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Sequential epidemic-like spread between agglomerates of self-propelled agents in one dimension
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Motile organisms can form stable agglomerates such as cities or colonies. In the outbreak of a highly
contagious disease, the control of large-scale epidemic spread depends on factors like the number and size of
agglomerates, travel rate between them, and disease recovery rate. While the emergence of agglomerates permits
early interventions, it also explains longer real epidemics. In this work, we study the spread of susceptible-
infected-recovered (SIR) epidemics (or any sort of information exchange by contact) in one-dimensional
spatially structured systems. By working in one dimension, we establish a necessary foundation for future
investigation in higher dimensions and mimic micro-organisms in narrow channels. We employ a model of
self-propelled particles which spontaneously form multiple clusters. For a lower rate of stochastic reorientation,
particles have a higher tendency to agglomerate and therefore the clusters become larger and less numerous. We
examine the time evolution averaged over many epidemics and how it is affected by the existence of clusters
through the eventual recovery of infected particles before reaching new clusters. New terms appear in the SIR
differential equations in the last epidemic stages. We show how the final number of ever-infected individuals
depends nontrivially on single-individual parameters. In particular, the number of ever-infected individuals first
increases with the reorientation rate since particles escape sooner from clusters and spread the disease. For
higher reorientation rate, travel between clusters becomes too diffusive and the clusters too small, decreasing the
number of ever-infected individuals.
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I. INTRODUCTION

The transmission of states through contact between in-
dividuals is a widespread phenomenon observed in various
organisms such as animals [1–4], insects [5,6], micro-
organisms [7], and other sorts of agents [8–10]. In movement
epidemiology, a central problem is how individual spatial
motion can influence transmission contact by changing en-
counter rates [11–13], therefore affecting epidemic spread
[14,15]. Scenarios where individuals are not homogeneously
distributed in space are particularly challenging [16]. For in-
stance, motile organisms may form stable agglomerates such
as cities or colonies. In fact, the occurrence of diseases typi-
cally happens in spatial clusters and then propagates between
them. As a result, if one can anticipate further spreading,
containment becomes feasible [17]. The existence of a spa-
tial hierarchy of measles transmission in England and Wales
was demonstrated through the study of population patches
arranged in a line [18]. A more sophisticated version of this
technique illustrates that excess human mortality related to
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pneumonia and influenza in the United States is consistent
with human travel patterns [19]. In the presence of clustering,
epidemic spread should be controlled by the typical size of
the agglomerates, their typical distance to one another, the
rate at which individuals travel between them, and the disease
recovery rate. Exactly how these quantities control epidemic
spread is an understudied subject. We take the liberty to use
the word “epidemic” throughout the text for representing any
sort of transmission of a state between individuals or infor-
mation exchange by contact, including diseases, short-range
molecule signaling between micro-organisms or ants [20], and
social consensus [8].

Increasing attention has been paid to models of self-
propelled particles where epidemic spread emerges from
individual motion rules [21–27]. One example is the ac-
tive Brownian particle (ABP) model, where the particle
moves with a self-propulsion velocity of constant magnitude
and whose direction fluctuates stochastically and continu-
ously [28–32]. This model has been largely used to model
animal movement, particularly bacteria [31]. ABPs can spon-
taneously agglomerate into clusters even if subject to purely
repulsive short-range interactions [33]. Such motility-induced
clustering arises as particles block each other due to low
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FIG. 1. Schematic zoom for the space-time evolution of the
large-scale epidemic spread between clusters. Lc and Lg correspond
to the average cluster and gas region sizes, respectively. The color
scheme is as follows: white corresponds to empty regions, orange is
for susceptible individuals, red for infected, and green for recovered.
The three configurations shown are not consecutive in time but do
follow the time arrow indicated on the left. The tiny arrows over the
traveling particles represent their self-propulsion directions.

reorientation rate, i.e., persistent motion. A stationary cluster
size distribution (CSD) is reached once the rates of particle
absorption and emission from the clusters become equal [34].
The ratio between self-propulsion speed and reorientation rate
can be interpreted as a proxy for the individual tendency of
agglomerating. With motility-induced clustering, no social
interactions are required; the clustering is determined and
maintained purely via self-propulsion.

Epidemic spread among infectious ABPs was recently
studied assuming a susceptible-infected-recovered (SIR) sce-
nario in two spatial dimensions (2D) without clustering,
focusing on the role of individual-based (or “microscopic”)
parameters [35]. More recently, the SIR contagion dynamics
of self-propelled particles in 2D with repulsive interac-
tions and polar alignment was investigated numerically [36].
Emerging spatial structures, such as bands and clusters, were
shown to strongly affect the final fraction of ever-infected
(recovered) individuals.

