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General theory of the viscosity of liquids and solids from nonaffine particle motions
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A microscopic formula for the viscosity of liquids and solids is derived rigorously from a first-principles
(microscopically reversible) Hamiltonian for particle-bath atomistic motion. The derivation is done within the
framework of nonaffine linear response theory. This formula may lead to a valid alternative to the Green-Kubo
approach to describe the viscosity of condensed matter systems from molecular simulations without having to
fit long-time tails. Furthermore, it provides a direct link between the viscosity, the vibrational density of states
of the system, and the zero-frequency limit of the memory kernel. Finally, it provides a microscopic solution
to Maxwell’s interpolation problem of viscoelasticity by naturally recovering Newton’s law of viscous flow and
Hooke’s law of elastic solids in two opposite limits.

DOI: 10.1103/PhysRevE.108.044101

I. INTRODUCTION

The viscosity of a system is a measure of both its internal
anharmonic forces and the random motion of its under-
lying microscopic constituents. As a ubiquitous transport
coefficient, it determines many properties of a material [1],
including sound attenuation [2,3] and nonlinear phenomena
such as shock wave propagation [4].

Understanding viscosity at a microscopic level is also cru-
cial to solving outstanding mysteries in physics, such as the
so-called viscosity minimum [5] and the existence of nondis-
sipative fluids described by the Euler hydrodynamics such as
quark-gluon plasmas [6] and the microscopic mechanism of
superfluidity in helium-4 [7]. It also plays a crucial role in
the glass transition of supercooled liquids [8–10] and in the
viscoelasticity of confined liquids [11,12].

From the point of view of applications, the viscosity of
liquids controls the diffusive aggregation and gelation of col-
loids [13] via the Stokes-Einstein diffusion coefficient and,
via the Péclet number, plays a crucial role in the colloidal
stability of suspensions under shear flows [14,15] and in the
microstructure of nonequilibrium liquids under shear flow
[16,17]. In biology, viscosity is a key parameter to understand
and explain physicochemical conditions that are favorable for
life processes [18].

The viscosity η of liquids controls kinetic energy dis-
sipation under flow as Ėkin ∼ −ηγ̇ 2, where γ̇ is the shear
rate. A fundamental question of statistical mechanics since
Boltzmann’s time is to clarify how such a chiefly dissi-
pative transport coefficient arises from the microscopically
reversible motions of its constituents (e.g., atoms, molecules,
or ions in a plasma), which is related to the well-known
Loschmidt’s paradox and the time’s arrow problem [19,20].

This situation is quite different from that of the other
fundamental and related property of condensed matter, the
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shear modulus. The shear modulus of solids, including amor-
phous solids, is now well described by nonaffine response
theory [21], G = GA − GNA, where GA is the (Born) affine
contribution to shear rigidity stemming from the stretching
of molecular bonds, whereas GNA is a softening contribution
due to so-called nonaffine displacements arising in disordered
particle arrangements or in crystals due to thermal vibrations
and defects. In brief, each atom or molecule is not a center
of inversion symmetry, either due to intrinsic disorder of the
system or due to thermal disorder. Hence, upon an applied de-
formation it tends to reach the new position (affine) prescribed
by the macroscopic strain tenor. However, since there is no
inversion symmetry, the forces from its neighbors (which are
also “en route” to their own affine positions) do not cancel
by symmetry and thus result in a net force acting on the
tagged molecule. To enforce mechanical equilibrium at all
steps, this force has to be relaxed via an extra displacement,
i.e., the nonaffine displacement [21–24]. Since force times a
displacement is work, upon summing all contributions from
all molecules to the free energy of deformation, the nonaffine
relaxation thus contributes negative internal work that must be
subtracted from the free energy of deformation [21–24].

While nonaffine motions are widely accepted to play a ma-
jor role in determining the shear modulus of solids (including
crystals due to instantaneous thermal random motions [25]),
the question of whether the same nonaffine response theory
can also lead to a microscopic theory of the viscosity of solids
and liquids arises.

Frameworks to compute the viscosity of liquids and solids
include formalisms deduced from first principles such as
the Green-Kubo formalism, which is by far the most suc-
cessful and most widely employed method. However, these
formalisms do not lead to compact closed-form expressions
and typically are used for numerical calculations based on un-
derlying molecular dynamics simulations. Furthermore, they
suffer from arbitrariness in the fitting of long-time tails.

In this paper, we provide a derivation of the viscosity of
liquids and solids from first principles within the nonaffine

2470-0045/2023/108(4)/044101(9) 044101-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6673-7043
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.044101&domain=pdf&date_stamp=2023-10-02
https://doi.org/10.1103/PhysRevE.108.044101


ALESSIO ZACCONE PHYSICAL REVIEW E 108, 044101 (2023)

response formalism. This leads to a compact formula for the
viscosity of liquids and solids in terms of physical quan-
tities that can be easily estimated either experimentally or
from molecular simulations. Importantly, the derived formula
provides a direct connection between fundamental physical
quantities such as the viscosity, the speed of sound, and the
vibrational density of states of the system.

