Pm j = Pi′ j = 0.
This automatically sets all Pm j = Pi j = 0 for i > j. On the
other hand, if we had set Pm j = 1, then each Pi j for i > j
can be set to either Pi j = 0 or Pi j = Pm j = 1. However, an
inconsistency could arise with (B39) if Pi j = 1 and Pmi = 1
(2 � 1). So we must choose consistently Pmi = 0 with Pi j =
1. Similarly, an inconsistency could arise with (B40) if Pm j =
1 and Pi j = 0 with Pmi = 0 (1 � 0). Thus, we must choose
consistently Pi j = 1 when Pm j = 1 and Pmi = 0.

We can characterize these vertices by recognizing that the
condition that either Pm j = 1 or Pm j = 0 splits the set of
states into two groups. In the first group, Pm j = 1, and j is
associated with the f n component. Let us collect these nodes
into a set j ∈ V n. The remaining set of nodes, Pmi = 0, can be
characterized via (B34) by the condition Pin = Pmn − Pmi =
1, which allows us to associate them to the f m component.
We call this set i ∈ V m. The remaining vertex conditions are
consistent with this splitting. Indeed, if i ∈ V m, then Pmi = 0
implies Pqi = 0 for all q. Similarly, if j ∈ V n, then Pm j = 1
implies either Pq j = 1 or Pq j = 0, depending on whether
q ∈ V m or not.

The vertices we have identified so far turn out to be all the
possible vertices. We can see this by using already identified
vertices to detect any remaining ones. Vertices are linked by
edges of the polytope, where d − 1 inequalities are saturated.
Thus, starting from any vertex, we can identify additional
vertices by marching along all incident edges. We accomplish
this by taking one of the saturated equalities, and relax it by

varying one of the coefficients. This gives us the one degree
of freedom required to delineate the edge. To this end, let us
choose a polytope vertex and label the states as jα, jβ, . . . ∈
V n and iα, iβ, . . . ∈ V m. Then one can check that nearly all the
inequalities in (B38)–(B40) are saturated except

0 = P jβ jα � Pm jα = 1, 0 = Pm,iα + Piβ ,iα � Pmn = 1.

(B41)

These inequalities provide the only freedom for saturating
new inequalities where we would find a new vertex. Thus,
we can move any one of these coefficients from their current
value to a new value that saturates either of these inequalities.
At this new vertex, however, it is clear again that all structural
coefficients will in fact be 0 or 1, as claimed. Furthermore, as
we move any coefficient from 1 → 0 or 0 → 1, the remaining
equalities will keep all coefficients in the feasible polytope.
The effect is just switching one of the states between the V n

and V m sets.
The last step in characterizing the vertices of the polytope

is to recognize that the splitting of the graph nodes into
the sets V n and V m has to be consistent with the definition
of the structural coefficients in terms of 2-forests. Take, for
example, an i ∈ V m and j ∈ V n, so that at this vertex Pi j = 1;
however, this structural coefficient can only be nonzero if
there exists at least one forest of the form f m

i � f n
j . Thus, the

only potential allowable choices of V n and V m are when they
align with the vertex sets of a 2-forest, that is, V n = V ( f n)
and V m = V ( f m).

Now, with knowledge of the structural coefficients at the
vertices, we can calculate the value of our objective function
at these potential optima. Recognizing that V m � V n = V (G),
so that

∑
j∈V m π j + ∑

j∈V n π j = 1, we have

∑
i, j

(
Qj − Qi

)
πiπ jPi j

∣∣∣∣
vertex

=
∑
i∈V m

∑
j∈V n

(
Qj − Qi

)
πiπ j

=
∑
j∈V n

Qjπ j

∑
i∈V m

πi −
⎛
⎝〈Q〉 −

∑
j∈V n

Qjπ j

⎞
⎠ ∑

j∈V n

π j

=
∑
j∈V n

Qjπ j − 〈Q〉
∑
j∈V n

π j

= 〈〈Q, δ(V n)〉〉 = −〈〈Q, δ(V m)〉〉, (B42)

with δi(V ) the characteristic function of a vertex set V , tak-
ing value 1 when i ∈ V and 0 otherwise. We arrive at our
bound (B8) by noting that any one of the vertices could be
the maximum. The particular one depends on the observable
and the steady-state distribution.