A simpler model qualitatively similar to ABPs [37] is
the run-and-tumble particle (RTP) [38,39]. In this model, the
agent simply moves in a straight line (run) up to a random
time instant where a new random run direction is chosen (tum-
ble). RTPs are also frequently used to model bacterial motion
[40–42]. For narrowly confined systems such as bacteria and
ants which live in channel-like soil pores [20,43], a number
of theoretical difficulties are eliminated by assuming a one-
dimensional (1D) scenario [44]. In particular, one can derive
a parameter-free expression for the exponentially decaying
CSD of RTPs expressed in terms of motion parameters and
total density [45].

In the present work, we investigate the large-scale spread of
SIR epidemics across a spatial array of multiple agglomerates
in one dimension (see Fig. 1 for a schematic close-up). For this
purpose, we use a computationally cheap model of RTPs on
a 1D discrete lattice [45]. Motility-induced clustering arises
spontaneously as time progresses. The epidemic starts only af-
ter clustering becomes stationary. Particle alignment is absent,
isolating the role of motility-induced clustering. Tackling the
1D version of this problem is important on three fronts. First,

it emulates real-world narrowly confined systems. Secondly,
it assesses the sequential contribution to contact-transmission
spreading between agglomerates. Thirdly, it paves the way to-
wards the intricate 2D version, generating intuition on which
features may be relevant. In this direction, recently, 2D simu-
lations were used to study clustering effects on the contagion
dynamics of RTPs [46]. Differently than there, here we fo-
cus on the role of individual motion parameters and total
density as well as on the long-time effects of cluster-cluster
travels across multiple clusters. Finally, in our 1D RTP-SIR
model, we can explain simulation data analytically, a crucial
distinction from previous works. To summarize the reason
why we use RTPs, this model is a minimal framework for the
movement of self-propelled individuals which is equivalent to
ABPs, computationally cheaper, and its cluster size distribu-
tion is known analytically.

This paper is organized as follows. Section II defines our
RTP model and reviews analytical CSD results, without con-
tagion. Section III introduces the SIR dynamics and presents
simulation results. A phenomenological theory explaining the
data is derived. Section IV derives, validates, and discusses
a microscopic parameter-free theory for the final fraction of
ever-infected individuals. A second and more accurate ver-
sion of the latter theory is then described, where the input
clustering observables do not come from another theory but
rather from the simulations directly. Finally, Sec. IV brings
conclusions.

II. RUN-AND-TUMBLE CLUSTERING

We start by reviewing the clustering model (without con-
tagion) of RTPs used in the rest of the paper and introduced
in Ref. [45]. As discussed in Sec. V, our approaches below
can also be used for other models of clustering. Consider a
discrete periodic lattice in 1D with N = 2000 sites, M par-
ticles, and maximal occupancy of one particle per site. Each
particle has a director (self-propulsion direction), towards left
or right. The initial state corresponds to random positions and
directors. The dimensionless total concentration is denoted by
φ ≡ M/N . The model algorithm can be described in terms of
the following steps.

(1) Particle selection: For a given time step, select a parti-
cle at random.

(2) Tumbling: With probability ν, the director of the se-
lected particle is redrawn, that is, the director is randomly
chosen again, with equal probability for the two directions.

(3) Movement: If the director points to an empty nearest
neighboring site, the particle moves into it.

(4) More particle selections (same time step): Repeat steps
1 (particle selection), 2 (tumbling), and 3 (movement) for the
same time step. The selection of a particle that has already
been selected before in the same time step is allowed but it
will be naturally rare. The total number of particle selections
in each time step is equal to the number of particles M.

(5) Time step update: After steps 1 to 3 have been per-
formed M instances, go to the next time step and repeat steps
1 to 4. Repeat step 5 until reaching the final time step.

In summary, within each time step, M particles are selected
randomly and sequentially (particle repetition is allowed but
rare). With probability ν, the director is redrawn. If the
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director points to an empty neighboring site, the particle
moves into it. Notice that, as expected in many real scenarios,
the self-propulsion speed will slightly fluctuate around v = 1
instead of being exactly v = 1. This is because in each time
step the number of times that each particle is selected is 1 only
on average due to particle repetition.

