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Thermodynamic variational relation
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In systems far from equilibrium, the statistics of observables are connected to entropy production, leading to
the thermodynamic uncertainty relation (TUR). However, the derivation of TURs often involves constraining
the parity of observables, such as considering asymmetric currents, making it unsuitable for the general case.
We propose a thermodynamic variational relation (TVR) between the statistics of general observables and
entropy production, based on the variational representation of f divergences. From this result, we derive a
universal TUR and other relations for higher-order statistics of observables.
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I. INTRODUCTION

The second law of thermodynamics posits that entropy
production is non-negative. While the random nature of the
entropy production, denoted as �, may seem insignificant in
large-scale systems, it takes center stage at smaller scales due
to the pronounced impact of thermal and quantum fluctuations
[1–13].

In the realm of nonequilibrium thermodynamics, physical
observables, such as particle currents, heat, and work, un-
dergo fluctuations. These fluctuations are encapsulated within
the probability density function (pdf) p(�,φ), where �

represents the entropy production and φ the underlying ob-
servable, where the pdf typically depends on both the system
and time, particularly in transient regimes.

At the heart of these fluctuations is the detailed fluctuation
theorem (DFT) [6,8,14–16], which equates a random variable
�(�) to the asymmetry of the trajectory probabilities,

�(�) := ln
PF (�)

PB(�†)
, (1)

where � is some process and m(�) = �† is a conjugate (invo-
lution), such that m(m(�)) = �, and PF (PB) is the probability
of observing � in the forward (backward) process. In stochas-
tic thermodynamics, when local detailed balance is assumed,
the variable �(�) is usually identified as the stochastic en-
tropy production for the trajectory [3,17] with a proper choice
of initial conditions and reservoirs [18–20]. As a consequence
of (1), for instance, we have the integral FT, 〈exp(−�)〉F =
1, and the second law, 〈�〉F � 0, from Jensen’s inequality,
where 〈 〉i is the average with respect to Pi(�), i ∈ {F, B}.

The broad applicability of the fluctuation theorem (1), es-
pecially when systems are far from equilibrium, renders it
a useful tool in the study of nonequilibrium physics. This
utility has prompted extensive theoretical and experimen-
tal investigation of these theorems within classical systems.
The relevance of the detailed fluctuation theorem extends
to the quantum realm [2,4,21–23], especially to account for
heat exchange between quantum-correlated bipartite thermal
systems [24].

A consequence of (1) is the thermodynamic uncertainty
relation (TUR) [17,25–34], which reads in the case of odd
currents φ(�†) = −φ(�) and F = B,

〈φ2〉 − 〈φ〉2

〈φ〉2
� sinh−2

(
g(〈�〉)

2

)
, (2)

where g(x) the inverse of h(x) = x tanh(x/2), for x � 0.
However, in the derivation of TURs, there is usually in-

terest in observables φ(�) bearing a particular parity under
involution, such as the current φ(�†) = −φ(�). This specific
constraint prompts the question of whether other relationships
exist between the statistics of general observables and the
entropy production. Such general relations were the subject
of recent studies [33,35,36].

Expanding on the idea that the average entropy production
is equivalent to the Kullback-Leibler (KL) divergence 〈�〉F =∑

� PF (�) ln PF (�)/PB(�†), we extend this consideration to
encompass any f divergence, demonstrating that it too can be
represented in terms of the statistics of �. We then leverage
a theorem from information theory [37] to elucidate our main
result for any convex function f ,

〈φ ◦ m〉B − 〈 f ∗(φ)〉F � 〈 f (e−� )〉F , (3)

where f ∗ represents the Legendre transform of f , φ is any
observable within the effective domain of f ∗ [ensuring that
f ∗(φ) is finite], and φ ◦ m(�) := φ(�†). This relation, re-
ferred to as the thermodynamic variation relation (TVR), is
rooted in the variational representation of f divergences. No-
tably, the TVR does not impose any constraints on the parity
of φ, thereby rendering it a universally applicable relation.
The choice of f determines the specific nature of the relation-
ships, as is demonstrated in the various applications. While
the TVR does not have strict limitations for specific classes
of observables (such as asymmetric currents in TURs), it is a
tight expression for general observables, as explained further
in the formalism section.

