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Domain convexification: A simple model for invasion processes
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We propose an invasion model where domains grow up to their convex hulls and merge when they overlap.
This model can be seen as a continuum and isotropic counterpart of bootstrap percolation models. From
numerical investigations of the model starting with randomly deposited overlapping disks on a plane, we find an
invasion transition that occurs via macroscopic avalanches. The disk concentration threshold and the width of
the transition are found to decrease as the system size is increased. Our results are consistent with a vanishing
threshold in the limit of infinitely large system sizes. However, this limit could not be investigated by simulations.
For finite initial concentrations of disks, the cluster size distribution presents a power-law tail characterized
by an exponent that varies approximately linearly with the initial concentration of disks. These results at
finite initial concentration open novel directions for the understanding of the transition in systems of finite
size. Furthermore, we find that the domain area distribution has oscillations with discontinuities. In addition,
the deviation from circularity of large domains is constant. Finally, we compare our results to experimental
observations on de-adhesion of graphene induced by the intercalation of nanoparticles.
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I. INTRODUCTION

Invasion transitions, where domains invade the entire
space, are found in many two-dimensional systems [1,2]
ranging from phase transitions in magnets to de-adhesion
transitions and spreading of species in ecology models. In
this paper, we propose a simple two-dimensional model for
isotropic invasion in continuous space where each domain
grows up to its convex hull, thereby invading the concave parts
along its periphery. If this growth process up to the convex
hull, hereafter denoted as convexification, leads to overlap-
ping with other domains, then these domains are merged.
Merging of domains produces new concavities, leading to
additional domain growth.

A schematic of the model starting with randomly deposited
overlapping disks on a plane is shown in Fig. 1. The initial
domains are the disks. We apply iteratively convexification
and merging. Since the disks are convex, they are identical
to their convex hull and the first convexification of each disk
does not change the disks. The first merging groups the disks
in clusters of mutually overlapping disks. They lead to clusters
with different colors on Fig. 1(a). The convexification of these
clusters leads to convex domains, as shown in Fig. 1(b). When
these domains overlap, they are merged. Hence, the blue and
green domains in Fig. 1(b) are merged, leading to a larger do-
main in Fig. 1(c). This iterative convexification and merging
process is stopped when no new merging can be performed,
as in Fig. 1(d). Our numerical investigation of this model in
large systems shows that it exhibits an invasion transition as
the initial density of disks is increased.

Our model constitutes a continuous and isotropic coun-
terpart of the bootstrap percolation model [3–5]. Bootstrap
percolation models are on-lattice models where domains grow
irreversibly at sites that have a sufficient number of bonds

with the existing domains. For a large enough threshold in
the number of bonds (2 for the square lattice), and starting
from random initial conditions with a given initial density of
occupied sites, the domains grow up to a final state which
is either a set of disconnected domains with a finite domain
density, or a single domain that has invaded the whole system.
A transition between these two regimes occurs at a finite
initial density of occupied sites for systems with a finite size.
However, this finite initial density threshold is a finite-size
effect, and, in the limit of very large systems, the threshold
of the transition occurs at vanishing initial densities [6]. The
convergence to the limit of large system size in bootstrap per-
colation is notoriously slow (the largest simulations reported
in Ref. [7] on a square lattice with (2.2 × 105)2 sites are still
far from the asymptotic behavior of Ref. [6]). Our simula-
tions show that the transition threshold of our convexification
model decreases with increasing system size. Our numerical
evidence (with up to 108 disks) is insufficient to conclude
whether the threshold vanishes for very large sizes. However,
in the range of system sizes that we have explored, we find that
the threshold and the width of the transition decrease when the
system size increases.

Moreover, the bootstrap percolation transition is known to
occur in a discontinuous way via a macroscopic avalanche
when increasing the initial density of occupied sites [8–10].
Such a discontinuity has attracted much attention in the
literature. Other percolation models were also found to ex-
hibit strongly discontinuous transitions, often called explosive
percolation [11,12]. Macroscopic avalanches have also been
observed in the depinning transition of the low-temperature
random field Ising model [13–15]. In both bootstrap percola-
tion and depinning transitions, the discontinuous character of
macroscopic avalanches is associated with strong finite-size
effects that are rooted in rare events [7,15]. For large-enough
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FIG. 1. Schematic of the iterative convexification and merging process. The initial state with a set of overlapping disks is shown in (a).
The process is repeated as long as merging is possible (see text for details). We analyze the final state at the end of this process. The final state
shown in (d) consists of two clusters: one cluster with 11 disks, and one cluster with 1 disk.

systems, we also observe that the transition takes the form of a
macroscopic avalanche that can be triggered by a microscopic
perturbation, for example, the addition of a single disk to the
initial condition.

The bootstrap percolation and depinning transitions occur
in simple paradigmatic models that are expected to catch
the essence of a wide variety of physical phenomena, from
the jamming transition to crack propagation. In like manner,
we expect our model to pertain to a large class of systems
where invasion transitions can be observed, due to our model’s
isotropic lattice-free character.

A first class of phenomena that may be described by the
convexification model is line-tension induced growth of two-
dimensional domains with random impurities or defects. In
contrast to the random field Ising model, the randomness then
only originates in the initial condition: we assume that one
type of magnetization is imposed in some randomly placed
disk-shaped zones. Outside these zones, the interface between
the two types of magnetization moves freely, and is subject
to standard motion by curvature driven by line tension [1,2].
Hence, these interfaces straighten and build the convex hull of
the initial zones. Due to the equivalence between lattice gas
models and the Ising model [16], this process also describes
the dynamics of adsorption of a monolayer of molecules (or
particles) with short-range attractive interactions on a flat sub-
strate in the presence of localized defects or impurities which
enforce the initial coverage of some circular zones. Another
similar system is the imbibition in a Hele-Shaw geometry
[17–19] with strongly wetting defects, a geometry that mimics
imbibition of porous media.

A second class of physical phenomena that could be
described by domain convexification is third-body induced
de-adhesion transitions. These transitions are relevant to
friction and its coupling with wear, but also to intercalation
of particles, molecules, or atoms inside layered materials
such as graphite [20–22]. A simple view of the de-adhesion
transition is the following. When particles are intercalated in
the contact zone between two bodies, each particle leads to a
local de-adhesion zone around it. When these zones overlap,
the concave parts of their periphery can be rounded, leading
to a growth of the de-adhesion zone. This growth can lead to
new overlap with other de-adhesion zones, and the growth of
de-adhesion zones occurs again. When the density of particles
is large enough, this leads to de-adhesion of the full contact
zone. This generic phenomena has been observed in the case
of de-adhesion of graphene with intercalated nanoparticles
[23]. One advantage of using a two-dimensional material

like graphene is the possibility of imaging the detailed
geometry of detachment zones induced by nanoparticles.
In these experiments, a de-adhesion transition is observed
when the density of intercalated nanoparticles or the rigidity
of the membrane are increased. The convexification model
appears as a idealization of this process which assumes that
detachment zones simply grow up to the convex hull of the
detachment zones that would be induced by each particle
independently. The physics of de-adhesion is expected
to be more complex than this simple model, since the
de-adhesion zones might grow only partially towards their
convex hull, or grow to a different shape. Also, other features
are expected depending on the precise adhesion properties
and elastic properties of the system, such as wrinkles and
conical singularities [23–26]. However, we hope to catch
some generic features of this phenomenon with our simple
model, and below we report a quantitative analysis of the
intercalation-induced graphene de-adhesion observed in
experiments.

The convexification model could also be relevant for the
modeling of invasion in population dynamics. Indeed, most
models for the invasion of a population in continuous space
are based on ingredients that lead to finite propagation speed
for straight fronts [27–30]. Our model proposes a different
paradigm, and suggests a scenario of species invasion with
no net growth for straight fronts. Instead, the invading do-
main could grow only via the process of convexification. A
simple mechanism for this process is straight-line traveling
of individuals between different points of the domain, and
merging of domains where individuals meet (due, e.g., to
breeding). Since the ensemble of straight lines starting and
ending in a domain cover its convex hull, we then obtain
the convexification model. Our results can be translated as
the following statement for population dynamics: above a
critical initial density of randomly placed domains where
the species, the whole system will be invaded. Our results
suggest that, starting from a randomly scattered popula-
tion that has no propensity to spread, invasion and merging
into a single group could be triggered by the motion of
individuals in straight lines within their own population
domain.

