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Nonequilibrium indicator for the onset of epileptic seizure
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The occurrence of spontaneous bursts of uncontrolled electrical activity between neurons can disrupt normal
brain function and lead to epileptic seizures. Despite extensive research, the mechanisms underlying seizure onset
remain unclear. This study investigates the onset of seizures from the perspective of nonequilibrium statistical
physics. By analyzing the probability flux within the framework of the nonequilibrium potential-flux landscape,
we establish a connection between seizure dynamics and nonequilibrium. Our findings demonstrate that the
degree of nonequilibrium is sensitive to the onset of epileptic seizures. This result offers an alternative perspective
on assessing seizure onset in epilepsy.
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I. INTRODUCTION

Epilepsy is a neurological disorder characterized by spon-
taneous seizures, which result from a burst of uncontrolled
electrical activity between neurons [1]. The abnormal syn-
chronization of neuronal activities leads to a disturbance in
brain function, making it essential to detect seizures before
they cause severe symptoms. The electroencephalogram is a
valuable tool that uses electrodes to measure and record brain
electrical activity. Most seizure detection methods rely on
monitoring electroencephalographic readings [2,3]. Abnormal
electrical discharges with specific characteristic patterns can
be observed during epileptic seizures.

The mechanism of the seizure generation is unclear so far
due to the complexity of the brain. In the investigation of
epilepsy, the researchers often regard the seizure onset as a
bifurcation from the perspective of a dynamical system [4–6].
The bifurcation occurs when the dynamical structure changes;
for instance, the transition from stable state to limit cycle or
chaos [7]. It is often accompanied by a sudden change in the
behavior of a dynamical system. The normal phase of the
brain can be thought of as a stable state, while the seizure
corresponds to a limit cycle or chaos. This inference is easy
to capture from the brain electrical activities. The seizure
burst can be detected by electroencephalography with high-
amplitude pathological oscillations [2]. In contrast, the normal
brain operates with low-amplitude electrical activities with a
silent mode distinct from the seizure. The transition from the
normal to the seizure phase can be thought of as a bifurcation
from the perspective of a dynamical system. In other words,
the sudden change in the bifurcation is responsible for the
seizure burst in the neuronal system.

An alternative insight to understand such a transition
can come from the perspective of nonequilibrium statistical
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physics. The seizure occurs with high-amplitude turbulent
oscillations in the brain activities. In comparison, the normal
brain maintains a silent mode with low-amplitude electrical
activity. A similar transition from silent to turbulent activity
can be found in various fields. For instance, a fluid flow im-
posed by temperature differences exhibits a similar behavior
called Rayleigh-Bénard convection [8]. The convection flow
ceases without a vertical temperature gradient. A turbulence
convection arises with the development of the convective
instability when the temperature difference increases over a
certain threshold [9]. In addition, the laminar flow develops
into a turbulence with a similar transition [10]. The Belousov-
Zhabotinsky reaction system is another well-known example
discovered in chemistry [11,12]. The color of the reaction
solution oscillates with the concentrations of reactant species.
A distinct oscillation in the solution color occurs far from
equilibrium state. In contrast, the oscillation disappears near
the equilibrium. Apparently, such systems undergo a transi-
tion from a silent to a turbulent activity, while the systems
enter into nonequilibrium. In other words, the systems main-
tain a silent activity near equilibrium, and the nonequilibrium
stimulates the turbulent activity.

Many systems exhibit similar nonequilibrium thermody-
namic structures, despite their differences. This observation
has led to an approach in understanding the underlying mech-
anism of epileptic seizures, which differs from conventional
treatments. Due to the complexity of the brain, constructing
an explicit model of the brain is challenging. However, the
perspective of nonequilibrium statistical physics can offer
implicit insights beyond the intricate details of the system.
In this study, we aim to use this approach to understand the
mechanism of seizure bursts.