As one example of application of the TVR (3), for a partic-
ular choice of f , we obtain a universal TUR [36],

(〈φ ◦ m〉B − 〈φ〉F )2

〈φ2〉F − 〈φ〉2
F

� 〈e−2�〉F − 1, (4)
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which is useful as a bound for the discrepancy between the
means of the forward and backward processes, 〈φ〉F and
〈φ ◦ m〉B. Note that Eq. (4) presents a unique configuration
where the left-hand side (LHS) solely consists of observables,
while the right-hand side (RHS) is expressed in terms of
the statistics of �. This configuration bears a resemblance
to the thermodynamic uncertainty relation (TUR). Further
discussion below will reveal that Eq. (4) corresponds to the
f -divergence scenario, specifically, the χ2 case.

The paper is organized as follows. First, we present the for-
malism to prove our main result. Then, we discuss the result
and apply it for different choices of f : Total variation case,
the χ2 case yielding the universal TUR (4) for general observ-
ables, and the α-divergence case, resulting in thermodynamic
relations consisting of high-order statistics of observables.

II. FORMALISM

Our result (3) is a direct application of a stronger result
from information theory for f divergences that we review and
discuss below.

Let � ∈ S and m : S → S is any involution m(m(�)) =
�, with �† := m(�). Let PF : S → [0, 1] and PB : S →
[0, 1] be any probability functions. We consider PF and
PB such that PF (�) = 0 → PB(�†) = 0 for any � ∈ S (ab-
solute continuity). Let φ : S → R be any finite observable
[sup� |φ(�)| < ∞].

We define f -divergence D f (P|Q) as follows: Let
f : [0,∞) → R be a convex function, f (1) = 0, and
limx→0+ f (x) = f (0). The f -divergence D(P|Q), for P abso-
lute continuous with respect to Q, is defined as

D f (P|Q) :=
∑

�

f

(
P(�)

Q(�)

)
Q(�). (5)

The result from information theory is a variational representa-
tion for f divergences [37], namely

D f (P|Q) = sup
φ∈dom( f ∗ )

〈φ〉P − 〈 f ∗(φ)〉Q, (6)

where we define the convex conjugate f ∗ as the Legendre
transformation,

f ∗(y) := sup
x

xy − f (x). (7)

When (5) is applied to PB(�†) and PF (�), we obtain from (1),

D f (PB ◦ m|PF ) = 〈 f (e−� )〉F . (8)

We also have from the involution property

〈φ〉PB◦m = 〈φ ◦ m〉PB . (9)

Combining (8) and (9) in (6), we obtain (3). Actually, (6)
is stronger, which makes (3) a tight bound for general φ.
If, however, one constrains φ to a class of observables [for
instance, asymmetric, φ(�†) = −φ(�)], then the bound might
become loose as it does not considered any property of φ on
the derivation.

III. DISCUSSION

Relation (6) is called a variational representation be-
cause it represents the maximum of the functional d[φ] :=

〈φ〉P − 〈 f ∗(φ)〉Q over any observable φ for fixed P, Q.
Loosely speaking, if φ′ is the observable that maximizes d[φ],
it means the variation is zero, δd[φ]/δφ = 0 at φ = φ′, and we
have D f (P|Q) = d[φ′]. Thus, the f divergence is the maxi-
mum value of d[φ]. The proof of this statement constitutes
the theorem (6), which is sufficient to prove the main result
(3). However, it depends on a relatively complex theorem that
might not be easily intuitive.

Alternatively, a simpler and more intuitive proof of (3) goes
as follows. From (7), we have Fenchel’s inequality for any
x ∈ dom( f ) and y ∈ dom( f ∗),

f (x) + f ∗(y) � xy. (10)

Now let y := φ(�), where φ : S → effdom( f ∗) is an observ-
able that takes values in the effective domain of f ∗ [i.e., f ∗(y)
is finite], and let x := PB(�†)/PF (�) in (10), which results in

f

(
PB(�†)

PF (�)

)
+ f ∗(φ(�)) � φ(�)

PB(�†)

PF (�)
. (11)

Finally, replacing PB(�†)/PF (�) = exp[−�(�)] from (1),
multiplying (11) by PF (�) and summing over all � it yields∑

�

[ f (e−�(�) ) + f ∗(φ(�))]PF (�) �
∑

�

φ(�)PB(�†). (12)

Now using
∑

� φ(�)PB(�†) = ∑
� φ(�†)PB(�) and reorder-

ing the terms in (12), we get

d[φ] = 〈φ ◦ m〉B − 〈 f ∗(φ)〉F � 〈 f (e−� )〉F , (13)

which is our main result (3) for any observable with φ(�) ∈
dom( f ∗) for all �. Thus, we have proved d[φ] � D f (PB ◦
m|PF ) for any φ, which results in d[φ′] = maxφ d[φ] �
D f (PB ◦ m|PF ).