The CSD, defined as the average number of clusters of
size l (measured in number of particles), is denoted by Fc(l )
and arises when the steady state is reached (within which
particles continue to escape and join clusters in both right and
left directions in a dynamical equilibrium, while cluster sizes
fluctuate slightly). The distributions of cluster and gas region
(i.e., empty region) sizes were shown to be well described by
[45]

Fc(l ) = Ac exp(−l/Lc), Fg(l ) = Ag exp(−l/Lg), (1)

where the average cluster and gas region sizes are

Lc =
√

2vφ

ν(1 − φ)
, Lg =

√
2v(1 − φ)

νφ
, (2)

and the prefactors are

Ac = Nν(1 − φ)

2v
, Ag = Nνφ

2v
. (3)

As shown in Ref. [45], expressions (1)–(3) show excellent
agreement with simulations, provided that φ � ν/v but not
too high. For parameters leading to the presence of a large
number of very small “clusters” such as isolated particles,
expressions (1)–(3) do not work so well. The consequences
of such less good agreement are discussed and strongly mit-
igated below. For most parameter sets, there are no major
consequences.

III. SIR DYNAMICS

We now introduce and simulate the SIR dynamics. All
particles start in the susceptible state, but one of them will be
made infected (after the cluster size distribution has become
stationary). The periodic boundary conditions mimic copies
of the system side by side. The new algorithm is as follows.
The description of steps 1 to 3 of the clustering dynamics
(Sec. II) is repeated for completeness and to facilitate the
overall understanding.

(1) Particle selection: as in Sec. II, for a given time step,
select a particle at random.

(2) Tumbling: With probability ν, the director of the se-
lected particle is redrawn.

(3) Movement: If the director points to an empty nearest
neighboring site, the particle moves into it.

(4) First infection: If the time step is equal to 107 (which
ensures that the cluster size distribution has become station-
ary), make the randomly selected particle infected. This step
is performed only once and only at this time step.

(5) Contact infections: For time steps �107, if the selected
particle is infected, susceptible particles at nearest neighbor-
ing sites become infected. If it is susceptible and there is at
least one infected particle at a nearest neighboring site (which
is obviously never the case when there is only one infected),
the selected particle becomes infected.

(6) Recovery: If the selected particle is infected, it may
recover with probability rrec.

(7) More particle selections (same time step): Repeat steps
1 (particle selection), 2 (tumbling), 3 (movement), 4 (first
infection, if not performed already), 5 (contact infections), and
6 (recovery) for the same time step. The selection of a particle
that has already been selected before in the same time step
is allowed but it will be naturally rare. The total number of
particle selections in each time step is equal to the number of
particles M.

(8) Time step update: After steps 1 to 6 have been per-
formed M instances, go to the next time step and repeat steps
1 to 7. Repeat step 8 until the number of infected individuals
is zero.

The model algorithm implies that clustering affects con-
tagion but contagion does not affect clustering. The SIR
variables counting the total number of particles in each con-
tagion state are denoted by S (susceptible), I (infected), and
R (recovered). They obey the relation S + I + R = M for the
total number of particles. The population fractions are fX ≡
X/M, where X = S, I, R. Therefore, fS + fI + fR = 1. Even
though transmission is deterministic and guaranteed when the
selected particle and a neighbor are in the susceptible and
infected states, the effective transmission is stochastic because
particle selection is stochastic. A high transmissibility regime
therefore arises because typically most particles will be se-
lected within a time step. Finally, we note that we will refer
to the probabilities ν and rrec either as probabilities or as a
“rates”.

Figure 2 shows the temporal evolution of the spatial con-
figurations, affected by the clustering-epidemic coupling. The
epidemic spread generates a space-time “cone” of infection
[see Fig. 2(d)], roughly speaking, as the disease starts to
spread to adjacent clusters. The smaller the average gas region
size, the easier to perceive the cone. An epidemic which is
spreading fast across the agglomerates corresponds to a small
average cone slope. The slope is determined by the tumbling
plus travel time between clusters and the time needed for the
infection to spread within a cluster. We numerically found
that the latter increases linearly with cluster size. As time
progresses, recovered particles start to appear within the cone.

The evolution of the population fractions is shown in Fig. 3.
The susceptible fraction fS decreases in a sequence of jumps
resulting from infected particles arriving in susceptible clus-
ters and infecting its individuals. The infected fraction fI

shows a corresponding series of peaks, with fI relaxing after
each peak as particles are still traveling between clusters, until
a new susceptible cluster is hit. This relaxation is a result
of the exponential temporal decay arising from recovered
individuals. (Actually, this picture gets averaged over right
and left sides.) The recovered fraction fR always increases as
particles cannot become reinfected.