II. PREVIOUS APPROACHES

A. Green-Kubo formalism

The most widely used recipe to compute the viscosity of
a liquid in molecular dynamics is based on the Green-Kubo
formalism. The Green-Kubo relations provide a direct quan-
titative link between some macroscopic transport property L
and the time integral of the time-correlation function of some
conserved property A:

L =
∫ ∞

0
〈Ȧ(t )Ȧ(0)〉dt . (1)

For the viscosity, the Green-Kubo relation reads [1]

η = βV
∫ ∞

0
〈σxy(t )σxy(0)〉dt . (2)

For a derivation of this formula see, e.g., [26]. While elegant
and invaluable to compute viscosity based on molecular dy-
namics (MD) simulations of fluids, the above formula does
not lead to microscopic closed-form expressions of the kind
that we discussed in the previous section. This is because
time-correlation functions such as the stress autocorrelation
function are easy to get from MD simulations but are difficult
to evaluate from a theoretical perspective, with, perhaps, the
exception of mode-coupling theory.

The stress autocorrelation function in the above formula
can be evaluated in MD simulations based on equilibrium
static snapshots, i.e., without the need of deforming the simu-
lation box. This is done by taking advantage of the virial stress
formula for the stress tensor σxy [27].

The accuracy of the Green-Kubo estimate suffers in MD
simulations because a correlation function has to be inte-
grated, and the long-time tail of the correlation is usually not
sampled very well. Fitting tails on correlation functions is,
indeed, a kind of an art form, and it can change the predicted
transport properties quite significantly.

B. The Born-Green formula

The other fundamental microscopic expression for the
liquid viscosity is the Born-Green formula [28], which estab-
lishes a fundamental link between the viscosity and the radial
distribution function g(r):

η ∼ 2π

15

(
m

kBT

)1/2

ρ2
∫ ∞

0
g(r)

dU

dr
r4dr, (3)

where m is the atomic mass and U (r) is the interatomic pair
potential. The prefactor of the formula was not determined
[29], which makes this formula of more limited use in prac-
tical calculations. Besides the useful connection between η

and g(r), this formula has the merit of recovering Enskog’s
formula for the viscosity of dense, hard-sphere gases.

C. Approaches based on activation rate theory

Starting with the pioneering work of Eyring [30], the vis-
cosity of liquids and solids has been described using the
framework of activated-rate theory of chemical reactions.
Within this scheme, the viscosity is computed in terms of
the hopping rate required for an atom to jump off the cage
of its nearest neighbors. The energy barrier, as clarified by
Frenkel [31], is represented by the energy required to readjust
the nearest-neighbor cage and turns out to be proportional
to the high-frequency shear modulus of the system, as later
pointed out by Dyre in the so-called shoving model [32].
Further developments based on the shoving model and on the
microscopic modeling of the high-frequency shear modulus
have led to closed-form expressions for the viscosity of liq-
uids and supercooled liquids that display a double-exponential
dependence on temperature, such as the Krausser-Samwer-
Zaccone model [8], and allow for rationalizing the fragility of
chemically different liquids based on the short-range part of
the potential of mean force and the thermal expansion coeffi-
cient [33]. While these models are invaluable for a qualitative
understanding of the viscosity of liquids and supercooled liq-
uids depending on the underlying microscopic structure and
interactions, they are of limited predictive power because they
contain, at best, two adjustable parameters in the comparison
with experimental data.

III. VISCOELASTIC LINEAR RESPONSE THEORY

For an ideal elastic solid with no dissipation, the applied
stress, as a function of time, and the resulting strain, as a func-
tion of time, are perfectly in phase. For a purely viscous fluid,
instead, there is a 90◦ phase of the stress leading the applied
strain. This is simply because, if one takes the applied strain
γ (t ) to be a sinusoidal function with frequency ω, γ ∼ sin ωt ,
then according to the above quoted Newton’s law, σ ∼ γ̇ =
d
dt sin ωt = cos ωt . Therefore, since cos θ = sin(θ + π

2 ), it is
clear that in this case the stress is not in phase with the applied
strain and instead lags behind by 90◦. Hence, all real materials
will fall within these two limits and will be characterized by
their own lag phase δ, which is an intrinsic material property,
such that (for the case of applied strain)

γ = γ0 sin ωt,

σ = σ0 sin(ωt + δ),
(4)

with 0 � δ � π
2 .

According to Boltzmann’s superposition principle in linear
response theory, the stress at time t resulting from the appli-
cation of strain at previous times t ′ is given by

σ (t ) =
∫ t

−∞
G(t − t ′)γ̇ (t ′)dt, (5)

where G(t ) is the time-dependent elastic modulus, also called
the “relaxation” modulus.