Finally, we point out the possible relevance of our model
for classification and clustering of complex sets of points or
domains in the plane. In statistics and data analysis, one of
the elementary questions that is at the root of many clustering
algorithms is the linear separability of sets of points [31–33].
In our two-dimensional plane, two sets of points or two
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domains of the plane are said to be linearly separable if they
can be separated by a straight line. Since two disjoint convex
clusters can always be separated by a straight line, they are
linearly separable from each other. The convex hull of a
set of points is actually a standard tool for studying linear
separability [34]. Moreover, the straight line that maximizes
the distance from the points of two clusters is called the
maximum margin hyperplane, and its distance to the closest
points is called the maximum margin [35,36]. It is clear that in
our model two clusters will not merge if the maximum margin
between their disk centers is larger than the disk radius rd . As
a consequence, the condition of linear separability of clusters
with maximum margins larger than rd is equivalent to our
condition for stopping the convexification procedure. In other
words, the invasion transition corresponds to the threshold
above which it is not possible to separate linearly clusters
of randomly scattered points with a maximum margin larger
than rd .

A closely related subject is the separation of objects
in images using their convex hulls [37]. As discussed in
Refs. [38,39] the construction of convex hulls can be obtained
by the propagation of the boundary of the domain with a
modified motion-by-curvature equation governing the normal
velocity vn,

vn = − min(κ, 0), (1)

where κ is the local curvature (positive for convex domains).
This equation is actually similar to the models discussed
above for the growth of magnetization models or monolayers
from initial defects.

In the following, we will start with a detailed description
of the model and its numerical analysis in Sec. II.

The simulation results are reported in Sec. III. We discuss
the main features of the invasion transition in Sec. III A,
namely, macroscopic avalanches and the decrease of the
threshold and width of the transition as the system size in-
creases. In Sec. III B, we introduce an order parameter which
measures the average fraction of the system that is not in-
vaded. In Secs. III C and III D, we discuss the domain size
and area distributions. For finite concentrations of initial disks,
the tails of the domain size distribution are found to present
a power-law behavior with a continuously varying exponent.
Moreover, the domain area distribution is found to have oscil-
lations accompanied by discontinuities. We then report shortly
on domain shapes in Sec. III E. We find that the average shape
of large domains presents a constant deviation from a circular
shape.

Further discussions and analysis of the transition are re-
ported in Sec. IV. After a comparison with on-lattice bootstrap
percolation in Sec. IV A, we distinguish two regimes for the
transition: a first regime at small concentrations leading to a
behavior that is similar to the asymptotic regime of bootstrap
percolation discussed in Sec. IV B, and a second regime at
finite concentrations discussed in Sec. IV C.

In Sec. V, we compare our results with experiments where
the intercalation of nanoparticles leads to the de-adhesion
of graphene [23]. We find that experimental results can be
described quantitatively with our model assuming a finite-size
effect involving around 200 particles.

Finally, we provide a brief summary of our results in
Sec. VI.

II. MODEL

A. Model ingredients and definitions

We consider a two-dimensional system. The initial con-
dition consists of randomly placing Nd disks of radius rd in
a two-dimensional system of area Asyst. More precisely, the
centers of the disks are chosen from a continuous uniform
probability distribution on the system area. The concentration
of disks is characterized by the dimensionless concentration

C = Ndπr2
d

Asyst
. (2)

In the following, a cluster will denote one of the groups of
disks resulting from the convexification process. In addition,
a domain will denote the region of the plane that corresponds
to the convex hull of a cluster.

The initial domains correspond to the zones of the plane
that are covered by one disk, or several overlapping disks. The
overlapping disks belonging to one initial domain in the plane
correspond to the percolation clusters of continuum disk per-
colation [40]. The percolation threshold above which infinite
percolation clusters exist in large systems is Cp ≈ 1.128 [41].
The average area fraction not covered by the disk percolation
domains is [23]

�p(C) = e−C . (3)

This relation is valid in systems of large size when Asyst �
πr2

d , so that the effect of boundary conditions can be
neglected.

Starting from this random initial condition with disk
percolation clusters, we apply the following iterative convex-
ification procedure. First, we consider that any domain grows
up to its convex hull; this is the convexification step. Then,
domains that overlap are merged; this is the merging step. We
apply iteratively these two steps up to the situation where no
new merging occurs in the merging step. A schematic of the
convexification process is shown in Fig. 1.

Such an iterative algorithm aims at mimicking the invasion
processes that were discussed in the Introduction. Note that
the precise dynamics of the interface that describes how the
domain boundary grows up to the convex hull in the convexifi-
cation step is not described. However, the final state composed
of a set of disconnected convex domains is clearly unique, and
this final state is the focus of our analysis.

More precisely, we wish to investigate the dependence of
the final state on the two dimensionless numbers that govern
the problem: the disk concentration C, and the normalized
system size

Āsyst = Asyst

πr2
d

. (4)

We have performed numerical simulations where the varia-
tion of C is obtained by adding disks one by one so as to
increase Nd for a fixed Āsyst. Once a new disk is added, we
iterate convexification and merging steps in the system, and
the algorithm converges to a new final state. The simulation

044108-3



DAVID MARTIN-CALLE AND OLIVIER PIERRE-LOUIS PHYSICAL REVIEW E 108, 044108 (2023)

results reported in the following sections are performed with
C varied from 0 to 1 for various values of Āsyst between 102

and 108.
We report simulation results with two types of boundary

conditions. The first type of boundary condition, hereafter
denoted as fixed boundary conditions, corresponds to a system
where the centers of the disks of radius rd are placed within
a circular system of radius Rsyst and area Asyst = πR2

syst. Note
that, when the center of a deposited disk is close to the edge
of the system, part of this disk may lie outside the system.
This leads to corrections to Eq. (3) that are negligible when
rd � Rsyst.

We also consider the case of periodic boundary conditions
in a square box of size Lsyst × Lsyst and area Asyst = L2

syst. The
investigation of periodic systems requires a careful definition
of convex hulls. This definition is discussed in Appendix A.

B. Details on the simulation algorithm

Below we provide some details about the algorithm that we
have used to build the clusters. The reader who is not inter-
ested in this specific technical discussion can switch directly
to Sec. III.

For each cluster, we use the Jarvis march algorithm [42] to
obtain the lists containing the Nout outlying disks that are in
contact with the boundary of the domain. As shown in Fig. 2,
the boundary of the domain is composed of arcs of circles
that belong to the edges of the outlying disks, and segments
between two outlying disks. Disks inside the cluster (i.e., not
outlying) can be discarded for the computation of the merging
and convexification processes.

We add disks one by one. A new disk will belong to a
given cluster if the center of the new disk falls inside the
fictitious convex-hull domain of the cluster that is formed by
assuming disks of radius 2rd . Testing the contact requires the
computation of Nout tests for checking on which side of the
domain boundary segments the center of the new disk is, and
Nout tests for checking if the center of the new disk is in the
outlying disks.

If the new disc is in contact with no cluster, a new one-
disk cluster is created. Otherwise, the new disk is merged with
the first cluster with which it is found to be in contact when
browsing the list of clusters.

If the new disk is a new outlying disk of the cluster with
which it is merged, then the new disk is added to the list
of outlying disks. In such a case the cluster domain changes
and grows, and the algorithm starts testing the contact of this
modified cluster with the other clusters. To test the contact
between the growing cluster and the other clusters, we test
the contact of each outlying disk of other clusters with the
growing cluster. From this point on, at each step of convexifi-
cation, the growing cluster is simultaneously merged with all
the clusters that are in contact with it. Then, the new convex
hull is computed, and contact tests are resumed. The growth
process is iterated until no contact is found between the
clusters.

To accelerate the simulations, a compartmentalization
method is implemented, following Ref. [40]. The system is
covered by a square grid with cells of side 2rd . Contact tests
of a disk with a cluster are performed only if the center of

(a)

(b)

FIG. 2. Schematic of a seven-disk cluster with four outlying
disks. (a) The light (green) shading represent the cluster domain.
The boundary of the domain is composed of straight segments and
arcs of circle. (b) Compartmentalization grid with squares of size
2rd × 2rd . A rectangle is constructed, which contains all disk centers
plus one shell of grid cells (shown in lighter shading). Contact tests
are performed with other disks only when their centers fall into this
rectangle.

the disk belongs to the minimal rectangle of grid cells that
contains the centers of the disks of the cluster plus one shell
of cells, as shown in Fig. 2.

