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Cusp singularities in the distribution of orientations of asymmetrically pivoted hard
disks on a lattice
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We study a system of equal-size circular disks, each with an asymmetrically placed pivot at a fixed distance
from the center. The pivots are fixed at the vertices of a regular triangular lattice. The disks can rotate freely
about the pivots, with the constraint that no disks can overlap with each other. Our Monte Carlo simulations
show that the one-point probability distribution of orientations has multiple cusplike singularities. We determine
the exact positions and qualitative behavior of these singularities. In addition to these geometrical singularities,
we also find that the system shows order-disorder transitions, with a disordered phase at large lattice spacings,
a phase with spontaneously broken orientational lattice symmetry at small lattice spacings, and an intervening
Berezinskii-Kosterlitz-Thouless phase in between.
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I. INTRODUCTION

In many molecular solids, the melting transition from
the low-temperature crystalline solid phase to the high-
temperature liquid phase does not occur in a single step,
but one finds a multiplicity of mesophases. These are called
“liquid crystals” or “plastic solids.” In the former, the periodic
three-dimensional crystal structure is absent, but a varying
amount of orientational order may be present. In the latter, the
average positions of the centers of masses of the molecules do
lie on a three-dimensional crystalline lattice, but there is no or
only partial orientational order. These were originally called
plastic solids, as they can be easily deformed using much
less force, compared to “hard” crystals. Some examples of
common materials that show plastic solid phases are nitrogen
[1], carbon tetrabromide [2], and formylferrocene [3]. The
currently favored nomenclature for these is orientationally
disordered crystals. In recent years, these have attracted a lot
of interest because of their promising applications in diverse
areas such as solid electrolytes [4], drug delivery [5], opto-
electronics [6], barocalorics [7], piezoelectrics [8], etc. For a
recent review of the applications, see Das et al. [9].

In 1930, Pauling derived a rough criteria for the strongly
hindered rotational motion of molecules in crystalline solids
[10]. But it was Timmermans who systematized the phe-
nomenological study of plastic crystals starting from the
1930s [11]. On the theoretical front, Pople and Karasz [12]
extended the two-lattice model of Lennard-Jones and Devon-
shire [13] to account for the order-disorder transition in the
orientation of molecular crystals. A minimal model for these
would be to assume the constituents as rigid objects, each
identically pivoted on a lattice and free to rotate provided

*Corresponding author: ss0410@princeton.edu
†deepak@iiserpune.ac.in

no objects overlap with each other. Casey and Runnels [14]
and Freasiers and Runnels [15] examined a system of hard
squares with centers fixed on the one-dimensional (1D) lattice.
We have recently discussed this model and called it rigid
hard rotors on a lattice as a model of multiple phases shown
by plastic crystals to describe the transitions between them
[16–18]. Note that since the lattice is always present, the
model does not have a “liquid” phase with no crystalline order.

In an earlier paper [18], we determined the exact func-
tional form of the one-point probability distribution function
of orientations at a site for a range of lattice spacings when
a particular condition, called the at-most one overlap (AOO)
condition, holds. In this paper, we particularly examine a
system of hard disks asymmetrically pivoted on a triangular
lattice and study the one-point probability distribution func-
tion (PDF) P(θ ) of orientations θ beyond the AOO condition.
We find that the distribution function P(θ ) shows cusp sin-
gularities. We determine the exact position and qualitative
behavior beyond the AOO condition. Singularities in the pair
distribution function have been studied earlier by Stillinger
[19] and numerically observed in the probability distribution
of bond-pair angles in a system of hard spheres [20], but here
we discuss nontrivial singularities in the one-point function.
We also numerically verify our findings with the help of
Monte Carlo simulations.

This paper is organized as follows. In Sec. II, we define
our model. In Sec. III, we show that there exist multiple
cusp singularities in the one-point probability distribution of
orientations and exactly determine their nature and positions.
In Sec. IV, we verify our findings using Monte Carlo simula-
tions. Section V contains some concluding remarks.

II. MODEL

We consider a system of identical unit-radius circular
disks, each with an asymmetrically placed pivot at a distance

2470-0045/2023/108(4)/044110(8) 044110-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6568-5889
https://orcid.org/0000-0002-3618-6025
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.044110&domain=pdf&date_stamp=2023-10-05
https://doi.org/10.1103/PhysRevE.108.044110


SUSHANT SARYAL AND DEEPAK DHAR PHYSICAL REVIEW E 108, 044110 (2023)

FIG. 1. A set of unit-radius hard circular disks pivoted asymmet-
rically on the triangular lattice with lattice spacing a. The pivot is
placed at a distance ε from the center.