Hence, with the strain rate given by γ̇ (t ) = ωγ0 cos(ωt )
and defining t − t ′ = s, one obtains

σ (t ) = γ0

∫ ∞

0
ωG(s) cos[ω(t − s)]ds. (6)
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Using the trigonometric identity cos(θ ± φ) =
cos(θ ) cos(φ) ∓ sin(θ ) sin(φ), we arrive at the expression

σ (t )

γ0
=

[
ω

∫ ∞

0
G(s) sin(ωs)ds

]
sin(ωt )

+
[
ω

∫ ∞

0
G(s) cos(ωs)ds

]
cos(ωt ), (7)

which thus identifies

G′ = ω

∫ ∞

0
G(s) sin(ωs)ds,

G′′ = ω

∫ ∞

0
G(s) cos(ωs)ds.

(8)

The real and imaginary parts, G′ and G′′, correspond to the dis-
sipationless and dissipative parts of the response, respectively,
and they are also known as the storage (elastic) modulus and
the loss (viscous) modulus. While G′ is, by definition, in phase
with the applied strain (or with the applied stress), G′′, instead,
lags behind by 90◦. For a generic stress wave σ0eiωt , the strain
wave lagging behind would be γ0e(iωt+ π

2 ), hence the factor
i ≡ e

π
2 in front of G′′, leading to the complex shear modulus,

which is defined as

G∗ = G′ + iG′′. (9)

In the linear response regime, with intrinsic material prop-
erties that do not vary with time and with causality being
obeyed, G′ and G′′ are related to each other by the Kramers-
Kronig relations.

Applying the trigonometric identity sin(θ ± φ) =
sin(θ ) cos(φ) ± cos(θ ) sin(φ) to σ (t ) = σ0 sin(ωt + δ) leads
to

σ (t )

γ0
= σ0

γ0
cos(δ) sin(ωt ) + σ0

γ0
sin(δ) cos(ωt ), (10)

from which, by direct comparison with Eq. (7), we find that
G′ ∝ cos δ and G′′ ∝ sin δ and

δ = arctan
G′′

G′ . (11)

Furthermore, from Eqs. (7) and (8), we obtain

σ (t ) = G′γ (t ) + G′′

ω
γ̇ (t ), (12)

which, by comparison with Newton’s law of viscous fluids,
σ = ηγ̇ , yields the identification

η = G′′

ω
(13)

between the viscosity η of the system and the loss modulus
G′′. The first part of Eq. (12) is nothing but Hooke’s law and
thus represents the elastic part of the response, with G′ → G
in the limit G′′ → 0, where G is the elastic shear modulus.
Also, for an impulse Dirac-δ applied strain γ̇ = γ0δ(t ) in
Eq. (5), G(t ) = σ (t>0)

γ0
provides the response to a mechanical

creep test. In rheological practice, creep measurements are
often implemented by applying a constant step stress input and
measuring the strain as a function of time. When rheologists
measure G(t ), it is an impulse strain response that is applied,

and we call this material function G(t ) the relaxation modulus
(i.e., the stress relaxes, but the strain does not change).

Until recently, most viscoelastic models have been largely
phenomenological, i.e., without any connection to the mi-
croscopic physics (and chemistry) of atoms and molecules
and interactions, bonding, and structuring thereof. The most
important, historically, of such models has been the Maxwell
model for viscoelastic liquids. This is a mathematical interpo-
lation between the two limits of a Hookean elastic solid and
a viscous Newtonian fluid, where an elastic Hookean element
(spring) is connected in series with a dissipative element (a
damper or dashpot). According to Maxwell’s model, the com-
plex shear modulus is identified explicitly as

G∗(ω) ≡ σ0

γ0
= G′ + iG′′ = G∞ τ 2

M ω2

τ 2
M ω2 + 1

+ i
G∞ τM ω

τ 2
M ω2 + 1

. (14)

Here we have denoted G ≡ G∞ to indicate that, in this case,
G is what is left in the response in the infinite frequency limit,
ω → ∞, where, thus, the response approaches the purely
elastic limit.

From a more microscopic point of view (which, of course,
is not present in the Maxwell model, which knows nothing
about the molecular structure and dynamics of matter), this
is again consistent with the fact that, in the infinite frequency
limit, the response of a liquid is solidlike, and this plateau
in G′ coincides with the affine modulus GA [34,35]. The fact
that simple liquids respond to deformations like solids in the
high-frequency limit is a well-known fact to anyone who dives
into water from an elevated height. This fact was emphasized,
in the early days of liquid state theory, by Frenkel in his early
monograph on liquids and amorphous solids [31]. We also
note that, again consistent with the phenomenology of liquids,
the Maxwell model predicts G′ → 0 at ω → 0; that is, the
material is not rigid since it has a vanishing shear modulus at
zero frequency or rate of deformation.

These facts are recovered by the Maxwell model, quite
amazingly, without anything in the model which connects to
the physics of real liquids and to their microscopic physics.1

IV. MICROSCOPIC NONAFFINE THEORY
OF VISCOELASTICITY

In this section, we shall extend the nonaffine elasticity
theory to include dissipative effects at the microscopic level.