II. POTENTIAL-FLUX LANDSCAPE APPROACH

A real system is inevitably influenced by the effect of noise
coming from the environment or the internal microscopic
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processes. So, a general dynamics can be described by the
stochastic dynamics,

dx = Fdt + dw, (1)

with the deterministic driving force F and the noise dw. It
is necessary to introduce a statistical description for such
stochastic systems. For the continuous dynamical system, the
statistical behavior is dominated by the probability density
distribution P(x, t ). The temporal evolution of the probability
density is determined by the Fokker-Planck equation [13,14]

∂P

∂t
= −

∑
i

∂Ji

∂xi
, (2)

with the probability flow in the state space

Ji = FiP −
∑

j

1

2dt

∂〈dwidw j〉P
∂x j

. (3)

For the noise components, the statistical average vanishes,
〈dw〉 = 0, and its characteristics are described by the dif-
fusion matrix 〈dwidw j〉/2dt for the correlations between
the ith and jth components. In the steady state ∂Pss/∂t = 0,
the probability flux possesses a rotational property with
divergence-free

∇ · Jss = 0. (4)

The noise correlation matrix can be separated into the form of
the strength ε and a measure for the anisotropy of the noise

〈dwdwT〉/2dt = εD. (5)

A system is in equilibrium when the divergence-free
steady-state probability flux vanishes. In this case, the detailed
balance is maintained. But, the net steady-state probability
flux leads to the breakdown of the detailed balance in the
state space. Thus, the nonzero steady-state probability flux
will drive a system to enter into the nonequilibrium state.
The detailed balance breaking is accompanied by the entropy
production with the rate. It is easy to obtain this expression of
the entropy production rate from the Fokker-Planck equation.

In the zero-noise limit ε → 0, the steady-state probabil-
ity distribution can be expanded into a Wentzel-Kramers-
Brillouin series [15]:.

Pss = 1

N
exp

( ∞∑
k=0

εk−1φk

)
, (6)

where N is a normalizing constant. The leading-order function
φ0 can be written as the form in the zero-noise limit

φ0 = ε ln Pss. (7)

We call it the intrinsic potential function or landscape. Ac-
cordingly, the steady-state probability flux can be transformed
into the intrinsic flux velocity

V = (Jss/Pss )ε→0. (8)

The steady-state Fokker-Planck equation can be rewritten in
terms of the intrinsic potential in the form of the Hamilton-
Jacobi equation

F · ∇φ0 + ∇φ0 · D · ∇φ0 = 0. (9)

As a consequence, the intrinsic potential landscape as a
Lyapunov function decreases monotonically along the deter-
ministic dynamics [15,16]

F · ∇φ0 = −∇φ0 · D · ∇φ0 � 0. (10)

The system states evolve finally into the ground states in
which the gradient of the intrinsic potential vanishes:

∇φ0 = 0. (11)

In the potential-flux landscape approach [17], the deter-
ministic driving force can be written by means of the intrinsic
potential landscape and flux:

F = −D · ∇φ0 + V. (12)

The gradient of the intrinsic potential and the intrinsic flux
velocity are perpendicular to each other [16]:

V · ∇φ0 = 0. (13)

An equilibrium system is dominated by the negative gradi-
ent of the potential function

F = −D · ∇φ0, (14)

which drives the system state into the basin of the potential
landscape. The system evolution ceases when the potential
landscape gradient vanishes, ∇φ = 0. In contrast, the intrinsic
flux is an important dynamical component for a nonequilib-
rium system [16,18]. The nonequilibrium system is dominated
by two different components:

F = −D · ∇φ0 + V, (15)

i.e., the gradient of the intrinsic potential landscape and the
intrinsic flux. The intrinsic flux inherits the rotational nature
of the probability flux from the divergence-free condition
∇ · Jss = 0. Thus, the trajectories of a nonequilibrium system
are often curve shaped by the intrinsic flux. The oscillation
behavior in system evolution is dominated by the intrinsic
flux. In other words, the oscillation cannot occur in a potential
landscape gradient dominated equilibrium system. In contrast,
the stable states are mainly governed by the potential land-
scape gradient.