As the growing cluster becomes large, the compartmental-
ization method tends to be counterproductive and slows the
simulations down. This happens mostly during the macro-
scopic avalanche at the transition. Hence, if the number of
outlying disks of the growing cluster exceeds an empirically
chosen value of 20, compartmentalization is not used.

III. RESULTS

A. Transition

A first remarkable result is obtained over each individual
realization, i.e., for one given sequence of added disks, and
when the system is large enough, approximately when Āsyst �
104. We indeed observe a sharp invasion transition with the
addition of a single disk. Before this critical disk is added,
the final states are composed of a distribution of finite-size
domains. A zoom of a square region is shown in Fig. 3 for
various concentrations C. As C increase, the area covered by
the domains increases continuously and larger domains appear
gradually. However, when the critical disk is added, a macro-
scopic avalanche of convexification spans the whole system,
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FIG. 3. Zoom on a square region (100rd × 100rd ) of the system,
at various values of C. All domains are displayed, and disks inside
them can be seen within the domains. The bottom right figure, at
C = 0.431, corresponds to the state of the system just before the
transition, where the addition of a single disk triggers a macroscopic
avalanche leading to the invasion of the whole system. The normal-
ized system area is Āsyst = 105.

ultimately leaving only one domain that engulfs all the disks
of the system. Snapshots of the convexification process when
adding the critical disk are reported in Fig. 4.

The fraction �(C) is defined as the ratio of the system
area that is not covered by the domains over the system area
Asyst. In Fig. 5(a), �(C) is plotted for several independent
realizations. As expected, we have

�(C) < �p(C) (5)

for any realization. Moreover, a discontinuous transition is
observed in each realization. We observe that the value of
C where the transition occurs varies from one realization to
another. Macroscopic percolation clusters are expected to be
found at the percolation transition when C → Cp. Since the
convex hull of these macroscopic clusters spans the whole
system, Cp should be an upper bound for the transition. In-
deed, the transitions always occurred well before the disk
percolation transition in our simulations. In addition, the curve
�(C) before the transition seems to be independent of the
location of the transition; i.e., we have observed no measur-
able precursors or deviations before the appearance of the
transition, as seen in the inset of Fig. 5(a).

An example of distribution of transition points for Āsyst =
105 is provided in Fig. 6(a). The average Cc and the standard
deviation �Cc of this distributions of transitions are plotted in
Fig. 6(b) and 6(c) as a function of Āsyst. They both decrease
with increasing system size.

In addition, the distribution of transition points also ex-
hibits a skewness that is negative for all values of Āsyst. A plot
of the skewness of the distribution is also reported in the inset
of Fig. 6(c).

FIG. 4. Macroscopic avalanche triggered by the addition of a
single disk, and invading the whole system. This corresponds to the
same simulation as in Fig. 3. The growing domain is shown in blue
every five iterations (where one iteration corresponds to the merging
of the invading cluster with all the clusters it is in contact with).
Polygons linking disk centers are shown to indicate the domains.
Small clusters containing less than eight disks in their periphery
are not shown. Āsyst = 105; the figure corresponds to the avalanche
induced by the adding of the 43122th disk.

FIG. 5. �(C) as a function of the normalized disk concentration
C. (a) �(C) obtained from five different simulations with a fixed
system area Āsyst = 106 and fixed boundary conditions. The disk
concentration C is increased by adding disks one by one, and keeping
a constant disk radius rd . The inset shows a zoom of the transition
region. (b) Average 〈�(C)〉 for a fixed C. Full lines: fixed bound-
ary conditions. Dashed lines: periodic boundary conditions. From
right to left: Āsyst = [102, 103, 104, 105, 106, 107, 108] averaged over
[103, 103, 105, 104, 103, 103, 60] realizations. Dotted line: exponen-
tial decrease of the order parameter without convexification, Eq. (3).
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FIG. 6. Transition for fixed boundary conditions. (a) Probability
distribution of the transition point Cc from 104 runs with Āsyst = 105.
Solid vertical line: average Cc. Dashed vertical lines: average plus or
minus one standard deviation �Cc. (b) Mean transition threshold Cc

as a function of Āsyst . Averages are performed on the same number of
realizations as in Fig. 5. (From the points from left to right, standard
errors of the mean are 7.743 × 10−5, 1.685 × 10−4, 3.944 × 10−4,
3.151 × 10−4, 9.1 × 10−4) (c) Transition width �Cc (standard devia-
tion) as a function of Āsyst . Inset: skewness of transition distributions.
Error bars correspond to plus or minus one standard error of the
skewness.

B. Order parameter

Another way to represent the distribution of the transition
is to plot the average 〈�(C)〉 over many realizations, as
shown in Fig. 5(b). The average fraction 〈�(C)〉 can be used
as an order parameter to characterize percolation transitions.
This choice of order parameter is usual in percolation
models Refs. [23,41,43], and in bootstrap percolation models
where it corresponds to the fraction of sites in the giant
connected component on regular lattice [44,45] or complex
networks [46,47].

At small C, the behavior of 〈�(C)〉 is independent of the
system size Āsyst. An expansion for C → 0 up to second order
in C can be obtained when considering only isolated disks
and domains composed of two disks. Such an expansion is

described in detail in Appendix B, and leads to

〈�(C)〉 = 1 − C + C2

(
2 − 16

3π

)
+ O(C3). (6)

This expansion captures the behavior of 〈�(C)〉 for small C,
as seen in Fig. 14 of Appendix B.

For larger values of C, the order parameter 〈�(C)〉 de-
creases and vanishes due to the transition. This decrease
becomes sharper and occurs at smaller values of C when
Āsyst increases, as expected from the decrease of �Cc and Cc

reported in Fig. 6.
In addition, the difference between the values of 〈�(C)〉

for periodic and nonperiodic boundary conditions shown in
Fig. 5(b) is seen to decrease when the system size increases.
This suggests that the type of boundary condition is asymp-
totically irrelevant for large systems, and that our results for
the transition threshold obtained for large nonperiodic systems
should also provide an accurate description of large periodic
systems.

C. Cluster size distribution

Let us call N the number of disks in a cluster. The
probability distribution P(N ) before the transition is re-
ported in Figs. 7(a) and 7(b). For system sizes Āsyst ∈
{104, 105, 106, 107, 108}, we run {105, 104, 103, 103, 60} re-
alizations of our simulation respectively. Then, we ex-
tract the distributions at C ∈ {0.1, 0.2, 0.3, 0.4,Cc = 0.47}
for Āsyst = 104, and at C ∈ {0.1, 0.2, 0.3,Cc} for Āsyst ∈
{105, 106, 107, 108}, with Cc ∈ {0.423, 0.394, 0.372, 0.355}
respectively. We exclude realizations where the system has
already undergone a transition (this corresponds to a signif-
icant number of runs mainly at C = Cc, where roughly half
the realizations have transited).

When C → 0, there are mainly isolated disks and P(N =
1) → 1, as seen from Fig. 7(d). As shown in Fig. 7(a), fit
of P(N ) with a stretched exponential (a0 exp[−a1(N − 1)a2 ])
shows that the distribution approaches an exponential distri-
bution when C → 0, i.e., a2 → 1 as C → 0.

For larger values of C, the tails of the distributions for
large N � 1 exhibit a power-law decay P(N ) ∼ N−δ . The
exponent δ, plotted in Fig. 7(b), is independent of Āsyst and
varies approximately linearly with C:

δ ≈ 14.19 − 24.99C. (7)

Such a power-law tail of the distribution would lead to a
divergence of the average cluster size if δ → 2. Using Eq. (7),
this condition suggests a divergence at C ≈ 0.49. Note that
this value is a speculative extrapolation in the sense that it
is larger than all the values of C reported in Fig. 7. The mean
cluster size 〈N〉 is reported in Fig. 7(c). As expected, the mean
cluster size 〈N〉 → 1 as C → 0. However, the values of C
for which the transition can be measured do not allow one
to probe the possible divergence of 〈N〉 at larger C.