In the subsequent applications, we will focus on a partic-
ular f (x) in (3). We then calculate 〈 f [exp(−�)]〉F and the
Legendre transform f ∗ respective to the chosen f . Ultimately,
we determine the specific form of the TVR corresponding
to this particular case. We select examples of f that have
previously been examined in information theory [37], and we
translate them into the language of thermodynamics.

IV. APPLICATIONS

A. Total variation

The result of this application can also be derived using
other methods, but it is a staple example of how to use the
TVR (3). Consider the convex function f (x) = |x − 1|/2.
Note that f is not differentiable at x = 1, but it is not required
for the result (3). Moreover, f satisfies the conditions for the
f divergence (5) and D f (P|Q) is called the total variation
distance in this case. The Legendre transform (7) is given by

f ∗(y) = y, (14)

for |y| � 1/2, and f ∗ = ∞, for |y| > 1/2. Within the effective
domain of f ∗, we have from (3)

〈φ ◦ m〉B − 〈φ〉F � 〈|1 − e−�|/2〉F , (15)

for |φ(�)| � 1/2 for all �. We multiply both sides by 2M � 0
and redefine 2Mφ → φ to obtain

〈φ ◦ m〉B − 〈φ〉F � M〈|1 − e−� |〉F , (16)
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for any sup�|φ(�)| � M, which can be written for any
bounded φ if you choose M = sup�[|φ(�)|] := |φ|max,

〈φ ◦ m〉B − 〈φ〉F

2|φ|max
� 1

2
〈|1 − e−� |〉F = �(PF |PB ◦ m), (17)

where introduced the total variation �(P, Q) = ∑
� |P(�) −

Q(�)|/2. We note that (17) has a similar form to the TUR (2),
in the sense that the LHS depends on the observable and the
RHS depends on the statistics of �. This expression is valid
for any bounded observable.

On a side note, check that the bound can also be obtained
by the expression

∑
�

φ(�)

|φ|max

[PF (�) − PB(�†)]

2
�

∑
�

|PF (�) − PB(�†)|
2

,

(18)

and it is saturated by a minimal current φ(�) ∈ {φmax,−φmax}
defined as φ(�) := sgn[PF (�) − PB(�†)]|φ|max, just as the
TUR (2).

B. χ2 and universal TUR

Now we consider the convex function f (x) = (x − 1)2. It
satisfies the conditions for f divergences and D f (P|Q) is the
χ2 divergence. The Legendre transform f ∗ (7) is given by

f ∗(y) = y + y2/4, (19)

for any y. We also have 〈 f (e−� )〉F = 〈e−2�〉F − 1, where we
used 〈e−�〉F = 1 explicitly. Then, the TVR (3) reads

〈φ ◦ m〉B −
〈
φ + φ2

4

〉
F

� 〈e−2�〉F − 1. (20)

Since (20) is valid for any φ, now we redefine φ → a(φ −
〈φ〉F ) and maximize the LHS of (20) with respect to a and
obtain a′ := 2(〈φ〉F − 〈φ ◦ m〉B)/(〈φ2〉F − 〈φ〉2

F ). Finally, re-
placing φ = a′(φ − 〈φ〉F ) in (20) yields

(〈φ ◦ m〉B − 〈φ〉F )2

〈φ2〉F − 〈φ〉2
F

� 〈e−2�〉F − 1, (21)

which is the result (4). For the specific case of asymmetric
observables, φ ◦ m = −φ and F = B, such that 〈 〉F = 〈 〉B =
〈 〉, we note that

〈φ2〉 − 〈φ〉2

〈φ〉2
� sinh−2

(
g(〈�〉)

2

)
� 4

〈e−2�〉 − 1
, (22)

where the first inequality in (22) is the TUR (2) and the second
inequality comes from the TVR (4), which is consistent with
the TUR (2) and we used a recent result [38] in the last
inequality.