The realization averages 〈 fX〉 are shown in Fig. 4. They
are obtained by averaging fX over 103 numerical experiments,
each starting from random homogeneous position configura-
tions. Thus, in each experiment the clusters form in different
positions and the epidemic peaks occur at different time in-
stants. Therefore, for a large number of realizations, there
is a continuum of peaks distributed in time. However, there
must be more peaks concentrated around a certain typical time
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(c) (d)

(a) (b)

FIG. 2. Space-time evolution of clustering and contagion for
rrec = 10−3 and (a) φ = 0.1 and ν = 0.005, (b) φ = 0.3 and ν = 0.5,
(c) φ = 0.5 and ν = 0.5, and (d) φ = 0.9 and ν = 0.5. The color
scheme is as follows: white corresponds to an empty site, orange
is susceptible, red is infected, and green is recovered. In each panel,
there are 1000 time steps (after the beginning of the epidemic) shown
along the vertical axis and 500 lattice sites along the horizontal axis.
In (d), dashed straight lines help visualize the space-time cone of
infection.

instant because in each realization the peaks will eventually
disappear when recovery occurs before the next cluster is
reached. Therefore, those many peaks are heterogeneously
distributed in time. By averaging them, a single “average”
peak arises. This average peak will occur later in time when
either the recovery rate is lower or the average time needed
to flip and travel between clusters is shorter [such average
time is given in Eq. (11)]. This way, the temporal position
of the averaged peak depends nontrivially on all microscopic

FIG. 3. Single-realization population fraction of individuals, fX,
of each type X = S, I, R, that is, susceptible (orange square points),
infected (red circle points), and recovered (green diamond points),
versus the number of time steps after the beginning of the epidemic.
The end of the simulations (not shown in this plot) occurs when
the number of infected individuals reaches zero, that is, fI = 0.
Parameters: φ = 0.4, ν = 10−3, and rrec = 10−3.

parameters. From now on, we drop the brackets in the notation
for the realization averages, i.e., their notation are replaced
according to 〈X 〉 → X and 〈 fX〉 → fX.

We now develop a phenomenological theory for the av-
erage epidemic data in Fig. 4. It can be framed in terms of
either X or fX. First, at early times far from the (average) end
of the epidemic, the behavior is well captured by the simple

(a) (b)

FIG. 4. Realization-average population fraction of individuals,
〈 fX〉 (later in the text also denoted just by fX), of each type X =
S, I, R, that is, susceptible (orange square points), infected (red circle
points), and recovered (green diamond points), for each time step
after the beginning of the epidemic until its end. (a) φ = 0.9 and
(b) φ = 0.4. Other parameters: ν = 0.1 and rrec = 10−3. Solid black
lines correspond to fitting from the theory in Eq. (8), with fitting
parameters (a) a = 1.583 × 10−3, β = 1.0284, and S∞ = 432 and
(b) a = 1.493 × 10−3, β = 0.6803, and S∞ = 532.
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differential equations

dS

dt
= −β,

dI

dt
= β − rrecI,

dR

dt
= rrecI, (4)

where time t is measured in time step units (but taken as con-
tinuous in the theory) and β and rrec are positive constants. We
highlight the fact that dS/dt is negative and has constant mag-
nitude β. This constant is similar to the infection rate constant
β0 in traditional SIR models (which implicitly assume a 2D
scenario) where dS/dt = −β0SI [47]. However, in our case,
β does not multiply SI since each susceptible particle can be
in direct contact with at most one infected, even when there is
a large fraction of infected individuals throughout the system.
That is, there is a “thermodynamically” vanishing number of
possible contacts between infected and susceptible individu-
als. As a result, our β has different dimensions than β0. The
reason for the constant behavior of dS/dt stems from the truly
1D nature of the problem. The size of the infection-front is
constant, i.e., the increase of I does not lead to an increase
in the effective infection rate since all infected particles but
two (the right and left infection-front leading ones) cannot be
in contact with susceptible particles, by definition. In other
words, here the effective infection rate does not depend on
encounters between S and I individuals and therefore does not
depend on SI (hence why the traditional basic reproduction
number “R0” of SIR models is not studied here [48]). Also,
even though the infection may be detained in some realiza-
tions because the infection-front leading particles may have
not yet reached a new cluster, in other ones it will have done
so, and therefore the infection will be advancing, allowing
for a constant (instead of fluctuating) dS/dt on average. The
first term on the right-hand side of the equation for dI/dt
gives the corresponding increase in I whereas the second term
gives a simple exponential decay of infected individuals into
recovered ones. Finally, the opposite of the latter term appears
in the equation for dR/dt , concluding the set of equations for
the initial regime.