The degree of nonequilibrium can be measured by the
entropy production. The entropy is defined as the form

S =
∫

P ln Pdx, (16)

and its time derivative reads
dS

dt
=

∫
ln P

∂P

∂t
dx =

∫
ln P∇ · J dx (17)

by inserting the Fokker-Planck equation. This expression can
also be transformed into the form by integration by parts:

dS

dt
= −

∫
J · ∇ ln Pdx = −

∫
P−1J · ∇Pdx

= −
∫

P−1J · (εD)−1 · [(F − ε∇ · D)P − J]dx

= −ε−1
∫

J · D−1 · (F − ε∇ · D)dx

+ ε−1
∫

P−1J · D−1 · Jdx. (18)
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The first term has the physical meaning of the entropy change
rate of the environments. Note that dS/dt stands for the
entropy change in the system. Thus, the second term de-
scribes the total entropy change rate of the system and the
environment. In addition, the second term is always non-
negative. Therefore, it is identified as the entropy production
rate [19–21]:

EPR = ε−1
∫

P−1
ss J · D−1 · Jdx � 0. (19)

This is the second law of thermodynamics for nonequilibrium
systems. In the zero-noise limit, the steady-state probability
flux can be accordingly transformed into the intrinsic flux
velocity. Then, a rescaled entropy production rate can be
introduced in the form of the intrinsic flux

epr =
∫

V · D−1 · VPss(x)dx � 0. (20)

Note that this expression is rescaled by the noise strength ε to
grasp the primary part from the nonequilibrium intrinsic flux.

III. BREAKING OF THE TIME-REVERSAL SYMMETRY

There are two approaches when it comes to exploring a
dynamical system. The first method involves analyzing the
system’s dynamics by developing mathematical equations that
accurately model its behavior. However, this approach can be
challenging, especially for complex systems, since obtaining
a reliable model is often very difficult. In cases where a
good model is unavailable, the second method comes into
the play. This approach focuses on capturing the nonequilib-
rium behavior of the system using a data analysis method.
Specifically, it involves examining the difference in the cross
correlations of the time series data both forward and backward
in time as a quantitative measure of nonequilibrium [22]. It
provides a practical alternative, allowing us to extract mean-
ingful information such as the degree of nonequilibrium from
the available data without relying on a detailed mathematical
description.

The fluctuation of a feature A[x(t + τ )] may be influenced
by another feature B[x(t )]. Then, the correlation function is
introduced to describe the dependence of both variables in
time. In the steady state, the correlation function is dependent
only on the time distance τ . The correlation function can be
defined as the form [13]

KAB(τ ) = 〈A(t + τ )B(t )〉
=

∫
A(x)B(x′)w(x, t + τ |x′, t )Pss(x′)dxdx′, (21)

where the transition probability density w(x, t + τ |x′, t )
stands for the probability density of transition from state x′
to state x in a period τ of time.

The transition probability density possesses the form of the
Fokker-Planck equation [13]

w(x, t + τ |x′, t ) = eτLFPδ(x − x′) (22)

with the Fokker-Planck operator

LFP = −
∑

i

∂

∂xi
Fi +

∑
i j

∂2

∂xi∂x j

〈dwidw j〉
2dt

. (23)

Then, the correlation function can be written as the form

KAB =
∫

A(x)eτLFP B(x)Pss(x)dx, (24)

and further, its change rate with respect to the time delay reads

∂KAxk

∂τ
=

∫
A(x)eτLFP LFPxkPss(x)dx, (25)

where we take the second variable as B = xk . The operation
associated with the Fokker-Planck operator can be simplified
into the form

LFPxkPss = −
∑

i

∂FixkPss

∂xi
+ 1

2dt

∑
i j

∂2〈dwidw j〉xkPss

∂xi∂x j

= −xk

∑
i

∂FiPss

∂xi
−

∑
i

∂xk

∂xi
FiPss

+ 1

2dt

∑
i j

∂〈dwidw j〉Pss

∂xi

∂xk

∂x j

+ 1

2dt

∑
i j

[
∂xk

∂xi

∂〈dwidw j〉Pss

∂x j

+ xk
∂2〈dwidw j〉Pss

∂xi∂x j

]

= −xkLFPPss − FkPss + 2
∑

j

1

2dt

∂〈dwkdw j〉Pss

∂x j

= −FkPss + 2
∑

j

1

2dt

∂〈dwkdw j〉Pss

∂x j
, (26)

where the steady state induces LFPPss = 0 in the last step. In
addition, we can further obtain an expression associated with
the probability flow from Eq. (3):