4. Optimal network topologies

The conditions on the rates for saturation of (15) suggest
design principles for constructing optimal network topologies
that maximize the response under thermodynamic and noise
constraints. There are two key bounds that must be saturated.
The first is the limit on the response magnitude M (B10), and
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the second is the linear optimization problem that is set up
in (B31). We address each in turn.

The bound on M (B10) becomes an equality when every
cycle through m and n has the same weight. The simplest and
perhaps most generic situation where this occurs is when there
is a single cycle Cmn through m and n. Thus, to saturate the
inequality we cut all cycles passing through m and n except
for one. To cut a cycle, we must delete one edge in that cycle
by sending the rates on that edge to zero.

The second condition on an optimal topology emerges
from the optimal solution of the linear optimization prob-
lem in (B31). Our derivation reveals that at the optimum
the structural coefficients Pi j (B6) are either 0 or 1. The
distinction depends on whether they contain the weight of a
forest which aligns with the optimal vertex set. The simplest
scenario where this occurs is where there is a single dominant
2-forest. This can be arranged by setting all the rates on the
2-forest to be large, which in effect makes every structural
coefficient containing that 2-forest approximately 1 (when
there is a single cycle), and all others are 0. Fast rates contract
edges of the network, replacing the source and target of the
edge with a single effective node.

Putting these observations together suggests that the opti-
mal topology is composed of two fast islands formed by the
trees contained in a single forest, which are each contracted
into a pair of single nodes. These two islands are then linked
up by a pair of slow edges that complete the single cycle
network.

APPENDIX C: MULTIPLE CONNECTED EDGE
SYMMETRIC PERTURBATION

Here, we expand on the previous bounds to include the
symmetric perturbation of multiple connected edges of the
graph, and we derive (16). Our assumption is that these edges
(with their incident nodes) form a subgraph Hmn of G that only
connects to the rest of the graph at two vertices, which we call
m and n, as illustrated in Fig. 13. Note that m and n may not
be directly linked by any single edge, but there is at least one
path between m and n through Hmn. All the edges not in Hmn

and incident to either m or n form a cut-set of G, which we
label as Kmn—removing all of them splits G into two separate
connected components.

To bound the response of an observable to a concerted
and uniform symmetric perturbation of all edges in Hmn, we
follow closely our derivation for a single edge and consider
the derivative ∑

ēlk∈Hmn

∂〈Q〉
∂Blk

=
N∑

j=1

Qj

∑
ēlk∈Hmn

∂π j

∂Blk
, (C1)

with the steady-state responses solving the set of inhomoge-
neous linear equations

N∑
j=1

Wi j

⎛
⎝ ∑

ēlk∈Hmn

∂π j

∂Blk

⎞
⎠ =

∑
ēlk∈Hmn

J̄lk (δil − δik ). (C2)

At this point, we recall that conservation of probability re-
quires that the total probability current flowing into or out of
any vertex is zero,

∑
i J̄i j = ∑

j J̄i j = 0. Therefore, the sums
in (C2) at vertices internal to Hmn cancel. Only at m and n does

cycle

subgraph

cut-set

FIG. 13. Multiedge perturbation in a generic graph: All edges
(pink) in the subgraph Hmn (gray) are perturbed uniformly. Remov-
ing all edges of the cut-set Kmn (green) splits the graph into two
separate subgraphs. The probability current J̄H (blue arrows) flowing
in and out of Hmn is due to cycles CH that straddle the perturbed and
unperturbed regions.

the sum on probability currents leave an imbalance equal to
the total probability flowing into or out of the subgraph Hmn,

N∑
j=1

Wi j

⎛
⎝ ∑

elk∈Hmn

∂π j

∂Blk

⎞
⎠ = J̄H (δim − δin), (C3)

with total probability flow out of Hmn (which is the same as
into due to probability conservation) given by the sum of the
currents on all edges in the cut-set oriented away from m,

J̄H =
∑

eim∈Kmn

J̄im = 1

N [w(CH ) − w(C̃H )]. (C4)

Here, we have further observed that this probability current is
only due to cycle-graphs in CH whose cycles straddle Hmn and
its complement, oriented such that they exit at m and enter at n,
as illustrated in Fig. 13. The solution of (C3) can be organized
using 2-forests [cf. (A7)],∑