ε from the center, as shown in Fig. 1. The pivots form a
regular triangular lattice with lattice spacing a, and the disks
can rotate freely about the pivots, with the constraint that no
disks can overlap with each other. The orientation of a disk
pivoted at lattice site r is specified by an angle θ (r), measured
between the long axis (passing through the pivot and center)
and the x axis. From elementary geometry, it is clear that if
a > 2(1 + ε), the disks rotate freely and the closest-packing
limit is reached when a = 2. We write lattice spacing a as

a = 2 + εx, (1)

with 0 � x � 2.
The partition function of the system having N disks is

ZN =
[∏

r

∫ π

−π

dθ (r)

2π

] ∏
x,y
x �=y

{1 − η[θ (x), θ (y)]}, (2)

where η[θ (x), θ (y)] is an indicator function which is one
when disks at sites x and y with orientations θ (x) and θ (y),
respectively, overlap, and zero otherwise. We define the en-
tropy per site s(x, ε) by

s(x, ε) = lim
N→∞

lnZN

N
. (3)

As ε tends to zero, the function s(x, ε) has a well-defined
nontrivial limit,

s(x) = lim
ε→0

s(x, ε). (4)

In this limit, the no-overlap condition between two neighbor-
ing sites simplifies. For two neighboring rotors, if the line
joining the pivots makes an angle φ with the x axis, the
no-overlap condition to first order in ε becomes

x − cos(θ − φ) + cos(θ ′ − φ) � 0. (5)

In Fig. 2, we compare the plots of P(θ ) for ε → 0 and ε =
0.2 using Monte Carlo simulations. We see that the qualitative
behavior of P(θ ) is the same for the two cases.

The limit ε → 0 has the advantage that the number of
parameters specifying the model is reduced to 1. In the fol-
lowing, for the sake of simplicity, we restrict our discussion

FIG. 2. Comparison of P(θ ) for finite ε and ε → 0 at x = 1.25.

to this case. The case of more general ε presents no additional
special features, as evident from Fig. 2.

This model can also be thought of as a system of planar
spins {θ (r)} on the vertices of a triangular lattice, with nearest-
neighbor interaction Hamiltonian H given by

H = J
∑

r

2∑
j=0

�{cos[θ (r) − jπ/3]

− cos[θ ′
j (r) − jπ/3] − x}, (6)

where θ ′
j (r) is the neighboring spins of the spin θ (r) in the

lattice direction jπ/3, and �(x) is the Heaviside step function
of x. The hard-core limit corresponds to setting J to +∞.

This model is of the same form as the model of hard-
core spins studied earlier by Sommers et al. [21]. These
authors studied the case where our condition (5) is replaced
by |θ − θ ′| � α. The qualitative behavior of the models is
similar. The main difference where our model differs from
theirs is the explicit breaking of isotropy in the spin space by
the lattice-direction-dependent interaction. In particular, the
cusp singularities that we discuss here are not present in the
hard-core spin model.

III. PROBABILITY DISTRIBUTION OF ORIENTATIONS

Let P(θ )dθ denote the probability that the disk that was
pivoted to a randomly picked site in the equilibrium ensemble
described by the partition function in Eq. (2) is at an orienta-
tion between θ and θ + dθ .

A. At-most one overlap (AOO)

The simplest case is when x lies in the range [1 + √
3/2, 2].

In this case, it is easily seen that in any configuration of orien-
tations of disks, any disk can overlap with, at most, one other
disk. It was called the AOO condition in our earlier paper [18].
We showed that within the AOO regime, the partition function
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simplifies to the calculation of the partition function of dimers
and vacancies on the same lattice, where the activity of dimers
is given by

z = −
∫ π

−π

dθ

2π

∫ π

−π

dθ ′

2π
η(θ, θ ′). (7)

We also obtained an explicit expression for P(θ ), involving
an undetermined function n̄(z), which gives the number den-
sity of dimers n̄(z) as a function of their activity z within
the AOO regime in d dimensions. Following this general
expression, the one-point PDF in the present scenario is
given by

P(θ ) = [1 − 2n̄(z)]

[
1 + n̄(z)

3z[1 − 2n̄(z)]

6∑
i=1

fi(θ )

]
, (8)

where fi(θ ) is given by

fi(θ ) =
∫ π

−π

dθi

2π
η(θ, θi ), (9)

and n̄(z) is the dimer number density at activity z, which is
given by the low-density expansion,

n̄(z) =
∞∑

n=1

(−1)n−1anzn, (10)

where an is the number of heaps made of dimers [22]. For the
triangular lattice, we have

n̄(z) = 3[z − 11z + 144z2 − 2047z3 + 30526z4 + · · · ]. (11)

In our problem, the explicit expression for the function
η(θ, θ1) is (see Fig. 3 for more details)

η(θ, θ1) =
{

1 if |θ | � arccos(x − 1) and |θ1| � arccos[cos(θ ) − x]
0 otherwise. (12)

Then, it is easily seen that f1(θ ) is given by

f1(θ ) =
{

2{π − arccos[cos(θ ) − x]}, |θ | � arccos(x − 1)
0 otherwise.