LFPxkPss =
∑

j

1

2dt

∂〈dwkdw j〉Pss

∂x j
− Jss

k . (27)

Therefore, the change rate of the correlation function of xi and
x j can be further written as the form

∂Kxix j

∂τ

∣∣∣
τ=0

=
∫

xi

[∑
l

1

2dt

∂〈dw jdwl〉Pss

∂xl
− Jss

j

]
dx

=
∫ [

−〈dw jdwi〉
2dt

Pss − xiJ
ss
j

]
dx

= −〈〈dw jdwi〉〉
2dt

−
∫

xiJ
ss
j dx, (28)

where the second equality is obtained by integration by parts
and natural boundary condition. A difference in the cross-
correlation forward (i.e., 〈xi(t + τ )x j (t )〉) and backward (i.e.,
〈xi(t − τ )x j (t )〉) in time arises due to the probability flow

∂Kxix j − Kxj xi

∂τ

∣∣∣∣
τ=0

=
∫ (

x jJ
ss
i − xiJ

ss
j

)
dx. (29)

Here, note that the backward term is written in the form
〈xi(t − τ )x j (t )〉 = 〈xi(t )x j (t + τ )〉 = Kxj xi . In addition, we
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can establish such a relation about the probability flow∫ ∑
k

∂xix jJss
k

∂xk
dx = 0

=
∫

x jJ
ss
i dx +

∫
xiJ

ss
j dx +

∫
xix j

∑
k

∂Jss
k

∂xk
dx

=
∫ (

x jJ
ss
i + xiJ

ss
j

)
dx (30)

where the last equality is due to the nature of divergence-free
of the probability flow. Therefore, the difference in correlation
forward and backward in time can be simplified as the form

∂
(
Kxix j − Kxj xi

)
∂τ

∣∣∣∣∣
τ=0

= 2
∫

x jJ
ss
i dx = −2

∫
xiJ

ss
j dx. (31)

The time reversal symmetry is conserved in the equilibrium
systems due to the detailed balance J = 0. In contrast, in
the nonequilibrium systems, the probability flow gives rise
to the asymmetry between the cross correlation functions
〈xi(t + τ )x j (t )〉 and 〈xi(t − τ )x j (t )〉.

IV. SEIZURE DYNAMICS

An epilepsy model was proposed to characterize the onset
as a saddle-node bifurcation and offset as homoclinic bifurca-
tion [6,23]. This model consists of two subsystems with two
types of variables by x standing for the membrane potential
and y relating to the ions current [6,23]. The first subsys-
tem with two state variables x1 and y1 is responsible for the
fast discharges. The second subsystem generates sharp-wave
events described by two state variables x2 and y2. In addition, a
slow permittivity variable z drives the seizure dynamics taking
effect as a mean field of the extracellular processes [6]. The
seizure dynamics reads as following equations [6,23]:

ẋ1 = y1 − f1(x1, x2) − z + 3.1 (32)

ẏ1 = 1 − 5x2
1 − y1 (33)

ẋ2 = −y2 + x2 − x3
2 + 0.45 + 0.002g(x1) − 0.3(z − 3.5)

(34)

ẏ2 = 10−1(−y2 + f2(x1, x2)) (35)

ż = 2857−1[4(x1 + 1.6) − z], (36)

where the additional functions are defined in the form

g(x) =
∫ t

t0

e−0.01(t−τ )x(τ )dτ, (37)

f1(x1, x2) =
{

x3
1 − 3x2

1 if x1 < 0
[x2 − 0.6(z − 4)2]x1 if x1 � 0,

(38)

f2(x1, x2) =
{

0 if x2 < −0.25
6(x2 + 0.25) if x2 � −0.25.