ēlk∈Hmn

∂π j

∂Blk
= J̄H

N
∑
Fmn, j

w
(

f m
j � f n

i

) − w
(

f m
i � f n

j

)
. (C5)

Substitution into (C1) and rearranging as before leads to∣∣∣∣∣∣
∑

ēlk∈Hmn

∂〈Q〉
∂Blk

∣∣∣∣∣∣ = MH

∣∣∣∣∑
i, j

(
Qj − Qi

)
πiπ jPH

i j

∣∣∣∣, (C6)

with overall magnitude

MH = |w(CH ) − w(C̃H )|(√
w(CH ) +

√
w(C̃H )

)2 , (C7)

and structural coefficients

PH
i j =

(√
w(CH ) +

√
w(C̃H )

)2
Pi j,

where Pi j =
∑

Fmn w
(

f m
i � f n

j

)∑
T w(Ti )

∑
T w(Tj )

. (C8)
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In the following, we bound the magnitude as well as the sum
over structural coefficients.

The bound on MH follows the exact same line of reasoning
we used to bound M in Appendix B 2. The result is

MH � tanh(Fmax/4), (C9)

except here Fmax = maxC∈CH |F (C)| as it emerges from ratios
of elements of CH and C̃H .

Next, we observe that the structural coefficients PH
i j are

defined in terms of the same type of forest-tree ratios that
appeared in our analysis of a single-edge perturbation. Fur-
thermore, the linear relationships between the forest-tree
ratios in (B14)–(B16) did not depend on the vertices being
linked by an edge, and thus they hold here as well. The only
potential difference from our single-edge analysis is the bound

PH
mn � 1 [cf. (B17)], but this holds as well. From its definition,

we have

PH
mn =

(√
w(CH ) +

√
w(C̃H )

)2
∑

Fmn w
(

f m
m � f n

n

)∑
T w(Tm)

∑
T w(Tn)

.

(C10)

We lower bound the denominator by observing that since Hmn

is only incident to the rest of the graph at two nodes, any path
in a tree that links m and n must be contained entirely in Hmn

or its complement; in other words, no path can enter or leave
Hmn without crossing through m or n. This allows us to divide

the sum over trees in the denominator into those T n
H
↭m where

the unique path that connects m and n is contained entirely

in Hmn and those Sn
H
↭m ∈ Sn

H
↭m where the path is entirely

contained in the complement of Hmn:

∑
T

w(Tm)
∑
T

w(Tn) =

⎡
⎢⎣ ∑

T n
H
↭m

w
(

T n
H
↭m

m

)
+

∑
Sn

H
↭m

w
(

Sm
H
↭m

n

)⎤⎥⎦
⎡
⎢⎣ ∑

T n
H
↭m

w
(

T n
H
↭m

n

)
+

∑
Sn

H
↭m

w
(

Sn
H
↭m

n

)⎤⎥⎦. (C11)

Expanding the denominator and applying the AM-GM inequality, we have

∑
T

w(Tm)
∑
T

w(Tn) �
(√√√√ ∑

T n
H
↭m,Sn

H
↭m

w
(

T n
H
↭m

m

)
w
(

Sn
H
↭m

n

)
+

√√√√ ∑
T n

H
↭m,Sn

H
↭m

w
(

T n
H
↭m

n

)
w
(

Sm
H
↭m

n

))2

. (C12)

Now, take the terms inside the first square root

w
(

T n
H
↭m

m

)
w
(

Sn
H
↭m

n

)
. The part of the tree T n

H
↭m

m inside the

perturbed region Hmn is by definition connected and rooted

at m. By contrast, the part of the tree Sn
H
↭m

n in Hmn is not
connected, but is composed of two connected components,
one rooted at m and the other rooted at n. This is the only
arrangement possible in a tree rooted at n if m is to be
linked to n in the complement of Hmn. We now swap all

the perturbed edges in T n
H
↭m

m with all the perturbed edges in

Sn
H
↭m

n . The tree that initially had the path between m and n
in Hmn is now disconnected and forms a 2-forest f m

m � f n
n .

The tree that did not have a path between m and n in Hmn has
one now, forming a cycle-graph in the set CH . This is just
like the single-edge perturbation, except instead of swapping
a single edge, we swap all the perturbed edges together.
Applying a similar argument to the second sum in (C12)
results in∑
T

w(Tm)
∑
T

w(Tn)�
(√

w(CH ) +
√
w(C̃H )

)2∑
Fmn

w
(

f m
m � f n

n

)
,

(C13)

which implies the desired result.