D. Domain area distribution

In systems such as those discussed in the Introduction, the
initial disks might not be observable, so that the cluster size
N might not be a relevant observable quantity. Instead, the
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FIG. 7. Cluster size distribution before transition. (a) P(N ) as
a function of the number of disks N in the cluster. Small val-
ues of C: from left to right C = [0.025, 0.05, 0.075, 0.1]. System
size: Āsyst = 105, averaged over 105 realizations. Dashed lines:
fits with stretched exponentials a0 exp[−a1(N − 1)a2 ] with a2 =
[0.935, 0.909, 0.895, 0.858]. (b) P(N ) for larger values of C. Same
system size, averaged over 104 realizations (the average is performed
over realizations who did not experience a transition). From left
to right C = [0.1, 0.2, 0.3, 0.423]. Dashed lines: power-law fits of
the tails of distribution. (c) Exponent δ of the tail of the distribu-
tion P(N ) ∼ N−δ as a function of C for various system sizes Āsyst .
(d) Probability of clusters with a single disk P(N = 1), and average
cluster size 〈N〉 as a function of C for various system sizes Āsyst .
The symbols refer to the system size Āsyst and are the same as in (c).
Boundary conditions are fixed.

domain area could be observable. As a reminder, a domain
is the convex hull of all the disks contained in a cluster. The
normalized area of a domain is defined as

Ā = A

πr2
d

, (8)

FIG. 8. Cluster area distribution P(Ā), for Āsyst = 105, averaged
over 104 realizations, and 105 realizations for the three curves on
the left (small values of C); free boundary conditions. From left to
right C = [0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.423] (the last value of
C corresponds to the mean transition point Cc). The special values
Ām1, Ām2, and Ām3 respectively correspond to the maximal area of a
cluster of one, two, and three disks, as discussed in the text.

where A is the domain area.
The domain area probability distribution P(Ā), shown in

Fig. 8, is found to oscillate at small Ā. We observe sev-
eral oscillations accompanied with discontinuities. First, a
Dirac-delta-like peak corresponding to the contribution of
domains composed of a single disk at Ā = Ām1 = 1. Then,
clusters with two disks only have a finite range of domain
area Ām1 < Ā < Ām2, and the distribution presents a steplike
discontinuity at Ā = Ām2. Possible areas of domains with three
disks also obey an inequality Ām1 < Ā < Ām3. This leads to
a slope-discontinuity in the area probability distribution at
Ā = Ām3. In addition, we observe numerically that there is an
approximately horizontal tangent on the right side at Ā = Ām3.

The values of ĀmN for small N correspond to the maximum
domain area for a cluster of N disks. For two disks, the config-
uration with the largest area is obtained for two tangent disks,
leading to Ām2 = 1 + 4/π . For three disks, the configuration
with the largest area is obtained when two disks are tangent
to the third disk, and when the angle between the two tangent
disks is 2π/3, leading to Ām3 = 1 + (4 + 33/2)/π . As shown
in Fig. 8, these values are in agreement with the observed
singularities of P(Ā). The general question of the existence
of higher order ĀmN and the nature of the associated series of
singularities remains open.

In contrast to P(N ), the tails of P(Ā) for large Ā do not
obey a clear power law. This is rooted in the nonlinear relation
between A and N which is discussed in Appendix F 4. Such
a nonlinearity can be interpreted as a finite-size effect for
clusters that are not large enough to obey the average-density
relation N ≈ ĀC.

E. Domain shape

The shape of the domains can be explored via their de-
viation from circularity. In Fig. 9, we see that the average
domain area A for a given perimeter P is proportional to the
square of the domain perimeter P2 for large domains. For
a circular domain, one has 4πA/P2 = 1. For large domains,
the prefactor is constant and independent of C, and one finds
4πA/P2 ≈ 0.827. This constant deviation from circularity for
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FIG. 9. Average cluster area A as a function of the perimeter P;
same parameters as in Fig. 8.

a wide range of sizes suggests some scale-invariant properties
of cluster shapes. Such scale invariance can be associated with
the presence of power-law tails of the cluster size distribution
discussed in Sec. III C.

IV. DISCUSSION OF THE TRANSITION

A. On-lattice bootstrap percolation

As discussed in the Introduction, our model shares strong
similarities with bootstrap percolation models. The bootstrap
percolation model can be defined as follows. Start with a
lattice containing Nlatt cells. Initially, Na cells are activated.
Then, each inactive cell is made active if m or more of its
nearest neighbors are active. This activation process is per-
formed iteratively up to a final state where no new active cell
can be added. Final states corresponding to different values of
Na are plotted in the top panels of Fig. 10 for a periodic square
lattice with m = 2 and Nlatt = 252. The results look similar to

FIG. 10. Comparison with bootstrap percolation. Upper panel:
final state of bootstrap percolation model on a square lattice for
three different values of the initial concentration C. Lower panel:
order parameter 〈�(C)〉 of our model (full lines) and for boot-
strap percolation. Dashed lines: square lattice; from right to left,
[10 × 10; 102 × 102; 103 × 103] cells. Dash-dotted line: hexagonal
lattice, 102 × 102 cells.

those of our model, and the system is invaded completely for
large-enough Na.

To compare bootstrap percolation with our results, we need
to define C in bootstrap percolation. Our procedure for the ini-
tial activation of the cells is designed to parallel the continuum
case. We choose a site randomly Ni times. Sites can be chosen
more than once. If the chosen site is not active, we activate
it. In Eq. (2), the normalized concentration C was defined as
the total area of all the disks deposited in the system, Ndπr2

d ,
divided by the system area Asyst. By analogy, we define the
normalized concentration C for on-lattice bootstrap percola-
tion as the total number of times Ni that a site is chosen divided
by the total number of sites in the system Nlatt:

C = Ni

Nlatt
. (9)

Indeed, if we associate with each site the area alatt of the unit
cell of the lattice, this definition can be seen as a ratio of the
total deposited area Nialatt over the total system area Nlattalatt

as in Eq. (2).
The probability of sites not being activated initially is

(1 − 1/Nlatt )Ni ≈ e−Ni/Nlatt for Nlatt � 1, and the average initial
fraction of nonactive sites is therefore

�b(C) = e−C, (10)

which is identical to Eq. (3). The average number of initially
active cells is then Na = Nlatt[1 − �b(C)].

A comparison of the numerical results of our model with
those of bootstrap percolation is reported in the lower panel of
Fig. 10.

Note that curves showing 〈�〉 for bootstrap percolation
are well known, but they are usually plotted as a function of
Na/Nlatt = 1 − �b; see, e.g., Refs. [44–47]. The behavior of
the two models is similar, as expected. Both models give rise
to a transition when C is increased. However, the transition
occurs at much smaller values of C for bootstrap percolation.

In order to gain further insight, we have also implemented
bootstrap percolation on a hexagonal lattice [4], with m = 3
instead of m = 2 for the square lattice (indeed, one cell has
six nearest neighbors on a hexagonal lattice, instead of four
on a square lattice). Due to their six-old symmetry, hexago-
nal lattices can naively be considered as more isotropic than
square lattices. As seen in Fig. 10, the bootstrap transition
for a hexagonal lattice is shifted to larger values of C as
compared to that of a square lattice, although the transition
is still expected to occur at C → 0 in large systems [5]. We
speculate that this could be an indication that isotropy shifts
the transition to larger C for finite system sizes. This trend
would be consistent with the observation of transitions at
larger C in our isotropic continuum model.

The bootstrap percolation transition on a square lattice is
known to obey [6,48,49]

lim
�b→1

Asyst→∞
(1 − �b) ln Āsyst = π2

9
. (11)

Assuming that the convexification model can be viewed as
a continuous and isotropic limit of bootstrap percolation, a
naive analogy based on the assumption that the microscopic
properties of the models are irrelevant at large scales would
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suggest that Cc ∼ (ln Āsyst )−1 → 0 as Āsyst → ∞ in the con-
vexification model.