(39)

The first two equations for ẋ1 and ẏ1 describe the burst gen-
eration after a short current pulse [24]. The rudiment comes
from the Van der Pol model for nonlinear relaxation oscillators
in electrical circuits, and later this model is extended to the

biological science such as describing the action potentials of
neurons [25]. In spite of large modification, one can find some
particular terms are also shared by the Van der Pol model;
for instance, the cubic term x3

1 in the first equation ẋ1 via the
function f1(x1, x2). The subsequent two equations for ẋ2 and
ẏ2 reproduce the spiking behavior of neurons [26]. These two
equations are based on the Morris-Lecar model describing the
oscillations in relation to the Ca++ and K+ conductance in
barnacle muscle [27].

It is worthwhile to notice that the permittivity variable z
changes quite slowly compared with other variables

ż → 0. (40)

Thus, the seizure dynamics in the original model can be mod-
ified as an adiabatic process with respect to the slow variable:

ẋ1 = y1 − f1(x1, x2) − z + 3.1, (41)

ẏ1 = 1 − 5x2
1 − y1, (42)

ẋ2 = −y2 + x2 − x3
2 + 0.45 + 0.002g(x1) − 0.3(z − 3.5)

(43)

ẏ2 = 10−1[−y2 + f2(x1, x2)]. (44)

In this case, the adiabatic slow variable z becomes a control
parameter of the epilepsy model. Furthermore, an additional
variable u can be introduced instead of the integral function
g(x) with the form u = g(x). Then, the seizure dynamics of
the brain system can be written in the form

dxi = Fidt + dwi, (45)

with the deterministic driving force

F1 = x2 − f1(x1, x3) − z + 3.1, (46)

F2 = 1 − 5x2
1 − x2, (47)

F3 = −x4 + x3 − x3
3 + 0.45 + 0.002x5 − 0.3(z − 3.5), (48)

F4 = 10−1[−x4 + f2(x1, x3)], (49)

F5 = −0.01x5 + x1, (50)

and we add some noises to the system dynamics

〈dwidw j〉/2dt = 0.001δi j . (51)

Note that the variable names are replaced as a unified form xi

for concise expression.
The seizure dynamics can be captured by the trajectories

in the state space as given by Figs. 1(a)–1(d). There are two
different phases: the normal phase represented by blue color
and the seizure phase by red trajectory. The normal phase is
in a stable state, while the seizure phase exhibits a chaotic
oscillation. The system is in the seizure phase in the regime
of small permittivity z with a chaotic oscillation [Fig. 1(a)].
As the permittivity increases, a normal phase appears and
coexists with the seizure phase [Figs. 1(b) and 1(c)]. As the
permittivity increases further, the seizure phase disappears
and the system is dominated by the normal phase [Fig. 1(d)].
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FIG. 1. Stochastic trajectories with different permittivity parameters. (a) The seizure phase is stable with a chaotic oscillating trajectory
under low permittivity. (b),(c) The normal phase arises with the form of stable state upon increasing the permittivity parameter. The normal
and seizure phases coexist in this case. (d) The normal phase dominates the brain system under high permittivity, while the seizure phase
disappears.

A continuous change with the transition between different
phases is given by Fig. 2. The average state of x̄2 is em-
ployed to characterize different phases (normal or seizure).
The upper branch with red asterisks stands for the seizure
phase, and the lower branch with blue circles corresponds
to the normal phase. In practical calculations, we obtain first
the trajectory from the dynamical equations, and take the
trajectory average for the average state of x̄2. It is easy to see
the transitions between normal and seizure phases from Fig. 2.
At low permittivity, the seizure phase is more stable than the
normal phase, and thus the system tends to stay in the seizure
phase. In contrast, the normal phase gradually becomes sta-
ble as the permittivity increases. Two phase branches coexist
in the parameter regime roughly 2.95 � z � 3.95. At high
permittivity, the seizure phase is unstable, and the system
enters into the normal phase. We can see a path-dependent
evolution or hysteresis of the system. The transition from

normal to seizure phase occurs near z = 2.95 as the permit-
tivity parameter decreases. In contrast, when the parameter
increases, the transition from seizure to normal phase occurs
near z = 3.95. At the transition points, a tiny change of the
parameter can cause a large shift of the system state between
different branches.