1The above facts bear also important consequences for a broader
understanding of liquids. In particular, although solids, liquids, and
glasses feature propagating longitudinal sound waves (although with
different velocities), the dynamics of transverse (shear) waves in the
three states of matter are very different. Solids exhibit propagating
shear waves down to arbitrarily low momentum k, and their velocity
is set by the shear elastic modulus G. Liquids, on the contrary, do
not display propagating shear waves at low momenta, thus consistent
with the fact that G′ = 0 at ω and k going to zero. Nevertheless, prop-
agating shear waves appear above a certain critical momentum, again
consistent with the above picture provided by the Maxwell model,
which has historically been called the Frenkel theory of liquids [31]
and, more recently, the k-gap theory developed by Trachenko and
coworkers [36].
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The starting point is the writing of a suitable nonequilib-
rium (generalized Langevin) equation of motion for a tagged
particle (atom, molecule, grain) which interacts with many
other particles, the latter schematized as harmonic oscillators.
This dynamical coupling, which, at the microscopic level,
is mediated by the long-range part of the interatomic or in-
termolecular interaction forces, gives rise to a viscous-type
friction term in the equation of motion and to a stochastic
thermal noise.

A. Nonequilibrium dissipative equation of motion

Our aim is to derive a suitable equation of motion for
a tagged atom (or ion, molecule, particle) in a glass in re-
sponse to an applied strain. This can be done by extending
the Zwanzig-Caldeira-Leggett (ZCL) [37–39] approach to
microscopic dynamics in disordered materials. In the con-
struction of this approach, the dynamical coupling between
the tagged particle and many other particles is an effective
way of describing anharmonicity, and a mapping between the
ZCL model Hamiltonian and real molecular systems can be
demonstrated, although this mapping is not believed to be one
to one [40].

In the ZCL approach, the Hamiltonian of a tagged particle
(mass M, position Q, and momentum P) coupled to all other
particles (treated as harmonic oscillators with mass Mm, posi-
tion Xm, and momentum Pm) in the material can be written as
(see Ref. [38])

H = P2

2M
+ U (Q)

+ 1

2

∑
m

[
P2

m

Mm
+ Mmω2

m

(
Xm − γmQ

Mmω2
m

)2
]
. (15)

This formalism can be extended to include the presence of
externally applied field. The term describing the dynamical
coupling between the tagged particle and the mth oscillator
is defined as γm. Introducing the mass-scaled tagged-particle
displacement s = Q

√
M, the resulting generalized Langevin

equation of motion for the displacement of the tagged particle
becomes (see [38] for the full derivation)

s̈ = −U ′(s) −
∫ t

−∞
ν(t − t ′)

ds

dt ′ dt ′ + Fp(t ), (16)

where Fp(t ) is the thermal stochastic noise with zero average,
U is a local interaction potential (e.g., with the nearest neigh-
bors), and ν is the friction resulting from many long-range
interactions with all other particles in the system, imposed
by the dynamical bilinear coupling. For dynamical response
to an oscillatory strain, one can average the dynamical equa-
tion over many cycles, which amounts to a time average
[41,42]. Since the noise Fp is defined to have zero mean [38],
an average over many cycles leaves 〈Fp〉 = 0 in the above
equation.2

2According to Ref. [41], when the system is nonergodic below Tg,
nothing guarantees this is true a priori, but there is evidence that this
approximation might be reasonable in the linear regime where the
response converges to a reproducible noise-free average stress.

B. Derivation of microscopic viscoelastic moduli

We rewrite Eq. (16) for a tagged atom in d dimensions,
which moves with an affine velocity prescribed by the strain-
rate tensor Ḟ (where a dot indicates a time derivative, while
a circle indicates quantities measured in the undeformed rest
frame):

r̈μ
i = fμ

i −
∫ t

−∞
ν(t − t ′)

(˙̊rμ
i − uμ

)
dt ′, (17)

where fμ
i = −∂U/∂rμ

i generalizes −U ′(s) to the tagged atom.
Furthermore, we used the Galilean transformations to express
the particle velocity in the moving frame: ṙi = ˙̊ri − u, where
u = Ḟr̊i represents the local velocity of the moving frame.
Since we are going to work at constant deformation rates,
hence at constant velocity of the moving frame, the Galilean
transformation valid for inertial frames is appropriate. This
notation is consistent with the use of the circle on the parti-
cle position variables to signify that they are measured with
respect to the reference rest frame. In terms of the original
rest frame {r̊i}, the equation of motion can be written, for the
particle position averaged over several oscillations, as

F ¨̊ri = fi −
∫ t

−∞
ν(t − t ′) · d r̊i

dt ′ dt ′, (18)

where 〈Fp〉 = 0 was dropped for the reasons explained above.3

We work in the linear regime of small strain ‖ F − 1 ‖� 1
by making a perturbative expansion in the small displacement
{si(t ) = r̊i(t ) − r̊i} around a known rest frame r̊i. That is,
we take F = 1 + δF + · · · where δF ≈ F − 1 is the small
parameter. Replacing this back into Eq. (18) gives