B. Transition in the limit of small C and large Āsyst

Our numerical results reported for the convexification
model in Sec. III A are obtained in systems that are too small
to investigate a possible scaling regime similar to Eq. (11).
However, we can simply parallel the heuristic derivation of the
asymptotic behavior as discussed in Refs. [48,49]. The details
of this analysis are reported in Appendix C. The results are
similar to those of usual on-lattice bootstrap percolation and
suggest that Cc ∼ (ln Āsyst )−2/3 → 0 as Āsyst → ∞.

The only difference with on-lattice bootstrap percolation is
the exponent 2/3. This difference comes from the fact that the
increase of cluster area A due to merging with one active site is
proportional to the length of a facet of the cluster edge ∼A1/2

in on-lattice bootstrap percolation, while it is ∼A1/4 for the
merging of a cluster with a single disk in the convexification
model, as discussed in Appendix C. However, our simulations
are too small to assess the validity of this exponent, or to
determine the range of values of C for which this exponent
would be expected. Further investigations would therefore be
needed to clarify the scaling behavior as Āsyst → ∞.

C. Transition at finite C

Experimental systems usually exhibit a finite size, and
it is therefore important to study the behavior of the tran-
sition for finite C. Inspired by the heuristic derivation of
Refs. [48,49], we propose again a heuristic analysis to probe
the transition in the regime C � 0.1. One difficulty in the
analysis of the finite concentration regime comes from the
relevance of clusters of all sizes, while we could assume that
the system was mainly composed of isolated disks in the
limit C → 0.

Following Refs. [48,49], our analysis is based on the as-
sumption that the largest cluster is the one that invades the
system. The statistics of the largest cluster is studied in Ap-
pendix E. We account for the presence of power-law tails of
P(N ) reported in Sec. III C, and the predictions are in good
agreement with the simulations.

The analysis reported in detail in Appendix F is based on a
scenario in two steps. First, the largest cluster starts to grow,
and then this growth produces a macroscopic avalanche which
spans the whole system. The results suggest that, as in on-
lattice bootstrap percolation, the transition is governed by the
propagation of a macroscopic avalanche.

This analysis reproduces qualitatively the decrease of the
transition threshold with C, but predicts a threshold which
is quantitatively lower. Moreover, no true scaling regime
emerges in this regime. We attribute this absence of scaling
to the absence of a linear relation between the number N
of disks in a domain and the domain area ĀN in clusters of
finite size. However, it is possible to fit the decrease of the
threshold using a power law, and we find that Cc ∼ Ā−αc

syst with
αc ≈ 0.032. Using a fit of the simulation results in the range
106 � Āsyst � 108, we obtain a similar but smaller exponent
αc ≈ 0.024.

FIG. 11. Comparison of the convexification model with experi-
mental de-adhesion data. Full lines: simulations where C is varied by
adding disks one by one. Dashed lines: simulations with variable rd .
Crosses: experimental data of [23].

To summarize this section, our simple model inspired by
Refs. [48,49] captures the qualitative behavior of the transi-
tion, but is unable to reach quantitative agreement.

V. COMPARISON WITH EXPERIMENTAL RESULTS
ON GRAPHENE DE-ADHESION

A. Model for graphene de-adhesion

In this section, we compare our results with the experimen-
tal data from [23] on the de-adhesion of graphene caused by
the intercalation of nanoparticles. Following [23], the radius
of the detachment zone around a single isolated nanoparti-
cle with diameter d can be approximated by the radius of
detachment associated with a vertical point force lifting the
membrane up to a distance d from the substrate. Solving the
Föppl-von Kármán equations [23,50,51], one obtains

2R =
(

4nG

3γ

) 1
4

d, (12)

where nG is the tensile rigidity of the n-layer graphene, and γ

is the adhesion energy per unit area of graphene on silica. Us-
ing the experimental values reported in Ref. [23], d = 7.4 ±
2.2 nm, G = 2.12 × 103 eV/nm2, and γ = 1.7 ± 1.1 eV/nm2,
we find R ≈ 23.6n1/4 nm. Moreover, we have C = ρπR2,
where ρ is the density of nanoparticles. In the experiments
of Ref. [23], ρ = 160 ± 24 µm−2. Inserting these values into
Eq. (12), we obtain C = αn1/2, where α = 0.28 ± 0.16. Note
the large uncertainty on α, which is dominated by the un-
certainty in the particle diameter. A fit of the experimental
data for the experimental order parameter �exp at small C
prior to transition where �(C) ≈ 1 − C ≈ 1 − αn1/2 leads to
α ≈ 0.18, which is consistent with the estimate of α reported
above.

B. Variable rd simulations

An inspection of Fig. 11 suggests that the transition ob-
served for experimental data corresponds to a system size Āsyst

between 102 and 103. However, in experiments, the number
n of layers of graphene varies, and therefore from Eq. (12)
the radius rd of individual detachment disks varies while the
density ρ of particles remains constant.
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FIG. 12. 〈�(C)〉 for variable rd ; same parameters as in Fig. 5.
Full lines: we explore C by adding disks one by one, i.e., by varying
Nd for a constant radius of disks rd = 1. Dashed line: we explore
C by varying rd , for a fixed number of disks Nd = 200 (we keep
Asyst = 200π fixed and rd varies from 0 to 1, so that Āsyst varies from
+∞ to 200). To see that the variable rd curves cross the variable Nd

curves, we also show a variable Nd curve for Āsyst = 307.7 (light-
green curve).

To model these conditions, we performed simulations
where rd varies while the number of disks Nd and the system
area Asyst remain constant. The disk radius rd is varied from
0 to rd max = [Asyst/(πNd )]1/2. Using Eq. (2), this leads to a
variation of C = πr2

d Nd/Asyst = r2
d/r2

d max from 0 to 1. In terms
of dimensionless numbers, the result of the simulations with
variable rd corresponds to varying C at fixed Nd , as opposed to
the variable Nd simulations discussed in the previous sections,
which correspond to varying C at fixed Āsyst.

To make the link between these two types of simulations,
note that increasing rd corresponds to increasing C and de-
creasing Āsyst simultaneously. Hence, increasing rd can be
seen as continuously switching to lower and lower values of
Āsyst when increasing C. However, we observe in Fig. 12 that
the curve 〈�(C)〉 as a function of C for a given value of Āsyst

is always below the 〈�(C)〉 curve for a lower value of Āsyst.
Hence, the variable rd procedure leads to smaller slopes for
the decrease of 〈�(C)〉 as a function of C. Indeed, we see
that the variable rd curves have a smaller slope and cross the
variable Nd curves in Fig. 12. As a consequence, the width
of the transition along C is slightly larger with the variable rd

procedure.

C. Results

As shown in Fig. 11, agreement with experiments is found
for Nd ≈ 2 × 102. Our results therefore suggest a finite-size
effect involving about Nd = 200 particles in experiments.
Translating Nd into a length scale defined as the diameter of
a circular zone including 200 disks, we find 2(Nd/πρ)1/2 ≈

1.3 µm. However, the physical mechanism at the origin of this
length scale is not known. For example, correlations between
nanoparticle positions, or elastic effects, could come into play.

VI. CONCLUSION

In conclusion, we have introduced a model for invasion
in two dimensions based on the convexification and merging
of domains. Starting with an initial condition where disks
of equal diameter are randomly placed in the plane, we find
an invasion transition. An analogy with on-lattice bootstrap
percolation suggests that the invasion threshold should be
observed at zero density when the system size tends to infinity.
Our numerical simulations do not allow us to investigate the
asymptotic behavior for very small disk densities. We hope
that our work will motivate further studies of the convexifica-
tion model. Indeed, theoretical investigations and large-scale
numerical simulations are needed to elucidate the low-density
and large scale asymptotic properties of the model. It would
also be interesting to investigate on-lattice bootstrap percola-
tion to determine if power-law tails are also present for these
models in the finite C regime.

In the regime of finite densities C � 0.1, which should be
the relevant one for most experimental systems, we found
that the cluster-size distribution has a power-law tail, with an
exponent that increases linearly with the disk density. In this
regime, the deviation from circularity of the average shape of
large clusters is constant.

Furthermore, in both finite and small concentration
regimes, we found that the domain area distribution oscillates
for small areas. These oscillation are accompanied by singu-
larities of the distribution.