APPENDIX D: ARBITRARY SINGLE
RATE PERTURBATION

In this Appendix, we adapt the methods developed above to
derive (18). The response of an observable to the logarithmic

perturbation of a single kinetic rate Wmn is

∂〈Q〉
∂ ln Wmn

=
N∑

j=1

Qj
∂π j

∂ ln Wmn
. (D1)

Here, the master equation implies that the responses of the
steady-state distribution satisfy

N∑
j=1

Wi j
∂π j

∂ ln Wmn
= Wmnπn(δin − δim). (D2)

The solution can be compactly organized in terms of
2-forests (A7) as

∂πi

∂ ln Wmn
= Wmnπn

N
∑
Fmn, j

w
(

f m
i � f n

j

) − w
(

f m
j � f n

i

)
. (D3)

Substituting into (D1) and reorganizing, we recover the struc-
ture in Appendix B,∣∣∣∣ ∂〈Q〉

∂ ln Wmn

∣∣∣∣ =
∣∣∣∣∑

i, j

(
Qj − Qi

)
πiπ jPW

i j

∣∣∣∣, (D4)

where in this case the structural coefficients are

PW
i j =Wmn

∑
T

w(Tn)Pi j, with Pi j =
∑

Fmn w
(

f m
i � f n

j

)∑
T w(Ti )

∑
T w(Tj )

.

(D5)

We again conclude that the structural coefficients retain the
linear relationships presented in (B14)–(B17) necessary to
bound this sum. The only potential change is the overall mag-
nitude, requiring us to demonstrate that PW

mn � 1 as in (B17).
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From the definition of the structural coefficients, we have

PW
mn = Wmn

∑
T

w(Tn)

∑
Fmn w

(
f m
m � f n

n

)∑
T w(Tm)

∑
T w(Tn)

=
∑

Fmn Wmnw
(

f m
m � f n

n

)∑
T w(Tm)

. (D6)

Recognizing that addition of the edge emn to a 2-forest f m
m �

f n
n results in a tree T n→m

m rooted at m with the edge directed
from n → m, so that Wmnw( f m

m � f n
n ) = w(T n→m

m ), we have

PW
mn =

∑
T w

(
T n→m

m

)∑
T w(Tm)

� 1, (D7)

where the inequality follows because the set of all trees in-
cludes more trees than just those that contain the edge emn.

APPENDIX E: OPERATIONAL LIMITS:
BOUNDS ON COVARIANCE

To bound the recurring covariance max
Vmn

|〈〈Q, δ(V m)〉〉|, we

start by noting that each δ(V m) is non-negative and bounded
by 1 [0 � δ(V m) � 1]. Let us consider the set of all such
bounded observables, BO = {A|0 � Ai � 1}, of which δ(V m)
is a member. Then, the correlation we wish to constrain can
be bounded by the maximum over all steady states πi and all
bounded observables, keeping the average 〈Q〉 and variance
〈〈Q2〉〉 fixed:

max
Vmn

|〈〈Q, δ(V m)〉〉| � max
{π,A∈BO|〈Q〉,〈〈Q2〉〉}

|〈〈Q, A〉〉|. (E1)

To facilitate this calculation, we use that 〈Q〉 is fixed to shift
the observable so that its mean is 0,

Q̃i = Qi − 〈Q〉, (E2)

and we introduce a notation for the value of the fixed variance
〈〈Q2〉〉 = 〈Q̃2〉 = v. As the covariance is invariant to constant
shifts, our problem becomes

max
{π,A∈BO|〈Q〉,〈〈Q2〉〉}

|〈〈Q, A〉〉| = max
{π,A∈BO|〈Q̃〉,〈Q̃2〉}

|〈〈Q̃, A〉〉|

= max
{π,A∈BO|〈Q̃〉,〈Q̃2〉}

∣∣∣∣∣∣
N∑

j=1

Q̃ jA jπ j

∣∣∣∣∣∣.
(E3)