This study aims to examine the changes in system behav-
ior. These changes can also be analyzed using bifurcation
theory [28], which is a more mathematical approach and at-
tributes the changes to explicit modifications in the structure
of the dynamical equations, such as adjusting a specific pa-
rameter. In contrast, the potential-flux approach offers a more
physical explanation of the changes. It suggests that the degree
of nonequilibrium in the system is what leads to the alterations
in behavior. The advantage of our potential-flux approach lies
in its ability to understand and grasp the nonequilibrium origin
of these changes.

FIG. 2. Transition between the normal and seizure phases. The upper branch with red asterisks stands for the seizure phase, and the lower
branch with blue circles corresponds to the normal phase. At high permittivity, the system has a stable normal phase and unstable seizure phase.
Thus, the system stays in the normal phase. Two branches coexist as the permittivity decreases. The system enters into one of two phases. At
low permittivity, the seizure phase is more stable than the normal phase and thus the seizure occurs. At the transition points, a tiny change of
the parameter can cause a large shift of the system state between different branches. The onset of seizure occurs at the permittivity parameter
near threshold value z ∼ 3.
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FIG. 3. An illustration of potential and flux for qualitative discussion. (a)–(d) Potential function. The blue stands for the low potential and
red corresponds to the high potential. The system tends to evolve into the bluest states by the effect of the negative potential gradient. (e)–(h)
Probability flux. The flux exhibits rotation due to the divergence-free nature. The trajectories attracted toward ground states are curved by the
probability flux.

V. ONSET OF SEIZURE ASSOCIATED
WITH NONEQUILIBRIUM

The potential-flux landscape approach provides a perspec-
tive to capture the effect of nonequilibrium on the system
dynamics [17]. Due to their dissipative nature, the sys-
tem states are attracted into a basin with ground states.
Figures 3(a)–3(d) illustrate the intrinsic potential landscape.
The potential reduces as the color changes from red to blue,
i.e., the blue stands for the low potential and red corre-
sponds to the high potential. The bluest states are the ground
states. The system evolves into the ground states by the ef-
fect of the negative potential gradient. The negative gradient
of the intrinsic potential is responsible for the attraction to
the basin constituted mainly by ground states. On the other
hand, the trajectory is curved by the intrinsic flux as shown
in Figs. 3(e)–3(h), due to the divergence-free nature of the
intrinsic flux. In other words, the steady-state probability flux
exhibits rotation due to the divergence-free nature. The trajec-
tories attracted towards the ground states are curve shaped by
the probability flux. The probability flux breaks the detailed
balance of the system. The appearance of the intrinsic flux
indicates that the system enters into the nonequilibrium state.

The epilepsy is characterized by the chaotic oscillation
behavior of the brain system. As mentioned in the previous
discussion, the oscillation behavior is driven by the nonequi-
librium intrinsic flux. In contrast, the normal phase is a stable
state mainly dominated by the potential gradient. Thus, the
onset of a seizure can be thought of as a transition from quasi-
or near equilibrium to nonequilibrium states. So, we can track
the change of nonequilibrium degree to capture the transition
from normal to seizure phases.

As mentioned previously, the system evolution is affected
by the driving force component of the intrinsic flux in the
case of nonequilibrium. Since the flux is rotational, it tends

to destabilize the point attractor and generate rotational line
states such as chaotic oscillations. This gives the dynamical
origin of the phase transition from normal phase to the epilep-
tic seizure generation. Thus, the magnitude of the intrinsic flux
reflects the degree of nonequilibrium from the perspective of
dynamics:

κ =
∫

|V|Pssdx. (52)

Note that the second equality is due to the disappearance of
the gradient of the intrinsic potential in the ground states.

The effect of the intrinsic flux, and further, the degree of
nonequilibrium is hidden in the trajectories of the system evo-
lution. As discussed previously (Sec. III), the probability flow
gives rise to the asymmetry in the cross-correlation functions

χ = (σiσ j )
−1

∫ ∣∣∣∣d[xi(0)x j (τ ) − x j (0)xi(τ )]

dτ

∣∣∣∣Pssdx, (53)

where we normalize this value by the standard deviations
σi and σ j of the ith and jth components, respectively. The
time-reversal asymmetry in the cross-correlation function χ

provides a direct measure of the nonequilibrium processed
from the time series of the trajectories of the system evolution.