Our results compare favorably with experimental data
on the unbinding transition of graphene with intercalated
nanoparticles reported in Ref. [23]. Other experimental ap-
plications of the model would be welcome to strengthen
the claim of genericity and universality of domain invasion
via convexification. Indeed, our results could also describe
invasion transitions in line-tension induced growth of two-
dimensional domains with random impurities or defects,
including magnetic domains, adsorption of a monolayer of
molecules or particles with short-range attractive interactions
on a substrate, and imbibition in Hele-Shaw geometry. As
discussed in the Introduction, our model could also pertain
to population dynamics, classification and clustering of points
or domains in the plane, and separation of objects in images.
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APPENDIX A: CONVEX HULLS WITH PERIODIC
BOUNDARY CONDITIONS

In the periodic case, the algorithm is similar to that de-
scribed above. However, a novel situation appears when a
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(a)

(b)

FIG. 13. (a) The convex hull of a cluster overlapping with its im-
age through the periodic boundary conditions is a striplike domain.
(b) The strip may wrap around the system an arbitrary number of
times in both directions.

domain is in contact with its periodic image, as shown in
Fig. 13(a). The domain is then made convex only along the
direction where it is in contact with its periodic image, lead-
ing to a striplike convex hull. To include all possible cases,
since our square periodic simulation box has a toruslike topol-
ogy, we have to consider situations where the domain wraps
around the boundary conditions several times, as shown on
Fig. 13(b).

Strips are convex domains in the sense that, given two
points belonging to the strip, it is possible to find a segment
that connects these two points with all points of the segment
also belonging to the strip. However, in contrast to usual
convex shapes in the plane, for a given strip it is possible
to find a segment connecting two points of the strip with a
part of the segment not belonging to the strip. More precisely,
strips appear when defining a convex domain as a domain
that contains all the straight segments between two points of
the domain if these two points can be merged to one point
by a continuous transformation that keeps them inside the
domain. Equivalently, strips can be defined by moving to
the full infinite plane, tiled by our square system and all its
periodic images and taking the convex hull of each connected
components.

Periodic systems have the advantage of not having bound-
aries that could make them spatially inhomogeneous as in the
case of fixed boundary conditions. However, the periodicity
itself imposes discrete global symmetries that make the strips
anisotropic. These symmetries here are those of the square
tiling of the plane, and the related anisotropy is expressed
in the fact that the orientation of the strips cannot take ar-
bitrary values and are limited to rational slopes in the x, y
plane.

In addition, when the domain is in contact with its pe-
riodic image in two orthogonal directions, the convex hull
is the whole simulation box. In practice for large system
size, each time the addition of a disk provoked the ap-
pearance of a strip, the process of iterative convexification

continued and led to the full invasion of the domain by
this strip.

APPENDIX B: LOW-C EXPANSION FOR 〈�(C)〉
In the following, we report on two expansions of 〈�(C)〉 in

the limit C → 0.

1. Expansion from area occupied by the sum of all disk areas

The first strategy is to use the situation where each disk
contributes to decreasing the free area by their own area πr2

d
as a leading order estimate. This leads to a first estimate of
the fraction of the system area that is not covered by the
domains:

〈�(C)〉a0 = 1 − C. (B1)

In the limit of low density C → 0, this expression is
valid to linear order in C because the density of disks
is very low so that the probability that disks overlap
vanishes.

A first correction to this approximation is to consider the
effect of dimers, i.e., clusters made of two overlapping disks.
Overlapping occurs if another disk is present at a distance
smaller than 2rd . For each dimer, the area not covered by the
domains must be corrected by an amount

�A = πr2
d − 2rrd , (B2)

where r is the distance between the centers of the two disks.
Hence, in the presence of a concentration ρd of disks, the
correction is

〈�(C)〉a1 = 1

2
ρd

∫ 2rd

0
dr 2πrρd�A = C2

(
2 − 16

3π

)
. (B3)

where the 1/2 prefactor accounts for the fact that each dimer
is counted two times (one time starting from the first disk, and
another time starting from the second disk). The correction
〈�(C)〉a1 is positive: on average over all distances r, the
positive contribution coming from the overlapping area of
the disks is larger than the negative contribution due to the
convexification.

2. Expansion from the empty area

Another strategy is to perform an expansion from the area
that is empty in the presence of the overlapping disks before
any convexification is performed. We then start with

〈�(C)〉e0 = �p(C) = e−C, (B4)

which is consistent with Eq. (B1) to linear order in C.
A dimer correction is then obtained considering a dif-

ferent area change that has to account for the fact that
overlapping of disks is already present in the reference
state,

�A = r2
d

[
π − 2u + u

(
1 − u2

4

)1/2

− 2 arccos
u

2

]
, (B5)

where u = r/rd . We then obtain

〈�(C)〉e1 = 1

2
ρd

∫ 2rd

0
dr 2πrρd�A = C2

(
3

2
− 16

3π

)
. (B6)
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FIG. 14. Low-C expansion of the order parameter 〈�(C)〉.
(a) Comparison with simulations for Āsyst = 104. Solid line: 〈�(C)〉
from simulations. Dashed line: average of �(C) in systems that have
not undergone a transition 〈�(C)〉+. Dotted lines: first expansion
〈�(C)〉a0 and 〈�(C)〉a0+a1 = 〈�(C)〉a0 + 〈�(C)〉a1. Dashed-dotted
lines: second expansion 〈�(C)〉e0 and 〈�(C)〉e0+e1 = 〈�(C)〉e0 +
〈�(C)〉e1. The leading order expressions are shown in lighter
tone (gray). (b) Deviation of simulation results from low-C
predictions.

In contrast to Eq. (B3), the correction 〈�(C)〉e1 is now nega-
tive because it only results from the negative contribution of
convexification.

The Taylor expansion of the two approximations is identi-
cal up to second order in C, i.e.,

〈�(C)〉 = 〈�(C)〉a0 + 〈�(C)〉a1 + O(C3)

= 〈�(C)〉e0 + 〈�(C)〉e1 + O(C3)

= 1 − C + C2

(
2 − 16

3π

)
+ O(C3). (B7)

3. Comparison of the low-C expansions with numerical results

As seen in Fig. 14(a), low-C expansions of 〈�(C)〉 are
in good agreement with numerical simulations at small
C. Numerical results for the average 〈�(C)〉+ in sys-
tems that have not undergone a transition is also reported.
This latter quantity deviates from 〈�(C)〉 in the transition
region.

The deviation from the expansions, reported in Fig. 14(b),
scales as C3 as expected from Eq. (B7). Some deviations are
observed for C smaller than 10−2. These deviations are caused
by the finite size of the system that does not present enough
dimers at small C for the expansions to be valid.

APPENDIX C: ANALOGY WITH HEURISTIC DISCUSSION
OF ON-LATTICE BOOTSTRAP PERCOLATION

AT SMALL C

In this section, we apply the heuristic derivation of the
asymptotic behavior of the transition for on-lattice bootstrap
percolation [48,49] to the case of our convexification model.

Consider a large domain. In the limit C → 0, there are very
few large clusters, and we therefore analyze the growth of a
cluster by merging with isolated disks. The probability P−(A)
of not growing for a domain of perimeter A is the probability
of having no disk in a region of width rd around the periphery
of the domain. Denoting the area of this region as Ae, we have

P−(A) = e−Aeρd . (C1)

In normalized variables Āe = Ae/(πr2
d ),

P−(Ā) = e−ĀeC . (C2)

Hence, in the limit C → 0, the probability of growing is

P+(Ā) = 1 − e−ĀeC ≈ ĀeC. (C3)

Assuming that the cluster is large and circular of radius R, we
have

Āe = Ae

πr2
d

= 2πRrd

πr2
d

= 2
(A/π )1/2

rd
= 2Ā1/2. (C4)

Growth of the largest cluster of area Āc at the critical concen-
tration Cc requires P+(Āc) = a, where a is a constant, leading
to the condition

2Ā1/2
c Cc ≈ a. (C5)

Let us now investigate the growth of the cluster via merg-
ings with disks. Consider first the merging of a cluster with
one disk. Assuming that clusters are circular with radius R,
the increase of the cluster area due to merging is

�A = (
R2 − r2

d

)
(tan θ − θ ), (C6)

where cos θ = (R − rd )/d , with d the distance between the
center of the cluster of radius R and the disk. In the limit of
interest where R � rd , we have

�A = 23/2

3
R1/2(1 + α)3/2r3/2

d , (C7)

where α = (d − R)/rd obeys −1 � α � 1. Assuming a uni-
form distribution of α in the interval [−1, 1], we approximate
the term (1 + α)3/2 by its the average value,

(1 + α)3/2 ≈ 1

2

∫ 1

−1
dα(1 + α)3/2 = 25/2

5
. (C8)

The normalized area of the cluster after the nth mergings
obeys

Ān = Ān+1 + �Ān. (C9)

From Eqs. (C7) and (C8), and assuming that all clusters are
circular, we have

�Ān = 24

15π
Ā1/4

n . (C10)

044108-12



DOMAIN CONVEXIFICATION: A SIMPLE MODEL FOR … PHYSICAL REVIEW E 108, 044108 (2023)

Taking the continuum limit in n, and integrating over n, we
obtain

Ān =
{

22

5π
(n + n0)

}4/3

, (C11)

where n0 is a constant that will be neglected in the limit of
large n.