(1 + δF + · · · )
d2si

dt2
= δfi

− (1 + δF + · · · )
∫ t

−∞
ν(t − t ′) · dsi

dt ′ dt ′. (19)

For the term δfi, imposing mechanical equilibrium again,
which is fi = 0, implies

δfi = ∂fi

∂ r̊ j
δr̊ j + ∂fi

∂η
: δη, (20)

where in the first term we recognize

∂fi

∂ r̊ j
δr̊ j = −Hi js j, (21)

while for the second term we have

�i,κχ = ∂fi

∂ηκχ

(22)

and the limit ηκχ → 0 is implied. Here ηκχ are the com-
ponents of the Cauchy-Green strain tensor, defined as η =
1
2 (FT F − 1). This is a second-rank tensor and should not be
confused with the fluid viscosity η (a scalar). Using standard

3The terms F̈r̊i and
∫ t

−∞ ν(t − t ′)Ḟ · r̊idt ′ are not allowed to enter
the equation of motion because they depend on the position of the
particle and therefore have to vanish for a system with translational
invariance, as noted already in [43,44].
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lattice dynamics, the affine force (22) can be evaluated for a
shear deformation κχ = xy as [24]

�i,xy = −
∑

j

(κi j ri j − ti j )n
x
i jn

y
i j n̂i j, (23)

where κi j is the bond spring constant between particles i
and j, which is standard in lattice dynamics; ti j is the bond
tension (first derivative of the interaction energy evaluated at
the interparticle distance); and ri j is the modulus of the inter-
particle distance. Here the centrosymmetry or lack thereof is
contained in the sum:

∑
j · · · nx

i jn
y
i j n̂i j , where n̂i j is the unit

vector from atom i to any other atom j, while nx
i j and ny

i j are
its x and y components, respectively. It is clear that this sum,
and hence the force �i,xy, will be zero for a centrosymmetric
arrangement of the j atoms around atom i, and hence, there
will be no nonaffine motions. In a noncentrosymmetric lattice,
as well as in a liquid or in a glass, the above factor will rarely
be zero, and therefore, the force �i,xy will almost always be
there. For more complex lattices, e.g., non-Bravais lattices,
the force �i,xy has to be evaluated precisely based on the
atomic positions in the lattice, e.g., based on the known static
structure or atomistic simulation snapshot.

With these identifications, we can write Eq. (19), to first
order, as

d2si

dt2
+

∫ t

−∞
ν(t − t ′)

dsi

dt ′ dt ′ + Hi js j = �i,κχηκχ . (24)

The above equation can be solved by Fourier transforma-
tion followed by a normal mode decomposition, as we shall
see next. If we specialize on time-dependent uniaxial strain
along the x direction ηxx(t ), then the vector �i,xxηxx(t ) rep-
resents the force acting on particle i due to the motion of its
nearest neighbors, which are moving towards their respective
affine positions (see, e.g., [24] for a more detailed discus-
sion). Hence, all terms in Eq. (24) are vectors in R3, and
the equation is in manifestly covariant form. In metals, this
“drag force” also includes electronic effects taken into account
semiempirically, e.g., via the embedded-atom model [45].

To make it convenient for further manipulation, we extend
all matrices and vectors to Nd × Nd and Nd-dimensional,
respectively, and we select d = 3. After applying Fourier
transformation to Eq. (24), we obtain

−ω2 s̃ + iν̃(ω)ω s̃ + H s̃ = �κχ η̃κχ , (25)

where ν̃(ω) is the Fourier transform of ν(t ) and so on
(we use the tilde consistently throughout to denote Fourier-
transformed quantities). In the above equation, all the terms
are now vectors in R3N space. Next, we apply normal mode
decomposition in R3N using the 3N-dimensional eigenvectors
of the Hessian as the basis set for the decomposition. This is
equivalent to diagonalizing the Hessian matrix H. Proceeding
in the same way as in [46], we find that the mth mode of
displacement can be written as

−ω2 ˆ̃sm(ω) + iν̃(ω)ω ˆ̃sm(ω) + ω2
m

ˆ̃sm(ω) = �̂m,κχ (ω)η̃κχ .

(26)
It was shown in [24], by means of MD simulations for
a Lennard-Jones system, that �̂m,κχ = vm · �κχ is self-
averaging (even in the glassy state), and one might therefore
introduce the smooth correlator function on eigenfrequency

shells

�μνκχ (ω) = 〈�̂m,μν�̂m,κχ 〉ωm∈{ω,ω+dω} (27)

to frequency shells. Following the general procedure of [24]
to find the oscillatory stress for a dynamic nonaffine deforma-
tion, the stress is obtained to first order in strain amplitude as
a function of ω (note that the summation convention is active
for repeated indices):

σ̃μν (ω) = CA
μνκχ η̃κχ (ω) − 1

V̊

∑
m

�̂m,μν
ˆ̃sm(ω)

= CA
μνκχ η̃κχ (ω) − 1

V̊

∑
m

�̂m,μν�̂m,κχ

ω2
m − ω2 + iν̃(ω)ω

η̃κχ (ω)

≡ Cμνκχ (ω)η̃κχ (ω). (28)

In the thermodynamic limit and assuming a continuous
vibrational spectrum, we can replace the discrete sum over
3N degrees of freedom with an integral over vibrational
frequencies up to the Debye (cutoff) frequency ωD. In this
case, we need to replace the discrete sum over the 3N de-
grees of freedom (eigenmodes) with an integral,

∑3N
m=1 · · · →∫ ωD

0 g(ωp) · · · dωp, where g(ωp) is the vibrational density of
states (VDOS).