We first perform the maximization over all A ∈ BO. As 〈Q̃〉 =
0, we can divide the vertices into those where the observable
is positive, Q̃+ = {i|Q̃i � 0}, and those where it is negative,
Q̃− = {i|Q̃i < 0}. We can clearly maximize (E3) by only
keeping terms in the sum that have the same sign. If we
keep only positive terms, by setting Ai = 1 for all i ∈ Q̃+ and
Ai = 0 otherwise, we find

max
{π,A∈BO|〈Q〉,〈〈Q2〉〉}

|〈〈Q, A〉〉| = max
{π |〈Q̃〉,〈Q̃2〉}

∣∣∣∣∣∣
∑
j∈Q̃+

Q̃ jπ j

∣∣∣∣∣∣. (E4)

Notice if we had kept only negative terms, we would have
arrived at the same bound as |∑ j∈Q̃+ Q̃ jπ j | = |∑ j∈Q̃− Q̃ jπ j |.

We have thus reduced our analysis to the following linear
optimization problem:

max
π

∣∣∣∣∣ ∑
j∈Q̃+

Q̃ jπ j

∣∣∣∣∣ such that (E5)

0 � πi � 1, (E6)∑
i

πi = 1, (E7)∑
i

Q̃iπi = 0, (E8)∑
i

Q̃2
i πi = v. (E9)

The potential maxima are given by the vertices of the convex
polytope defined by the above constraints. With three equal-
ity constraints, the dimension of this polytope is d = N − 3.
Thus, at a vertex we need to saturate d of the inequalities
in (E6). We can only do this by setting d of the πi’s to
either 1 or 0; however, if any πi = 1, then probability con-
servation (E7) requires the probability at all other sites to
be zero, which is a situation where we cannot maintain the
mean constraint on Q̃ (E8). As a result, vertices are char-
acterized by the steady-state distribution having only three
nonzero elements and the rest zero. To have

∑
i Q̃iπi = 0,

one of the nonzero elements of π must be in Q̃+; let us call
this state i = + and have value Q̃+. Another must be in the
negative region Q̃−; let us call it i = − with value −Q̃−. The
third state we will call i = o and we will take it to have a
value in between −Q̃− � Q̃o � Q̃+. The probabilities at these
sites—π+, πo, and π−—are then determined by the equality
constraints (E7)–(E9), which read⎛

⎜⎝ 1 1 1
Q̃+ Q̃o −Q̃−
Q̃2

+ Q̃2
o Q̃2

−

⎞
⎟⎠

⎛
⎜⎝π+

πo

π−

⎞
⎟⎠ =

⎛
⎜⎝1

0
v

⎞
⎟⎠. (E10)

The unique solution is

π+ = v − Q̃oQ̃−
(Q̃+ − Q̃0)(Q̃+ + Q̃−)

, πo = Q̃+Q̃− − v

(Q̃+ − Q̃0)(Q̃0 + Q̃−)
,

π− = v + Q̃+Q̃0

(Q̃0 + Q̃−)(Q̃+ + Q̃−)
. (E11)

Positivity of the steady-state probabilities further requires the
constraints

v � Q̃oQ̃−, Q̃+Q̃− � v, v � −Q̃+Q̃o. (E12)

The value of our objective function at a vertex then depends
on whether Q̃o is positive:∣∣∣∣∣∣

∑
j∈Q̃+

Q̃ jπ j

∣∣∣∣∣∣
vertex,Q̃0�0

= |Q̃+π+|

=
∣∣∣∣ Q̃+(v − Q̃oQ̃−)

(Q̃+ − Q̃0)(Q̃+ + Q̃−)

∣∣∣∣ (E13)

or negative∣∣∣∣∣∣
∑
j∈Q̃+

Q̃ jπ j

∣∣∣∣∣∣
vertex,Q̃0�0

= |Q̃+π+ + Q̃oπo|

=
∣∣∣∣ Q̃−(v + Q̃+Q̃0)

(Q̃0 + Q̃−)(Q̃+ + Q̃−)

∣∣∣∣. (E14)
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TABLE I. Rate constants for the optimal network topology in
Fig. 6.