The probability of having a cluster of size Ān obeys the
recursion relation

P(Ān+1) = P+(Ān)P(Ān). (C12)

Combining this relation with Eq. (C3) leads to

P(Ān+1) = 2Ā1/2
n CP(Ān). (C13)

Hence, using Eq. (C11), we have

P(Ān) = P(1)
n−1∏
m=1

2C

{
22

5π
m

}2/3

. (C14)

Assuming that P(1) ≈ C, we obtain

P(Ān) = Cn[(n − 1)!]2/3

{
27/3

(5π )2/3

}n−1

. (C15)

We then impose the condition that there is a cluster of size Ānc

with a finite probability b at the threshold

ĀsystP(Āc) = b. (C16)

Using the Stirling formula and Eq. (C11), this condition leads
to

Cc[2π (nc − 1)]1/3

{
2

e2/3
CcĀ1/2

c

(
1 − 1

nc

)2/3
}nc−1

= b

Āsyst
.

(C17)

Using Eq. (C5), and assuming again nc � 1, we obtain

Cc(2πnc)1/3
{ a

e2/3

}nc= b

Āsyst
. (C18)

Hence to leading order

nc ≈ ln Āsyst

ln[e2/3/a]
. (C19)

Using again Eqs. (C5) and (C11), this relation is rewritten as

Cc ≈ a

2

(
22

5π

ln[e2/3/a]

ln Āsyst

)2/3

. (C20)

Hence, we conclude that Cc ∼ (ln Āsyst )−2/3 → 0 as
Āsyst → 0.

APPENDIX D: LINK BETWEEN CLUSTER NUMBER
AND DISK DENSITY

In this Appendix, we derive some relations concerning the
average number of clusters, and we define some quantities that
will be used in the subsequent appendices.

The total number of disks Nd obeys
∞∑

N=1

NMN = Nd , (D1)

where MN is the average number of clusters of size N . Since
P(N ) = MN/Mcl, where Mcl is the total number of clusters,
we have

Mcl = Nd∑∞
N=1 NP(N )

. (D2)

Defining the moments

μk =
∞∑

N=1

NkP(N ), (D3)

we rewrite Eq. (D2) as

Mcl = Nd

μ1
= CĀsyst

μ1
. (D4)

APPENDIX E: LARGEST CLUSTER SIZE
IN THE FINITE C REGIME

In this Appendix, we propose an expression for the largest
cluster size Nmax. The analysis is based on the numerical
observation of a power-law behavior for the cluster size dis-
tribution P(N ) ≈ BN−δ for large N .

The distribution P(N ) is approximated with an ansatz of
the form

P(N ) = B

(N0 + N )δ
. (E1)

where N0 > −1 is a constant. The normalization of P(N ),
∞∑

N=1

P(N ) = 1, (E2)

imposes a condition that allows one to determine N0:

B ζ [δ, N0 + 1] = 1, (E3)

where ζ is the Hurwitz zeta function, defined as

ζ (s, a) =
∞∑

n=0

1

(n + a)s
.

A simple approximation for the average largest cluster size
Nmax when choosing Mcl clusters from the distribution P(N )
is obtained by the condition that only one cluster has a size
larger than Nmax [2]. Assuming that Nmax � 1, we can use the
continuum limit ∫ ∞

Nmax

dN P(N ) = 1

Mcl
. (E4)

Using Eq. (D4), we obtain

Nmax =
(

CĀsystB

(δ − 1)μ1

)1/(δ−1)

− N0, (E5)

where

μ1 = B ζ [δ − 1, N0 + 1] − N0. (E6)

APPENDIX F: HEURISTIC DISCUSSION
OF THE TRANSITION IN THE FINITE C REGIME

In the following, we present a heuristic derivation for the
expression for the transition probability.
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Upon the addition of a new disk, the probability that a
macroscopic avalanche occurs is assumed to be the product of
two terms: the probability Pstart that the growth of the cluster
of largest size Nmax can be triggered, and the probability
Pav that this initial growing cluster gives rise to a macro-
scopic avalanche that spans the whole system. The probability
Qtrans(Nd ) that no transition has occurred before Nd therefore
obeys

Qtrans(Nd + 1) = Qtrans(Nd )(1 − PstartPav). (F1)

In the following, we obtain expressions for Pstart and Pav,
neglecting corrections due to the system boundary.

1. Probability of triggering an avalanche from the merging
of a disk with a cluster

In the following, we derive an expression for Pstart based
on the assumption that growing domain of size ∼Nmax is
triggered by the deposition of a disk on the largest domain.
The probability Pstart is therefore the product of the probability
Pdep that a newly deposited disk leads to a modification of the
edge of the largest cluster and the probability that subsequent
growth of the cluster edge occurs after the adding of the
first disk.

The probability Pdep is the probability that a new disk is
deposited in a zone of width 2rd along the edge of the largest
domain, leading to an initial growth of the domain:

Pdep = 4πRmaxrd

Asyst
= 4R̄max

Āsyst
. (F2)

The radius Rmax of the largest cluster is defined from the
relation

πR2
max = ANmax or R̄2

max = ĀNmax , (F3)

where Nmax is given by Eq. (E4).
In the following, we derive an approximate expression for

the probability that the initial growth of the cluster due to the
deposition of a new disk gives rise to subsequent growth by
merging with other clusters.

We first simplify the analysis by assuming that all clusters
are circular. The probability that a domain of radius R does
not grow further after the initial growth due to a newly added
disk at its edge is

Q+(R) = exp

[
−

∞∑
N=1

ρN�AN

]
, (F4)

where ρN is the number density of clusters of size N , and �AN

is the area of the region where the center of a merging cluster
of radius RN can be placed. This zone, which is constrained
by the fact that the domains of size RN initially do not overlap
with the domains of radius R, is depicted in Fig. 15. While the
width of this region in the direction perpendicular to the initial
position of the edge does not depend on the radius RN of the
merging domain, the width in the other direction is actually
proportional to R + RN . Hence, we have

�AN ≈ R + RN

R
�A, (F5)

where �A is the area of the initial growth region due to the
merging of the domain of radius R with the deposited disk.

FIG. 15. Schematic for the derivation of the probability that the
growth of the cluster due to the deposition of a new disk triggers
further merging with other clusters.

Inserting Eq. (F5) in Eq. (F4) and using Eqs. (C7) and (C8),
we obtain

Q+(R) = exp

[
− 24

15
R1/2r3/2

d

∞∑
N=1

ρN

(
1 + RN

R

)
.

]
(F6)

Using the relation Eq. (D4), we have

πr2
dρN = πr2

d

MN/Mcl

Asyst/Mcl
= CP(N )

μ1
. (F7)

We now define

Ñ = ANρd = ĀNC = πR2
Nρd = R̄2

NC. (F8)

where R̄ = R/rd . Since the disk density inside clusters is
expected to be constant and equal to ρd for large clusters, we
have Ñ → N as N → ∞.