The nonequilibrium state is accompanied by the entropy
production. The entropy production rate provides the thermo-
dynamic cost associated to such dynamical nonequilibrium
transition from normal to seizure phase. Therefore, the onset
of seizure will be reflected in the change of entropy production
rate

epr =
∫

V · D−1 · VPss(x)dx � 0. (54)

Note that this expression is rescaled by the noise strength ε to
grasp the primary part from the nonequilibrium intrinsic flux.
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FIG. 4. Onset of seizure upon the increase in the degree of nonequilibrium. The nonequilibrium is measured from different perspectives:
entropy production rate with the rescaled form epr, magnitude of the intrinsic flux κ , and time-reversal asymmetry χ . Note that these values
are normalized by their respective maximums. A sudden change in the degree of nonequilibrium synchronizes with the onset of seizure as
shown by the blue curves. As a reference, the orange curves show the corresponding change or the slope in the degree of nonequilibrium. It is
clear that the change in the nonequilibrium degree is sensitive to the seizure onset.

On the other hand, the decreasing nature of the intrinsic
potential as a Lyapunov function implies that the effective part
of the intrinsic potential landscape can be retained as the form

δφ0 = φ0(x) − φmin
0 (55)

associated with the ground potential φmin
0 . In fact, the ground

potential is the integral constant of the Hamilton-Jacobi
equation, because the latter equation is constituted by the
derivatives with respect to the intrinsic potential function.
Therefore, the probability distribution Pss can be written in
the form of the effective part of the intrinsic potential:

Pss = 1

N
exp

[
−δφ0

ε

]
ε→0

. (56)

Apparently, the occurrence of the deviation from the ground
states φ0(x) − φmin

0 � ε is impossible because the probability
decays sharply, as the noise strength decreases, ε → 0. This
implies that the system state stays in the ground states with
the minimum intrinsic potential φmin

0 in the case of small noise
ε → 0. In this case, the ground states can be thought of as the
same probability density

Pss 	 N−1. (57)

In the ground states, the potential gradient vanishes, ∇φ0 = 0,
and thus the deterministic driving force is dictated by the flux
components

F = −D · ∇φ0 + V = V. (58)

Therefore, the magnitude of the intrinsic flux can be rewritten
in the form

κ =
∫

|V|Pssdx =
∫

|F|Pssdx, (59)

and the rescaled entropy production rate reads

epr =
∫

F · D−1 · FPssdx. (60)

As a further approach, we take the temporal average instead
of the statistical average:

κ = 1

T

∫ T →∞

0
|V|dt = 1

T

∫ T →∞

0
|F|dt, (61)

epr = 1

T

∫ T →∞

0
F[x(t )] · D−1 · F[x(t )]dt . (62)

In addition, the time-reversal asymmetry between different
ith and jth components can also be written in the form of a
temporal average:

χ = 1

σiσ jT

∫ T →∞

0

∣∣∣∣d[xi(t )x j (t + τ ) − x j (t )xi(t + τ )]

dτ

∣∣∣∣dt .

(63)

The result for the comparison of seizure onset with the
increase of nonequilibrium degree is given in Fig. 4. The
transition from normal to seizure phase is shown in Fig. 2.
One can see a close connection between seizure onset and the
increase of nonequilibrium degree by comparing Figs. 2 and 4.
The magnitude of intrinsic flux as a dynamical measure for
the nonequilibrium is shown in Fig. 4 by the blue dot curve
with the left y axis. In addition, the time-reversal asymmetry
between components x1 and x2 is shown in Fig. 4 by a blue
circle curve. The turbulent oscillations are dissipative with
large entropy production from the perspective of nonequilib-
rium thermodynamics. An implicit nonequilibrium condition
is imposed on the system to provide sufficient thermodynam-
ical cost in the seizure as shown in Fig. 4 by the blue asterisk
curve.
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FIG. 5. The signature for the significant change in the degree of nonequilibrium as an indicator of seizure onset by using actual
electroencephalographic data. The degree of nonequilibrium measured by the time-reversal asymmetry χ based on the difference in the cross
correlation forward and backward in time of the electroencephalographic data.