As initial conditions, we can use S(t = 0) = M,
I (t = 0) = 0, and R(t = 0) = 0. Notice that we do not
need to set I (t = 0) > 0 in order to “get things rolling” as
would be the case in a traditional SIR model. This is because
our average effective rate of infection is modeled as constant
(dS/dt = −β) and does not depend on I , being nonzero
for I = 0. This is a very good approximation as long as the
typical total population is much larger than one individual,
which has to be the case anyway for this kind of statistical
approach to work. Of course, in the agent-based simulations
we need to have at least one infected. The solution of Eqs. (4)
is S(t ) = M − βt , I (t ) = β/rrec + (1 − β/rrec) exp(−rrect ),
and R(t ) = M − S(t ) − I (t ) as can be readily verified. This
solution works only for the early-time dynamics and, with it,
the average epidemic never ends; instead, I (t ) would reach a
plateau.

Once S approaches its final value S∞, where we define
X∞ ≡ X (t → ∞) for X = S, I, R, the derivative dS/dt has to
go to zero. The mechanism behind it is that more and more
epidemic realizations start to reach their end since infection-
front leading particles eventually recover before reaching a
new susceptible cluster, typically far from the extreme sce-
nario where the whole population gets infected. Therefore, the

average behavior starts to smoothly crossover from the regime
with negative constant dS/dt towards the regime with zero
dS/dt . Such final smooth saturation process can be modeled
using a hyperbolic tangent as follows:

dS

dt
= −β tanh [a(S − S∞)], (5)

dI

dt
= β tanh [a(S − S∞)] − rrecI, (6)

dR

dt
= rrecI, (7)

where a and S∞ are positive constants. In Eq. (5), if
S − S∞ is high, i.e., far from the final saturation, then
tanh [a(S − S∞)] ≈ 1 and we recover the initial regime. An-
other way to retrieve the initial regime is to take the limit
a → ∞. Therefore, the constant 1/a can be interpreted as
a measure of the width of the crossover between the initial
and final regimes, meaning that high (low) a corresponds to a
sharp (smooth) transition between regimes.

Other functions commonly used to model saturation pro-
cesses could be used instead of tanh (ax), such as the
apparently simpler x/(k + x), with k being some constant.
However, with the hyperbolic tangent, the analytical solution
of Eqs. (5)–(7) can be obtained using a symbolic calculation
software and reads

S(t ) = S∞ + csch−1(eaβt csch[a(M − S∞)])/a,

\

I (t ) = β

rrec

[
2 f1

(
rrec

2aβ
; −e2aβt csch2[a(M − S∞)]

)

−e−rrect
2 f1

(
rrec

2aβ
; −csch2[a(M − S∞)]

)]
,

R(t ) = M − S(t ) − I (t ), (8)

where

2 f1

(
rrec

2aβ
; x

)
≡ 2F1

(
1

2
,

rrec

2aβ
;

rrec

2aβ
+ 1; x

)

and 2F1 is the Gauss hypergeometric function [49]. In the limit
a → ∞, the solution of the early-time regime is also retrieved.
Such phenomenological theory gives very good results; see
Fig. 4. The constants β, a, and S∞ are treated here as fitting
parameters. S∞ can also be derived from the microscopic
theory described in Sec. IV. Besides the data shown in Fig. 4,
we have successfully used Eq. (8) to fit other data for several
distinct microscopic parameter sets (data now shown), effec-
tively exploring the whole space of parameters.

IV. MICROSCOPIC THEORY

We now derive a microscopic theory for the (realization
average) total amount of ever-infected (recovered) particles
at the end, R∞, where we remind that X∞ ≡ X (t → ∞) for
X = S, I, R. In other words, we sum up all infections over
time. This will allow us to understand how the microscopic
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parameters, namely ν, φ, and rrec, affect the average after-
math impact of the epidemic. By definition, I∞ = 0 and thus
S∞ + R∞ = M. We calculate R∞ within the approximation
where all clusters have the average size Lc and all gas regions
have the average size Lg.

Since the epidemic starts within a cluster (as even isolated
particles are clusters of size one), we assume that at least one
cluster becomes infected entirely, that is, the average final
number of ever-infected particles R∞ is at least the average
cluster size Lc. In this derivation, we will assume that every
infected cluster will have all of its particles infected, which is
true in most cases because of the high-transmissibility regime;
in 1D, this is necessary for the progress of the infection, as
taken into account below. Once the infection has reached a
particle located at the border of the first infected cluster, the
particle has to flip and travel to the neighboring cluster in
order for the epidemic to continue. Let us denote by τb the flip
plus travel time. If during τb the particle recovers, the infection
does not proceed. The infection will therefore proceed with
probability (1 − rrec)τb on each of the left and right sides.
Assuming it has reached those two new clusters, another 2Lc

particles will be infected. The infection may then keep going,
but since the process is sequential, it will do so only if the
two first right and left clusters (with respect to the “central”
initial cluster) had become infected. Thus, the probability that
a third and a fourth cluster become infected (one on each
side) is (1 − rrec)τb × (1 − rrec)τb = (1 − rrec)2τb . In summary,
a geometric series arises, and R∞ can be written as

R∞ = Lc + 2Lc(1 − rrec)τb + 2Lc(1 − rrec)2τb + · · ·

= Lc

⎡
⎣1 + 2

(Nc−1)/2∑
k=1

(1 − rrec)kτb

⎤
⎦, (9)

where, on the right-hand side of Eq. (9), there are (Nc − 1)/2
terms after the first one, Nc being the global amount of clus-
ters; we subtract one because the first cluster has already been
counted and then we divide by two because the next clusters
are counted two by two (left and right).