(13)

FIG. 3. η(θ, θ ′) for nearest-neighbor disks along the x axis for
different values of x when ε → 0 in the ( θ

2π
, θ ′

2π
) plane. The shaded

area (red) corresponds to the overlap region where η is 1. In the
unshaded area, η = 0. For other nearest-neighbor pairs, η(θ, θ ′) can
be similarly obtained using the symmetries of the triangular lattice.

Other fi’s can be easily found using the symmetries of the
underlying lattice. From this, it is easily seen that P(θ ) has
square-root cusp singularities (see the Appendix for more
details) at

θcusp = jπ

3
± arccos(x − 1), (14)

where j = 0, 1, 2, . . . , 5.

B. Beyond the AOO condition

Now, we consider x outside the regime where the AOO
condition holds. When x = 1 + √

3/2 − δ, with δ positive but
small, the AOO condition is no longer satisfied. In this case,
one can still define the graphical expansion of Eq. (2) in terms
of configurations of dimers, but now the configurations where
two or more dimers are incident on a vertex have nonzero
weight. However, if δ is small, the weights of such vertices
are small. This suggests that we can organize the terms of this
series in the following form:

Z = Z0 + Z1 + Z2 + · · · . (15)

In this expansion, Zr is the sum over terms having r dimer
pairs such that the dimers in each pair have a common vertex.
We may associate an extra factor y with each such overlapping
dimer pair, and consider the partition sum

Z (y) =
∞∑

r=0

yrZr . (16)

We treat y as a small parameter and, assuming the sum con-
verges for small enough y, treat it as a perturbation series in y.
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FIG. 4. The change in the position of cusp singularities in P(θ )
as we vary x. The positions vary linearly with the variable arccos
(x − 1).

If we put y = 0 in this series, we have a sum over all the dimer
configurations. In this ensemble, one can define the one-point
function P(θ ) as

P(θ ) =
∑

x

〈δ[θ (x) − θ ]〉, (17)

where the angular brackets denote the average over the en-
semble. It is easy to see that in the unperturbed ensemble Z0,
Eq. (8) continues to remain valid, but now in this ensemble
there are ranges of θ where more than one of the f terms
contributes in the equation. And the positions of the cusp
singularities in P(θ ) are still given by Eq. (14).

Consider the terms in Z1, involving two specified dimers
meeting at a specific site x. Say the dimers are covering
the bonds (x, y) and (x, z). This weight can be written as a
product of two terms T1 and T2, with

T1 =
∫

dθ (x)
∫

dθ (y)
∫

dθ (z) η(x, y)η(x,z). (18)

It can be shown that for small positive δ, T1 varies as [18]
δ3/2. T2 is a polynomial in z, the sum over all possible partial
dimer coverings of the lattice, not involving sites x, y, z. A
similar statement is valid for higher r.

If we expand the function P(θ ) in powers of y, each term
in the perturbation sum is well behaved and only singularities
in θ come from integration of the functions η, and hence
the positions are the same as in Eq. (14) and are robust. By
analytic continuation on y, we expect these results to hold
for all y, and hence at y = 1. Thus, we conjecture that the
cusp singularities P(θ ) are given by Eq. (14) for all x, in the
range 0 < x < 2. This is shown in Fig. 4. Thus, the positions
of the singularities do not change as long as we work within
any finite order of the perturbation theory in y. Numerical
evidence of this conjecture based on a Monte Carlo simulation
is presented next.