Then we obtain

Q+(R̄) = exp

[
− 24

15πμ1

(
R̄1/2C + C1/2

R̄1/2
μ̃1/2

)]
(F9)

with

μ̃k =
∞∑

N=1

ÑkP(N ). (F10)

Finally, the probability that the domain of largest size starts
to grow, which is approximated by the probability that the first
growth gives rise at least to one merging event with another
cluster, reads

Pstart = Pdep[1 − Q+(R̄max)]. (F11)

2. Probability of propagating a macroscopic avalanche

We now derive an expression for Pav, the probability that
the growth of the domain proceeds indefinitely after the start-
ing regime. The difference between the starting regime and
further growth is essentially due to the constraint of nonpene-
tration of the clusters. In the initial stages of the avalanche, this
forbids the presence of clusters of size N at a distance smaller
than their radius RN from the cluster. In the later stages of
growth, the edge of the growing domain is not stationary and
can be in contact with other clusters. Note, however, that we
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neglect the correlations between the clusters other than the
growing cluster in all cases.

To evaluate Pav, we start with the probability of a large
growing circular nonstationary domain of radius R not grow-
ing, which is the probability that no other domain of size N
is in a strip of width 2RN around the edge of the domain. For
RN � R, the area of the strip is 4πRRN , and we have

Qstop(R) = exp

[
−

∞∑
N=1

ρN 4πRRN

]
. (F12)

The probability of growing indefinitely is the product of the
probability 1 − Qstop(R) for all R’s that are reached during the
growth process. Hence

ln Pav =
∑

R

ln[1 − Qstop(R)]

≈
∫ ∞

Rmax

dR

�R
ln[1 − Qstop(R)], (F13)

where �R is the change of radius due to a merging event.
Since we will consider the largest cluster, the other clusters are
smaller and one can safely use Eq. (C7) with the substitution
rd → RN for the change of area induced by a single merging
event. Hence, the change in radius due to one merging is

�R = �A

2πR
= 24

15π

R3/2
N

R1/2
. (F14)

Finally, we obtain

Pav = exp

[
15π

27

μ
3/2
1

μ̃3/4μ̃
3/2
1/2

∫ ∞

xmax

dx x1/2 ln[1 − e−x]

]
, (F15)

with

xmax = C1/2μ̃1/2

μ1
R̄max. (F16)

3. Transition probability

Changing variable from Nd to C in Eq. (F1), taking the
continuum limit, and using the relation dNd/dC = Āsyst, we
obtain a differential equation:

d

dC
Qtrans(C) = −4R̄max[1 − Q+(R̄max)]PavQtrans(C), (F17)

which is solved with the initial condition Qtrans(0) = 1 as

Qtrans(C) = exp

[
−4

∫ C

0
dC R̄max[1 − Q+(R̄max)]Pav

]
.

(F18)

The numerical evaluation of Qtrans(C) for some given system
size Āsyst requires the evaluation of the quantities μ1, μ̃1/2,
and μ̃3/4 that depend on C, and R̄max that depends on C
and Āsyst.

4. Numerical methods

For the numerical evaluation of Qtrans(C), we use a strategy
based on parametric analytical formulas that fit the numerical
results for δ(C), B(C), and ĀN in the range of 0.1 � C � Cc

where we have measured P(N ) and AN numerically. These

analytical formulas have no theoretical basis. However, we
report in the main text the strikingly simple linear behavior
of the exponent δ(C). As an important remark, the precise
form of these formulas should not influence our results since
they are essentially used for interpolation. In contrast, the
power-law behavior P(N ) ∼ N−δ is crucial since it has been
used for extrapolation to large N in Eq. (E4) to determine the
size of the largest cluster Nmax.

The first step in these evaluations is to determine the de-
pendence of δ and B on C. The variation of δ with C is given
by Eq. (7). In addition, we use

B = b2

1 + eb0(C−b1 )
. (F19)

As seen Fig. 16(a) this expression captures the variation of B
with C when b0 = 60, b1 = 0.25, and b2 = 1.4 × 106.

Then, using Eqs. (E4), (E6), and (E3), we can directly
evaluate μ1 and Nmax. The expression Eq. (E4) for Nmax is
found to be in good agreement with our numerical results, as
seen from Fig. 17(a).

However, the evaluation of Ñmax = ĀNmax and μ̃n requires
a careful study of the dependence of AN on N . Since the
concentration of disks is homogeneous in the plane, we ex-
pect asymptotic behavior ĀN→∞ → N/C. However, as seen
in Fig. 16(b), this behavior is observed only for the largest
clusters and for C � 0.4. To account for the deviations at
small C and N , we propose a functional form

ĀN = 1 + N − 1

C

(
1 − e−a0(N+a3 )a1Ca2

)
. (F20)

where ai, i = 0, . . . , 3 are constants. This expression presents
the expected asymptotic behavior for large N , and also
imposes the correct behavior for N = 1, i.e., ĀN=1 = 1. More-
over, we see that ĀN does not diverge for C → 0 when a2 � 1.
The behavior of ĀN is captured for all values of C with a0 =
0.6, a1 = 0.42, a2 = 1.1, and a3 = 1.3, as seen in Fig. 16(c).

Using Eq. (F20), we can now determine

R̄max = Ā1/2
Nmax

(F21)

and

μ̃k =
∞∑

N=1

(CĀN )kP(N ). (F22)

5. Results

The evaluation of Qtrans(C) leads to a behavior that shares
similarities with the full numerical simulations reported in the
main text. Indeed, a transition is seen as a sharp drop of Qtrans

in Fig. 17(b). When the system size Āsyst is increased, average
transition value and transition width decrease, as reported
in Fig. 6.

A limitation of the analytical model is the breakdown of the
analytical description when C � 0.45, due to the divergence
of μ1 when δ → 2. This effect is important for small Āsyst,
when the transition region spreads to large values of C. How-
ever, this does not affect the transition for large enough Āsyst.

The average location of the transition can be inferred from
the transition probability density −dQtrans/dC, leading to a
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FIG. 16. (a) Parameter B extracted from simulation data as a
function of C. Circles, squares, diamonds, up-triangles, and down-
triangles correspond to system sizes 108, 107, 106, 105, and 104

respectively. (b) Cluster area AN as a function of the number of
disks N for Āsyst = 105. Circles, squares, diamonds, up-triangles,
and down-triangles correspond to C = 0.1, 0.2, 0.3, 0.4, and 0.468.
Dashed lines are ĀN = N/C. For concentrations lower than 0.4, the
asymptotic behavior AN ≈ N/C is not reached in our simulations.
(c) Normalized area distribution C(ĀN − 1)/(N − 1). Lines are the
comparison to Eq. (F20).

transition at

Cc = −
∫ Cmax→∞

0
dC C

d

dC
Qtrans =

∫ Cmax→∞

0
dC Qtrans.

(F23)

FIG. 17. (a) Maximum cluster size. The circles are obtained with
the data of Fig. 7, where 104 simulations were performed in a system
of size Āsyst = 105. The pluses correspond to 105 simulations with
Āsyst = 104. We therefore use 104 × 105 = 109 → Āsyst in Eq. (E4),
leading the dashed line, in good agreement with simulation data,
except for the two last points at high C. Solid lines from top to bottom
correspond to Eq. (E4) with Āsyst = 104, 108, 1016, 1032. (b) Probabil-
ity Qtrans as a function of C. From right to left (or top to bottom), we
have Āsyst = 102+n with n = 0, . . . , 6, and 1016, 1032. (c) Transition
threshold Cc as a function of Āsyst . Red squares: simulation results;
blue dots: analytical model; black diamonds: solution of the equation
Pav = 1/2. Dashed lines are guides to the eye: from top to bottom
0.58x−0.028, 0.38x−0.032, and 0.31x−0.0335.

The last equality is obtained using integration by parts in the
limit Cmax � Cc. The numerical estimate of Cc is not sensitive
to the precise choice of Cmax as long as Cmax � Cc.
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The predicted value of Cc is reported in Fig. 17(c). We find
that the predicted transition is quantitatively lower than that
observed in direct simulations in the range Asyst � 108. In ad-
dition, the decrease of Cc with increasing Asyst in simulations
is slower than in the analytical model.

As an interesting result reported in Fig. 17(c), the av-
erage value of the transition can be recovered by the

condition Pav = 1/2. Hence, within our model, the transi-
tion is mainly controlled by the possibility for a macro-
scopic avalanche to spread through the whole system
rather than being controlled by the details of the initial
growth dynamics of the avalanche (described by Pstart).
Note that Pstart is by far the most difficult quantity to
evaluate.
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