Using the geometric series formula, the resulting expres-
sion for f ∞

R = R∞/M = R∞/Nφ, the population fraction of
ever-infected individuals, is

f ∞
R = Lc

[
(1 − rrec)τb + 1 − 2(1 − rrec)

1
2 (Nc+1)τb

]
[1 − (1 − rrec)τb ]Nφ

, (10)

where Lc and Nc are known functions of the microscopic
parameters v, ν, φ, and N , with Lc given in Eq. (2) and the total
number of clusters Nc obtained by summing the CSD Fc(l ) in
Eq. (1) over l from l = 1 to l = M = Nφ. However, Eq. (10)
cannot yet be expressed only in terms of microscopic param-
eters because the time to tumble and travel between clusters,
τb, is yet to be derived. In a first approximation, τb can be
calculated as τb = τf + τt = 2/ν + Lg/v, where we consider
the flip time τf = 2/ν, that is, the time needed for a change
of self-propulsion direction, plus the travel time τt, which is
τt = Lg/v if we assume ballistic motion between clusters. A
better approximation for τt is to consider the diffusive nature
of the travel. To do that, we take the mean-squared displace-
ment (MSD) of a RTP in 1D in terms of ν and v, which
reads MSD(t ) ≡ 〈x2(t )〉 = (v2/2ν2)(2νt − 1 + e−2νt ), where

(a)

(b)

FIG. 5. Total final fraction of ever-infected individuals, f ∞
R , for

rrec = 10−3. (a) f ∞
R versus ν for φ = 0.4 (light purple) and φ = 0.1

(bright orange) and (b) f ∞
R versus φ for ν = 10−2, with an inset

showing Lc (solid green line) and Lg (solid light blue line) as func-
tions of φ as given by Eq. (2) for v = 1 and ν = 10−3. The solid
lines in the main plots correspond to the theoretical expression (10),
taking as input Lc, Lg and Nc calculated from the clustering theory
in Eqs. (1) and (2) as developed in Ref. [45]. The dashed lines in
the main plots correspond to the theoretical expression (10), but now
taking as input Lc, Lg and Nc calculated directly from the simulations,
interpolated between the chosen simulation parameters.

x is the particle position measured in lattice sites relative to
the initial position [50], which in our case is the cluster border,
and 〈· · · 〉 indicates averaging over multiple realizations of the
diffusive trajectory. This expression can be readily inverted,
expressed in terms of the nonelementary function product log,
and then used to calculate the corresponding diffusive travel
time by identifying 〈x2(t = τt )〉 = L2

g. Therefore, the new
travel time is τt = MSD−1(L2

g ), which replaces the ballistic
travel time in the calculation of τb above:

τb = 2/ν + MSD−1
(
L2

g

)
. (11)

Since we also know Lg from Eq. (2), the final expression
for f ∞

R [Eqs. (10) and (11)] now depends only on microscopic
parameters and is plotted in Fig. 5 as a function of ν and then
as a function of φ. Note the nonmonotonic dependences, well
capture by our parameter-free theory, which in turn provides
a good overall agreement with simulations. An alternative ap-
proach, instead of using (1)–(3) for the clustering observables
Lc, Lg, and Nc, is the following: take the measured Lc, Lg,
and Nc directly from the simulation and plug them into our
expression for f ∞

R . By doing so, the quantitative agreement
becomes even better as also shown in Fig. 5. This has to
do with the fact that Eqs. (1)–(3) underestimate the number
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of isolated particles, as previously noticed [45]. When the
number of such isolated particles becomes large (e.g., for
large ν), the clustering theory is less accurate. In summary,
our contagion theory leads to satisfactorily accurate results
particularly when accurate clustering observables are used as
input.