IV. MONTE CARLO RESULTS

Now we present our findings of Monte Carlo simula-
tions. Our simulations were done on lattices of size varying

(a)

(b)

FIG. 5. One-point PDF under AOO regime. (a) x = 1.92 and
(b) x = 1 +

√
3

2 . Dashed vertical lines represent the positions of
cusp singularities given in Eq. (14). Theoretical predictions, given
by Eqs. (8) and (14), and Monte Carlo results are in very good
agreement.

from 50 × 50 to 100 × 100. We use a single site update
scheme: we pick a site r at random and try to change
the value of θr to θr + 
θ , where 
θ is a random vari-
able with a uniform distribution from −
0 to +
0. We
accept the move if the new value does not result in any
overlap. Then we repeat. We average over times of the or-
der of 7.2 million MCS, after rejecting the first 8 × 105

steps.
In Fig. 5, a one-point PDF is plotted using Monte Carlo

simulations along with our theoretical prediction (8) in the
AOO regime, 1 + √

3/2 � x � 2. One can see that the Monte
Carlo findings are in very good agreement with our theoretical
prediction, given by Eq. (8). The dashed vertical lines corre-
spond to the position of the cusp singularities in Eq. (14) and is
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FIG. 6. One-point PDF beyond the AOO regime. (a) x = 1.7, (b) x = 1.5, (c) x = 1.25, and (d) x = 1. Dashed vertical lines represent the
positions of the cusp singularities given in Eq. (14).

also in excellent agreement with the Monte Carlo simulations.
Note that for x = 1 + √

3/2, cusp singularities merge in pairs,
producing only six singular points.

In general, there are 12 singularities for each value of x,
except at special points where the singularities merge in pairs.
We have determined the cusp positions from the Monte Carlo
data for several values of x, shown in Fig. 6. These are in very
good agreement with the predicted values.

We parametrize the distribution function for values of x
outside the AOO regime using a fitting form with only one
fitting parameter m, by

Papprox(θ ) = N
5∏

i=0

[1 + m f (θ − iπ/3)], (19)

where N is the normalization constant. Note that in the AOO
regime, this expression is exact and the parameter m can be
written in terms of the density of dimers. Outside the AOO
regime, the expression is only approximate, but incorporates
the known exact position of the cusp singularities, and its

analytical structure is suggested by the solution of the model
of interacting rods on the Bethe lattice [17]. The plot shown
in Fig. 7 compares the Monte Carlo data beyond the AOO
regime, for x = 1.7 and 1.5, with value of m chosen to provide
the best fit. We see that the ansatz provides a good qualitative
description for the one-point PDF. The deviations from this
form occur only in the intervals of θ for which the failure of
the AOO condition is possible.

Our Monte Carlo simulations also revealed the presence
of both the Berezinskii-Kosterlitz-Thouless (BKT) phase and
the orientational-symmetry-broken phase in addition to the
disordered phase. The clock model also exhibits a similar kind
of behavior where there is an intervening BKT phase between
the phases with broken symmetry and the disordered phase
[23]. A phase where the symmetry of the orientational distri-
bution function is broken under lattice rotations was observed
for values of x less than 0.55, as illustrated in Fig. 8, where
the one-point probability density function is peaked at π/6
and decays rapidly to zero as we move away from it. In the
broken symmetry phase, all the singularities in P(θ ) are seen
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FIG. 7. Comparison of one-point PDF obtained using Monte
Carlo simulations and our ansatz given in Eq. (19). (a) x = 1.7,
m = 1.405 and (b) x = 1.5, m = 1.32.

FIG. 8. One-point PDF obtained using Monte Carlo simulations
for x = 0.45 (red dashed line) and x = 0.3 (black solid line).

FIG. 9. (a)–(c) A spatial heat map of orientations of disks in a
600 × 600 triangular lattice for different x. Color coding is from −1
to 1 as orientations are divided by π . (a) At x = 1.92, the system
is disordered, as one can see that all the orientations are randomly
oriented, giving rise to no net ordering. (b) At x = 0.7, the system
is critical as the cluster size of the same orientations exhibits large
fluctuations. (c) At x = 0.3, the system is ordered as the orientations
of the disks prefer to align along a direction giving rise to net
ordering. (d) The ln - ln plot of the mean square of the orientational
order parameter vs L for different x. s represents the slope of the
ln - ln plots for various x.

only in the ensemble-averaged quantities, and not in the time
averages of a single realization.

In the intermediate region, roughly in the range 0.55 <

x < 0.9, we observe the BKT phase which is usually char-
acterized by a power-law decay of a correlation function with
the exponent that depends on x and no long-range order. In
Figs. 9(a)–9(c), spatial heat maps of the orientations of disks
are plotted for different values of x chosen from three different
phases.