C. α divergences

Consider fα (x) = [xα − αx − (1 − α)]/[α(α − 1)], for
α ∈ (−∞, 0) ∪ (0, 1) and x ∈ [0,∞). In this case, D f (P|Q)
is called the α divergence. The Legendre transform f ∗ (7) is
given by

f ∗(y) = h(y)α − 1

α
, (23)

for y ∈ [−∞, 1/(1 − α)], where h(y) := [(α − 1)y +
1]1/(α−1). We also have

〈 fα (e−� )〉F = 〈e−α�〉F − 1

α(α − 1)
, (24)

and the TVR (3) reads

〈φ ◦ m〉B −
〈

h(φ)α − 1

α

〉
F

� 〈e−α�〉F − 1

α(α − 1)
, (25)

for φ such that φ(�) ∈ [−∞, 1/(1 − α)] for all �. Now
we redefine φ → (φα−1 − 1)/(α − 1) in (25), which makes
h(φ)α → φα and results in

−〈φα−1 ◦ m〉B

1 − α
− 〈φα〉F

α
� 〈e−α�〉F

α(α − 1)
, (26)

for inf� φ(�) � 0. Redefining φ → aφ with the same domain
and optimizing for a, we get a′ := 〈φα−1 ◦ m〉B/〈φα〉F . Re-
placing φ = a′φ in (26) leads to

1

α(α − 1)

〈φα−1 ◦ m〉αB
〈φα〉α−1

F

� 〈e−α�〉F

α(α − 1)
, (27)

which, for α = −n < 0 [such that α(α − 1) > 0] and redefin-
ing φ → φ−1, results in

〈|φ|n〉n+1
F

〈|φ|n+1 ◦ m〉n
B

� 〈en�〉F , (28)

where we introduced |φ| so that the result (28) applies to
all observables for n > 0. Note that this application (28) is
a relation between higher-order statistics of the absolute value
of general observables |φ| (LHS) and the statistics of the
entropy production � (RHS), in the same spirit of the TUR.

D. Hellinger’s case

As a particular case of (27), consider α = 1/2. In this
case, D f (P|Q) is the squared Hellinger’s distance. We have
from (27)

〈|φ|1/2〉F 〈|φ|−1/2 ◦ m〉B � 〈e−�/2〉2
F . (29)

As (29) is valid for all φ, we redefine |φ|1/2 → exp(sφ) for
any s ∈ R, resulting in

〈esφ〉F 〈e−sφ ◦ m〉B � 〈e−�/2〉2
F , (30)

We note that (30) is a lower bound for the product of
two mgfs: GF (s) = 〈exp(sφ)〉F and GB(−s) = 〈exp(sφ) ◦
m〉B = 〈exp(−sφ)〉B◦m, valid for any observable φ, obtained
from the TVR (3). Considering the case F = B, we also
have from a previous result [38] for the moment gener-
ating function, G(−1/2) := 〈exp(−�/2)〉 � sech[g(〈�〉/2)],
which combined with (30) results in

〈esφ〉〈e−sφ ◦ m〉 � 〈e−�/2〉2 � sech2

(
g(〈�〉)

2

)
� e−〈�〉.

(31)

In summary, the first inequality in (31) is given by the TVR
(3), but it could also be derived directly from Cauchy-Schwarz
inequality, and the second is given by the bound for the
moment generating function (mgf) of the entropy production
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(for the symmetric case, F = B). Note that the last one is
straightforward from Jensen’s inequality, 〈esφ〉〈e−sφ ◦ m〉 =
〈esφ〉〈e−sφ−�〉 � exp(〈sφ − � − sφ〉) = exp(−〈�〉).

V. CONCLUSIONS

We investigated a principle from information theory that
suggests f divergences possess a variational representation,
which implies they can be seen as the maximum of certain
observable statistics. Following this, we characterized the f
divergence using the statistics of entropy production, thereby
establishing a broad connection between observables and en-
tropy production.

Depending on the choice of f , different relations can be
derived. As applications, we obtained a relation for bounded
observables in terms of the total variation (17), a universal
TUR (4), a high-order statistics relation (28), and a lower
bound for the product of two mgfs (31).

The relation (3) utilizes the detailed fluctuation theorem
in the form of (1), even when the random variable � is not
the actual thermodynamic entropy production. For instance,
in situations with quantum correlations [24], all the results
in the paper remain valid, as long as we replace � with the
appropriate term that contains the actual entropy production
as well as other quantum information terms. For that reason,
we expect this result to be useful in several situations beyond
stochastic thermodynamics.
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