To understand the nonmonotonic behavior of f ∞
R versus ν

in Fig. 5(a), let us focus on the curve for φ = 0.1. For low ν,
f ∞
R is almost zero. In this limit, the clusters and the distance

between them are large: particles agglomerate into a small
number of large clusters due to their strong persistent motion.
In this scenario, particles take a long time to flip and escape
from the clusters. Therefore, particles typically recover from
the infection before either leaving the cluster or reaching a
new cluster. As a result, only a small fraction of individuals
becomes infected in spite of the fact that they are strongly
clustered. By increasing the tumbling rate ν just a little, the
clusters become smaller, but the particles now take signifi-
cantly less time to flip and travel [notice the ν−1 dependence
in Eq. (11)] and Nc increases [see Figs. 6(b) and 6(d)], both of
which contribute to infections. This is enough for the particles
to typically remain infected until reaching the next clusters.
As a consequence, a much larger fraction of individuals gets
infected. That is, the data in Fig. 5(a) shows that, even though
the clusters are smaller, with less individuals getting infected
in each cluster infection, this is not sufficient to counterbal-
ance particles reaching new clusters sooner and the increased
number of clusters. However, by further increasing the tum-
bling rate, the fraction of infected individuals eventually starts
to decrease. This is because, besides clusters becoming really
small, particles become highly diffusive, meaning that the
disease cannot advance in a quasiballistic regime as before.
In fact, τb versus ν approaches a finite plateau instead of
decreasing to zero (a feature which cannot be captured by the
ballistic approximation). At the same time, the increase in Nc

starts to saturate. This opens the way for the effect of a reduced
Lc to dominate since, for high ν, Lc approaches zero instead
of a finite plateau. Thus, the fraction of infected individuals
decreases. The same behavior holds for the curve φ = 0.4,
except that now the peak in f ∞

R versus ν is higher and gets
delayed to higher tumbling rates ν.

The density dependence, f ∞
R (φ), is also captured by the

microscopic theory, as shown in Fig. 5(b). One would expect
f ∞
R to increase monotonically with φ since, at first glance,

a higher concentration of individuals should always lead to
more infections per individual. While this is exactly what
occurs for higher tumbling rate ν (data not shown), for low
ν as in Fig. 5(b), the infected population fraction, f ∞

R (φ),
counterintuitively develops a minimum located at intermedi-
ate φ. To examine this nonmonotonic behavior in f ∞

R versus
φ, notice that there is a Nφ in the denominator since we are
calculating the population fraction for a fixed total lattice size
N . At the same time, there is Lc (multiplying all terms in
the numerator), which first increases sublinearly for small φ

and then super-linearly for large φ; see the inset of Fig. 5(b).
If we ignore the rest of the φ-dependent quantities in f ∞

R
and consider only the behavior of Lc/φ, a similar minimum
appears at φ = 0.5. Therefore, we are led to the conclusion
that, when ν is small, the contribution of τb and Nc to f ∞

R
cannot compensate the weak increase of Lc for small φ as φ is

(a)

(c)

(b)

(b)

FIG. 6. (a) Total number of clusters, Nc, as a function of φ for
ν = 0.1 (top) and ν = 0.01 (bottom) and (b) Nc versus ν for φ = 0.4
(top) and φ = 0.1 (bottom), as measured directly from simulations
(markers) and from the theory in Eqs. (1)–(3) (solid lines). (c) Time
to tumble and travel between clusters, τb, as a function of φ for
ν = 0.1 (top) and ν = 0.5 (bottom) and (d) τb versus ν for φ = 0.1
(top) and φ = 0.4 (bottom), as given by the theoretical expression,
Eq. (11). For (c) and (d), a comparison with simulation data is
indirectly made in Fig. 5.

increased. This makes sense: for higher ν, τb decreases more
strongly with φ and Nc increases more strongly with φ [see
Figs. 6(a) and 6(c)]. Finally, we notice that Nc starts to de-
crease with φ for φ > 0.5, contributing to less infections, but
the effects of a superlinearly increasing Lc and a decreasing τb

are sufficient to make f ∞
R always increase in this range of φ,

no matter the value of ν.

V. CONCLUSIONS

In this work, we studied the contagion (by a disease
or any state that can be transmitted by contact) of sponta-
neously agglomerating self-propelled particles in narrowly
confined scenarios. Considering run-and-tumble particles on
a one-dimensional lattice, we have developed dynamical and
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steady-state theories that capture the essence of the epidemic
spread of a SIR disease across multiple motility-induced
clusters. The steady-state theory is parameter-free and satis-
factorily accurate in predicting the final population fraction
of ever-infected individuals as a nontrivial function of mi-
croscopic parameters. The time evolution of each epidemic
realization is characterized by a series of peaks which re-
lax during particle travels between clusters, after which a
new cluster infection may occur. The realization average
version of the infected curve shows initially a constant, non-
exponential increase, since in 1D the rate of new infections
does not increase with the number of infected. Then, the
infected curve shows a peak, and finally a relaxation due to
recovery. Both the susceptible and recovered curves reach
a finite plateau. Our phenomenological theory shows how
compartmental differential equations for the average epidemic
evolution can change in the presence of distinct types of
spatial effects. First, the differential equations change due
to spatial dimensionality effects which have to do with the
encounter rates between susceptible and infected individuals.
In 1D, the average encounter rates remain constant instead of
growing with the amount of infected individuals. Secondly
and more importantly, the differential equations change due
to spatial clustering since it generates a “saturation” factor
(which in our case is a hyperbolic tangent). This new fac-
tor corresponds to the end of the epidemics due to infected
individuals recovering before reaching new clusters. With
spatially homogeneous, well-mixed systems, the epidemic
would finish only upon lack of susceptible individuals, not by
the clustering effects whereby contagion dies out in between
clusters.