Then, the complex elastic constants tensor can be obtained
as

Cμνκχ (ω) = CA
μνκχ − 3ρ

∫ ωD

0

g(ωp)�μνκχ (ωp)

ω2
p − ω2 + iν̃(ω)ω

dωp, (29)

where ρ = N/V̊ denotes the density of the solid in the initial
state. This is a crucial result obtained in [46], which differs
from the previous result obtained in [24] because the friction
is non-Markovian, and hence frequency or time or history
dependent, whereas in [24] it is just a constant, corresponding
to Markovian dynamics. This turns out to be a fundamental
difference because experimental data of real materials cannot
be described by a constant friction coefficient [46]. Above we
used mass-rescaled variables throughout, so that the atomic or
molecular mass is not present explicitly in the final expression.
If we, instead, use nonrescaled variables and specialize to
shear deformations, μνκχ = xyxy, we obtain the following
expressions for the complex shear modulus G∗:

G∗(ω) = GA − 3ρ

∫ ωD

0

g(ωp)�xyxy(ωp)

mω2
p − mω2 + iν̃(ω)ω

dωp. (30)

In the above expression the frequencies are now in physical
units of hertz. The first term on the right-hand side is the
affine shear modulus GA, which is independent of ω. The low-
frequency behavior of �(ωp) can be estimated analytically
using the following result:

〈�̂p,μν�̂p,κχ 〉 = dκR2
0 λp

∑
α

Bα,μνκχ , (31)

derived originally in Ref. [21], which gives 〈�̂2
p,xy〉 ∝ λp, thus

implying (from its definition above)

�(ωp) ∝ ω2
p.

This analytical estimate appears to work reasonably well
in the low-eigenfrequency part of the �(ωp) spectrum of
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amorphous solids [24,34,35]. Furthermore,
∑

α Bα,μνκχ is a
geometric coefficient that depends only on the geometry of
macroscopic deformation, and its values are tabulated in
Ref. [21].

By separating the real and imaginary parts of the above
expression, we then get to the storage and loss moduli [35]:

G′(ω) = GA − 3ρ

∫ ωD

0

m g(ωp) �(ωp)
(
ω2

p − ω2
)

m2
(
ω2

p − ω2
)2 + ν̃(ω)2ω2

dωp,

G′′(ω) = 3ρ

∫ ωD

0

g(ωp) �(ωp) ν̃(ω) ω

m2
(
ω2

p − ω2
)2 + ν̃(ω)2ω2

dωp. (32)

It is easy to check that the storage modulus G′(ω) reduces to
the Born modulus GA ≡ G∞ in the infinite-frequency limit,
ω → 0. From the point of view of practical computation, the
VDOS g(ωp) can be obtained numerically via direct diago-
nalization of the Hessian matrix Hi j since its eigenvalues are
related to the eigenfrequencies via λp = mω2

p. Similarly, the
affine-force correlator �(ωp) can also be computed from its
definition by knowing the positions of all the particles, their
interactions, and forces (so that the affine force fields � can
be computed), as well as the eigenvectors of the Hessian vp.
Calculating eigenvalues and eigenvectors of the Hessian ma-
trix is a computationally demanding task, especially in terms
of RAM. Direct diagonalization of the Hessian is feasible on
standard computers only up to N ∼ 104 particles or atoms.
As shown in Ref. [47], the RAM usage for direct diagonal-
ization of the Hessian scales with the number of atoms as
∼N2, i.e., very unfavorably. The computational time scales
also very unfavorably, as ∼N2.71. As a way to obviate this
problem, a computational protocol based on the kernel poly-
nomial method (KPM) was developed in [47] and is based
on approximating eigenvector-based quantities of the Hessian
with Chebyshev polynomials. With this methodology, it is
possible to have a much more favorable scaling, i.e., linear
in N , for both the RAM and the computational time. This
makes it possible to compute g(ωp) and �(ωp) for much larger
systems, i.e., N > 105, which would otherwise be impossible
with direct diagonalization.

Importantly, for simple liquids at thermodynamic equilib-
rium, Ref. [48] demonstrated that, by using nonaffine response
theory combined with equilibrium statistical mechanics, the
affine shear modulus GA is identical, with opposite sign, to
the nonaffine part, thus resulting in G′(ω = 0) = 0 for liquids
at equilibrium. This is an important check for the correctness
and generality of the nonaffine deformation theory.