There are various types of bifurcations. The bifurcation
in a dynamical system can occur in different forms. In the
seizure model employed in this study, the seizure onset results
from a saddle-node bifurcation, and a homoclinic bifurcation
leads to the offset [6,23]. The change strengths of the degree
of nonequilibrium from different perspectives are shown in
Fig. 4 by orange curves with the right y axis. One can see
a distinct enhancement appears in the change strengths with
the seizure burst. It is easy to see that the nonequilibrium
is sensitive to the seizure onset. This result can provide an
alternative indicator for the detection of the seizure bursts in
epilepsy.

It is essential to assess the availability of the nonequilib-
rium in the assessment of the onset of seizure. Here, we utilize
an electroencephalographic dataset consisting of n (n = 100)
records from 16 patients [29]. The electroencephalographic
signals in each recording are collected at a rate of 512 Hz,
and the seizure onsets start at 3 min from the beginning of
the recording. Figure 5 shows the availability assessment of
the nonequilibrium as an indicator of the onset of seizure.
The nonequilibrium measured by the time-reversal asymme-
try χ is based on the difference in cross correlation of the
electroencephalographic data forward and backward in time.
The time series is divided into segments of 1 s duration, and
the value of the time-reversal asymmetry is calculated for
each segment. The dataset includes recordings from different
patients with mk (36 � mk � 100) of electrodes, where k(1 �
k � n) stands for the sequence number of the records [29].
Thus, there are multiple pairs (i j) (1 � i, j � mk) of the
cross-correlation values and their corresponding χ k

i j values
for each record. To measure the overall nonequilibrium, the
average value of χ is computed as χ = ∑

ki j |χ k
i j |/(nm2

k ),
where the modulus operation is used because the contribution
to the nonequilibrium arises from the deviation away from a
zero value. In Fig. 5, a significant change in the degree of

nonequilibrium can be observed near the onset of the actual
seizure events. This implies that the nonequilibrium in terms
of the time-reversal asymmetry χ can provide an alternative
indicator of the onset of seizure.

VI. DISCUSSION AND CONCLUSION

Epilepsy is characterized by a burst of chaotic oscillation
behaviors of the neuron system. The normal brain operates
with low-amplitude electrical activity with a silent mode. The
oscillation behavior of a dynamical system is driven by the
nonequilibrium intrinsic flux, and this cannot occur in an
equilibrium system. Thus, the onset of seizure can be roughly
thought of as a transition from a near or quasiequilibrium state
to a nonequilibrium state.

A similar phenomenon with a significant burst of chaotic
oscillation can also be found in various fields. For instance,
chemical reaction systems also exhibit similar dynamic be-
haviors when the nonequilibrium condition reaches a certain
threshold value [30]. In this case, the difference in chemi-
cal potential as another type of nonequilibrium condition is
responsible for the onset of chaotic oscillation in chemical
systems. The increase in nonequilibrium condition results in
the burst of oscillation behavior. This is easy to see from our
potential-flux approach. The intrinsic flux breaks the detailed
balance driving the systems into the nonequilibrium state. In
addition, the intrinsic flux acts as an important dynamical
component for driving the oscillation behaviors. A silent dy-
namical system is transitioned into a turbulent burst with the
change in the nonequilibrium condition.

Our study can provide an understanding of the mechanism
of the epileptic seizures from the perspective of nonequilib-
rium statistical physics. The change in the nonequilibrium
degree can reflect the transition from the normal to the seizure
phase. The change of the nonequilibrium degree can be
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measured by different perspectives: the nonequilibrium driv-
ing force in terms of the magnitude of the intrinsic flux, the
nonequilibrium thermodynamic cost in terms of the entropy
production rate, and time-reversal asymmetry in terms of the
difference between the cross correlations of time series for-
ward and backward in time. Interestingly, they are sensitive
to the seizure onset. The time-reversal asymmetry can pro-
vide an alternative indicator for the seizure burst. In addition,
there is perhaps a possibility of the existence of an implicit
nonequilibrium condition to trigger the seizure burst. It in-

spires an exploration on the further development of the seizure
model.
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