Since persistent motion is the cause of agglomeration, less
persistent individual motion reduces cluster sizes and cluster-
cluster distances, which in turn liberates infected individuals
and increases the final ever-infected population fraction. For
even more erratic individual motion, clusters become too
small and, additionally, the disease no longer advances ballis-
tically enough between the agglomerates, making the overall
infected population fraction decrease. In the nonpersistent-
particle limit, there is effectively no particle motility and
the fraction of infected individuals is vanishes. Increasing
the population spatial concentration always leads to a higher
absolute number of infected individuals. However, since the
population fraction of infected individuals is the absolute
number of infected individuals divided by a term linear in φ,
it may decrease with concentration for low concentration and
low reorientation rate. This occurs when the average cluster
size is a sublinearly increasing function of the concentration
and the concentration dependence of the other factors is not
sufficient to make the fraction of infected individuals increase
with concentration.

The existence of a reorientation rate that maximizes in-
fections may, in principle, be observable in real systems.
When individuals have a high tendency to agglomerate, these
clusters are large but also separated by large distances (for a
fixed total number of individuals), leading to fewer infections.
This would be the case on countries with massive cities where
other regions may be almost uninhabited. When individuals
have a low tendency to agglomerate, the clusters will be more
numerous and separated by smaller distances, but will be also

small, which may decrease infections. Further studying this
aspect may prove useful in terms of mitigation strategies.

The main contribution of our analysis is to illustrate how
the kind of analytical approach taken here can be used to
understand nontrivial motion and spatial effects in epidemic-
like spreading across agglomerates. Differently than previous
active matter models of epidemic spread, our analytical ap-
proach can tease apart the different ingredients and identify
their role in determining the aftermath of the epidemics. We
also strongly highlight that, while the contagion-clustering
coupling investigated here occurs in 1D and is thus purely
sequential, which must limit the infection pathways of the
contagion dynamics, the behavior and mechanisms described
here are already very rich and the present work constitutes an
important step towards the 2D case.

In principle, additional improvements could be made to
the theoretical approaches. In the phenomenological approach
to the dynamical evolution, all three constants may, in prin-
ciple, be derived microscopically. In fact, an ultrasimplified
microscopic expression for β was derived (and omitted here),
which, in the worst cases, captures at least the order of mag-
nitude of the fitted parameter β. The microscopic theory itself
could use the entire distributions to calculate the effects of the
travel time rather than only the average gas size. Those im-
provements, however, are not necessary to capture the essence
of the clustering-epidemic coupling, as shown above. This
is particularly true when our contagion theory refrains from
using the clustering theory from Ref. [45] and receives as
input the measured values of the clustering observables. The
latter approach is a natural one: the clustering state of a group
of individuals is usually accessible.

There are other mechanisms that could generate multiple
stationary agglomerates instead of self-propulsion, such as in
systems of nonliving particles with passive (or “equilibrium”)
short-range attraction and shorter-range repulsion (excluded
volume) combined with long-range repulsion [51]. In this
case, notice that both of our contagion theories would still
apply, where the input clustering and motion observables Lc,
Nc, and τb would come from elsewhere as determined by the
new clustering mechanism and motion rules. Therefore, our
theory goes beyond active matter and is expected to apply to a
wider range of multiagglomerate spatial contagion problems.

Our main future direction will be to generalize our anal-
ysis to 2D. Other future directions include incorporating
other epidemic processes such as exposure, re-infection, death
[52], different motilities [39], and an additional contagion-
clustering coupling mechanism involving a response to
infection that affects clustering [53], e.g., where contagion af-
fects motion and therefore clustering. Further avenues include
introducing additional ingredients specific to the contexts of
(i) viral phage therapy against bacterial infections [54–56],
(ii) biochemical signaling between microorganisms [57,58],
or (iii) social consensus [59,60]. Also, applications could be
sought in the context of the spread of human diseases across
villages separated by long distances [61,62].
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