V. VISCOSITY FROM MICROSCOPIC NONAFFINE
RESPONSE THEORY

We recall that the viscosity can be obtained from the loss
viscoelastic modulus G′′ using nonaffine response theory [see
Eq. (13)]:

η = G′′

ω
. (33)

The nonaffine response theory developed from first prin-
ciples in Sec. IV provides the following form for the loss

modulus G′′ [see Eq. (32)]:

G′′(ω) = 3ρ

∫ ωD

0

g(ωp) �(ωp) ν̃(ω) ω

m2
(
ω2

p − ω2
)2 + ν̃(ω)2ω2

dωp. (34)

For shear deformation (κχ = xy), Eq. (28) becomes

σxy(ω) = G∗(ω)γ (ω). (35)

Since G∗ = G′ + iG′′ and there is a factor ω in the above
expression for G′′ in Eq. (34), the theory correctly recovers,
for the dissipative part of the stress, σ ′

xy, Newton’s law of
viscous flow (compare with Newton’s law of viscous liquids
σ ′ = ηγ̇ ):

σ ′
xy = η iωγ = ηγ̇ , (36)

with, indeed, zero-frequency shear viscosity, given by

η = 3ρν̃(0)
∫ ωD

0

g(ωp) �(ωp)

m2ω4
p

dωp. (37)

This formula provides a direct connection between the viscos-
ity η and the VDOS g(ωp). This is the most important result
of this work. The VDOS is an experimentally measurable
quantity that can be obtained from inelastic neutron scattering
[49] or from Raman scattering [50]. Furthermore, this formula
shows that the nonkinetic part of the viscosity goes to zero
whenever the memory function or spectral function goes to
zero at zero frequency, i.e., when ν̃(ω → 0) = 0. This is
physically meaningful because a nearly dissipationless fluid
with the nonkinetic part of the viscosity equal to zero can arise
only when the correlations decay completely to zero in the
long-time limit.

For a solid, which follows the Debye law

g(ωp) = ω2
p V

2 π2

(
2

v3
T

+ 1

v3
L

)
(38)

and for which �(ωp) ∼ ω2
p as derived in [21], we obtain the

simple and compact relation (valid up to some undetermined
numerical prefactor)

η ≈ ρν̃(0)
V

2 π2

(
2

v3
T

+ 1

v3
L

)
ωD

m2
. (39)

Although highly idealized, this simple microscopic relation
provides a direct proportionality law between the viscosity η

and important physical quantities: the zero-frequency limit of
the Fourier-transformed friction kernel ν̃(0), the Debye fre-
quency, and the longitudinal and transverse speeds of sound.4

Formula (39) is also correct from a dimensional point of view:
upon recalling Eq. (31), the dimensionality of �(ωp) is given
by �(ωp) ∼ κR2

0λp ∼ mκR2
0ω

2
p, where dimensionless factors

have been omitted. We thus get

η = κR2
0ρ ν̃(0)

V

2 π2

(
2

v3
T

+ 1

v3
L

)
ωD

m
, (40)

4ν̃(0) in turn arises from anharmonic couplings between each
particle and the other particles via the Caldeira-Leggett or ZCL
Hamiltonian.
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where the spring constant κ has dimensions of force per unit
length κ ∼ [F/L], while R0 ∼ [L] is an atomic-scale length
scale and the memory kernel at zero frequency has dimen-
sions of Langevin-type friction, i.e., mass times inverse time,
ν̃(0) ∼ [m × 1

s ]. Using these facts, the dimensional analysis
gives η correctly as a viscosity, i.e., force per unit area times
inverse time, η ∼ [ F

L2 × 1
s ], in IS units [Pa s]. Furthermore,

the above simplified formula (39) exhibits the same linear
dependence of viscosity on the Debye frequency as recently
proposed in Ref. [51].

More generally, realistic predictions can be made using
the full equation (37) with the VDOS g(ωp) computed for
a realistic system by means of MD simulations or from ex-
perimental data. Also �(ωp) has to be evaluated numerically
based on the eigenvectors of the Hessian matrix, although for
disordered solids the law �(ωp) ∼ ω2

p might be a reasonable
approximation to deduce analytical correlations [34,35].

For liquids, the VDOS g(ωp) can be computed via MD
simulations, and only recently was it measured experimen-
tally with inelastic neutron scattering in Ref. [49]. The main
complication is that the VDOS of liquids contains a large pop-
ulation of instantaneous normal modes (INMs; see [34,52–
54]), and they need to be taken into account in evaluating the
integral in Eq. (37) following the method in Refs. [34,47]. Re-
cently, an analytical theory of the VDOS of liquids accounting
for INMs was developed in Ref. [55] and experimentally
confirmed in Ref. [49].