The BKT phase can be identified by looking into the sys-
tem size dependence of the mean square of the orientational
order parameter. On an L × L lattice, the leading-order depen-
dence of the mean square of the orientational order parameter
on L for different phases varies as

〈
O2

x

〉 + 〈
O2

y

〉 ∝
⎧⎨
⎩

L2 in the disordered phase
L4 in the ordered phase
L4−η(x) in the BKT phase,

(20)

where Ox = ∑
r cos θ (r), Oy = ∑

r sin θ (r), and 0 � η(x) �
1/4. The angular brackets represent the ensemble average. In
Fig. 9(d), the mean square of the orientational order parameter
vs L is plotted for various values of x. Our simulations show
that for x > 0.9, we get a variance increasing as L2, and for
x < 0.55, it varies as L4. It has an intermediate behavior,
with η ≈ 0.08, 0.15, and 0.20, for x = 0.55, 0.65, and 0.7,
respectively. Nearer the BKT critical point, the relaxation
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becomes slow and we are not able to get reliable estimates
of the position of the critical point. In this paper, we do not try
to identify the range of x values where the BKT phase occurs
more precisely.

V. CONCLUDING REMARKS

The model discussed in this paper is of interest for several
reasons. First, it is a model that is simple to define, which
shows a large number of phases, and phase transitions, just by
varying one parameter. It thus provides a minimal model for
describing the multitude of phases seen in plastic solids.

Second, we have argued that to characterize the many
phases, it is convenient to use not a single order parameter,
but the whole distribution function of orientations. The full
distribution as an order parameter has been discussed in the
context of spin glasses [24]. Also, we have shown that this dis-
tribution function has robust geometrical singularities, whose
qualitative behavior is easy to determine theoretically. Here
we provide a system with continuous degrees of freedom that
shows nontrivial singularities in the one-point function, whose
position changes when the coupling constant is varied.

Third, we could determine the angular dependence of the
distribution function P(θ ) for a range of values on x, when
the AOO condition is satisfied. Outside of this range, we
showed that the distribution function can be expanded in a
perturbation series in a variable y. In general, problems where
the position of the singularity varies with the perturbation
strength are difficult to construct. For example, the function
P(θ ) is expected to have cusp singularity of the form

P(θ ) = A(θ, x) + B(θ, x)|θ − θc(x)|1/2, (21)

near a cusp singularity θ = θc(x), where A(θ, x) and B(θ, x)
are smooth functions of x (different on different sides of the
cusp). A naive perturbation series in δ = x − x∗ for P(θ )
about a point x∗ would generate spurious singularities of the
type |(θ − θc(x∗)|−1/2δ. Our perturbation parameter y avoids
this problem, as the x-dependent cusp singularity structure is
built in the perturbation series.

Fourth, the connection of this problem to the hard-disk
problem is also of interest. Typical configurations generated
in this model are visually not easily distinguished from the
configurations of the hard-disk model at the same density. In
the limit x tending to zero, we get the close-packed crystalline
solid. In our model, the centers of the disks cannot move
freely, but each center is restricted to a circle of radius ε. The
restricted model seems to have qualitative behavior similar to
the original model. For small x, we do not have crystalline or-
der, and if we construct a local coarse-grained variable giving
the average orientation of the lattice locally, this will change
slowly in space, as in the hard-disk model. In particular, for
0 < x < 0.5, one can show that there are no vortices possible.

For an intermediate range of x, we have seen that there is
the Kosterlitz-Thouless phase, with power-law decay of the
angular correlations.

In addition to these, the system shows a series of ordering
transitions. In fact, for low x, our Monte Carlo simulations
also show a transition to a glassy phase with very large corre-
lation times. We have not discussed these here. This seems to
be a good direction for further studies.
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APPENDIX: SINGULARITIES IN P(θ)

We will show that the f1(θ ) has square-root cusp sin-
gularities at θ±

cusp = ± cos−1(x − 1). If θ = θ+
cusp − ξ where

0 < ξ � 1, then we have

cos θ − x = −1 + x
√

2 − x ξ + O(ξ 2). (A1)

Let us define

y = cos−1[cos θ − x]. (A2)

This can also be written as cos y = cos θ − x = −1 +
x
√

2 − x ξ + O(ξ 2). If ξ → 0, then y → π . Therefore, we get

y = π −
√

2x (2− x)1/4
√

ξ+ higher-order terms in ξ . (A3)

Putting this in Eq. (13), we finally get

f1(θ ) =
√

2x (2 − x)1/4
√

θ+
cusp − θ θ → θ+

cusp. (A4)

Following these same lines of argument, one can show that
cusp singularity also exists at θ = θ−

cusp = − cos−1(x − 1).
Other fi(θ ) can also be found from f1(θ ) using the symmetries
of the triangular lattice, and thus fi(θ ) = f1[θ − (i − 1)π/3].
Similarly, two cusp singularities exist for each fi(θ ), whose
positions can be found using the symmetries of the triangular
lattice. As a consequence, there exist 12 cusp singularities in
P(θ ), whose positions are given by

θcusp = jπ

3
± arccos(x − 1) where j = 0, 1, 2, . . . , 5.
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