�μ/kT = 1 �μ/kT = 5

k1 0.457986 0.457986
k̃1 5.09981 37.6828
k2 0.457986ε 0.457986ε

k̃2 1.20478ε 1.20478ε

k3 3.09319ε 3.09319ε

k̃3 0.251558ε 0.251558ε

k4 1.98634 14.6772
k̃4 0.251558 0.251558

To find the vertex with the largest value, we next have to
maximize over the values of the observable. We will analyze
the case Q̃o � 0, and as it turns out, the maximum is the
same when Q̃o � 0. We will allow Q̃+, Q̃o, and Q̃− to vary
over all real numbers between the observable’s maximum
and minimum value, even if such values are not attained at
any particular state. Thus, we now have the bound on the
maximum

max
π

∣∣∣∣∣∣
∑
j∈Q̃+

Q̃ jπ j

∣∣∣∣∣∣ � max
Q̃+,Q̃−,Q̃o

∣∣∣∣ Q̃−(v + Q̃+Q̃0)

(Q̃0 + Q̃−)(Q̃+ + Q̃−)

∣∣∣∣. (E15)

Observe that that is a monotonically increasing function of Q̃o,
whose value is limited due to (E12) by the constraints Q̃o �
v/Q̃− � Q̃+. Thus, the maximum is attained when the value
of the observable takes its largest value Q̃o = v/Q̃−,

max
π

∣∣∣∣∣∣
∑
j∈Q̃+

Q̃ jπ j

∣∣∣∣∣∣ � max
Q̃−

∣∣∣∣ Q̃−v

Q̃2− + v

∣∣∣∣. (E16)

Notice that Q̃+ has dropped from the calculation, because
when Q̃o = v/Q̃− there is no probability on π+ = 0, and the
distribution is now peaked at two sites: πo = Q̃2

−/(Q̃2
− + v)

and π− = v/(Q̃2
− + v). Now, (E16) has a local maximum of√

v/2 when Q̃− = √
v, and this is the maximum as long as

√
v

is a value obtainable by the observable. However, Q̃− is con-
strained by the observable’s smallest (or most negative) value
Q̃m = Qm − 〈Q〉 and its largest value Q̃M = QM − 〈Q〉 via
v/Q̃M � v/Q̃o = Q̃− � |Q̃m|. This leads to three possibilities:
(1)

√
v � Q̃m, Q̃M lies in the domain of Q̃− and the maximum

TABLE II. Rate constants and the observable values for the
purple points 1, 2, and 3 in Fig. 7(a).

Point 1 Point 2 Point 3

k1 27.7025 12.530555 0.001309
k̃1 0.467072 10.464932 1.789962
k2 0.664276 29.406176 0.236687
k̃2 8.4392 57.100834 272.941976
k3 1.97131 320.175943 76.741704
k̃3 0.142501 12.530555 0.023359
k4 4.07565 516.106104 6.817252
k̃4 0.00288908 180.74206 0.018179
f2 = f4 0.571365 0.559462 0.416399

is
√

v/2. (2) If Q̃m � Q̃M , then we can have |Q̃m| � √
v �

Q̃M . In this case, the maximum is obtained on the boundary
where Q̃− = |Q̃m| with value |Q̃m|v/(Q̃2

m + v). (3) If Q̃M �
Q̃m, then we can have |Q̃M | � √

v � Q̃m. In this case, the
maximum is obtained on the boundary where Q̃− = Q̃M with
value Q̃Mv/(Q̃2

M + v). Finally, the largest value that v can at-
tain occurs when the domain for Q̃− shrinks to nothing, which
occurs when v = Q̃M |Q̃m|. Collecting these observations leads
to the expression in (22).

APPENDIX F: RATE CONSTANTS AND OBSERVABLE
VALUES FOR FIGS. 6 AND 7

The rates that correspond to reaching the optimal network
topology for the receptor binding model in Fig. 5 are listed in
Table I. The values of the rates are chosen to fix the thermo-
dynamic driving �μ/kT = {1, 5}. A multiplicative factor is
included in the rates internal to the islands, ε = 104, in order
to impose a timescale separation between transitions internal
to the islands relative to between islands.

The three purple points in Fig. 7(a) that correspond to the
purple binding curves in Fig. 7(b) were generated using the
rate constants and observable values in Table II. The values
are chosen so that the cycle force is equal to 2 in all cases.
Note that in Fig. 7(b) the value of c for which 〈 f 〉c is equal to
0.5 depends on the rate constants. In the interest of creating
a clear visualization, we numerically find these values, which
we denote as K , and we plot each curve as a function of the
normalized concentration c/K .
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