Finally, ν̃(0) represents the zero-frequency limit of the
one-sided Fourier transform ν̃(ω) (also known as the “spectral
density” [56]) of the friction memory kernel ν(t ). There are
various ways to estimate ν(t ). Starting from the particle-bath
Hamiltonian [see Eq. (15)], upon integrating the Euler-
Lagrange equations for the coupled dynamics of the tagged
particle and the heat-bath oscillators, Zwanzig obtained the
identification [37,38]

ν(t ) =
∑

m

γ 2
m

mω2
m

cos(ωmt ), (41)

where γm is the coupling coefficient in Eq. (15) between the
tagged particle and the mth bath oscillator. As usual, we can
then move from the discrete set of oscillator frequencies to a
continuous integral over the VDOS, leading to

ν(t ) =
∫ ∞

0
g(ωp)

γ (ωp)2

ω2
p

cos(ωpt )dωp, (42)

where γ (ωp) represents the continuous limit (spectrum) of the
discrete set of dynamic coupling constants {γp} in the ZCL
Hamiltonian (15). According to this equation, then, we would
have a double dependence of the viscosity η on the VDOS
through Eq. (37).

The memory function or friction kernel ν(t ) can be eval-
uated on the basis of MD simulations for which different
methods are available. The most immediate way is to apply
the fluctuation dissipation theorem (FDT) associated with the
governing equation of motion, i.e., the generalized Langevin
equation (24). The FDT is derived in [38] and follows as

〈FP(t )FP(t ′)〉 = kBT ν(t − t ′), (43)

where 〈FP(t )FP(t ′)〉 is the time autocorrelation function
of the stochastic force Fp(t ).5 Therefore, by measuring
〈FP(t )FP(t ′)〉, Eq. (43) allows us to determine ν(t ) from MD
simulations.

Since, in practice, it is easier to measure velocity autocor-
relation functions 〈v(t )v(0)〉, the following identity (obtained
through integration by parts) becomes very useful [57]:

〈FP(t )FP(t ′)〉 = −M2 ∂2

∂t2
〈v(t )v(t ′)〉, (44)

where, obviously, Fp and v are, in real situations, three-
dimensional vectors. Numerical examples of this kind of
reconstruction technique for the memory kernel are discussed
in Ref. [57].

Alternatively, one can deduce an equation involving
the momentum autocorrelation function (MAF) Cpp(t ) =
〈p(t )p(0)〉 and the system force-momentum correlation func-
tion (MFC) CpF (t ) = 〈F (t )v(0)〉, where F (t ) denotes the
conservative force acting on the tagged particle, i.e., F ≡
−U ′(s(t )) with reference to Eq. (24) or Hi j (t )s j (t ) with refer-
ence to Eq. (24). The equation reads [58]

Ċpp(t ) = CpF (t ) −
∫ t

0
ν(t − t ′)Cpp(t )dt ′, (45)

from which, upon Fourier transformation, we get

ν̃(ω) = 1 + C̃pF (ω)

C̃pp(ω)
− iω. (46)

Here both MFC and MAF are normalized to Cpp(0). Com-
puting ν̃(ω) from molecular simulations using Eq. (46) is
straightforward since all the quantities involved are readily
available from MD simulations.

VI. CONCLUSION

In conclusion, we have presented a first-principles deriva-
tion of the viscosity coefficient from a microscopically
reversible Caldeira-Leggett Hamiltonian within the frame-
work of nonaffine response theory. The final result is a
fundamental expression for the viscosity of liquids and solids,
given by Eq. (37). This fundamental relation shows that the
viscosity is directly proportional to the zero-frequency limit
of the memory kernel for the underlying atomic-scale motion,
which can be evaluated in simulations by computing time
autocorrelation functions of the velocity. Compared to the
Green-Kubo formula, this is certainly a substantial improve-
ment since it avoids having to compute time autocorrelation
functions of the stress (which involves fitting of long-time
tails with unavoidable arbitrariness). Furthermore, the viscos-
ity is proportional to an integral over the vibrational density
of states of the system, which is an experimentally acces-
sible quantity. A further simplified formula for the case of
solids, Eq. (39), provides a link between fundamental physical

5The averaged time autocorrelation function of a physical variable
A is defined as 〈A(t )A(0)〉 = 1

τ

∫ τ

0 A(t + t ′)A(t ′)dt ′. For equilibrium
ergodic systems the time averaging can be replaced with an ensemble
average.
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quantities of condensed matter, such as the viscosity, the zero-
frequency value of the spectral function or memory kernel, the
Debye frequency, and the (longitudinal and transverse) speed
of sound.

In future work, the above results could be tested using
molecular simulations. The presented framework could also
be extended to relativistic fluids by leveraging the relativistic
extension of the generalized Langevin equation [59], with im-
portant applications for the viscosity of heavy-ion beams [60]
and quark-gluon plasmas [6]. Similarly, using the quantum
version of the Caldeira-Leggett Hamiltonian [39,56], the same
approach could be used to compute the viscosity of quantum
fluids in future work. It could also be used in the context
of granular fluids, in particular granular jets with nontrivial

liquidlike properties [61,62]. Finally, the present approach
could be highly complementary to the “rheological universal
differential equations” recently proposed in Ref. [63].
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