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In this reply, we respond to the comments by Lisý and Tóthová (LT) on our recent work
[Phys. Rev. E 105, 064107 (2022)], where we have extended the microscopic theory of molecular motion in
atomic liquids that was originally proposed by Glass and Rice [Phys. Rev. 176, 239 (1968)]. Contrary to our
conclusion of nonavailability of a physically tractable analytical solution of the equation of motion involving
dynamic friction, LT have attempted to obtain an analytical solution giving the velocity autocorrelation function
in liquids. We show that the analytical solution of the equation of motion derived by LT is incomplete and not
an appropriate solution for the description of atomic dynamics in liquids. It is demonstrated that the generalized
statements made by LT regarding the equation of motion giving incorrect results are unjustified in the absence
of substantial proofs. Also, until and unless proven otherwise, we do not find any reason for the reconsideration
of the theory as suggested by LT.
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Glass and Rice (GR) [1] presented a theoretical formula-
tion to compute the velocity autocorrelation function (VAF) in
simple monatomic liquids assuming a Brownian particle in the
liquid diffusing in mean-time-dependent harmonic force field.
They derived a modified Langevin equation by adding another
systematic force term representing the time-dependent force
field. Subsequently, an equation of motion was derived in
terms of VAF as [1]

d2ψ

dt2
+ (α + β )

dψ

dt
+ ω2

0 e−αt ψ = 0. (1)

This equation involves two parameters α and β, where the
former is associated with the local molecular relaxation and
the latter with the friction coefficient. Apart from assuming
β to be time independent, GR also considered it to be equal
to α for low density simple liquids and obtained an analytical
solution of Eq. (1) subject to the boundary conditions given
by

lim
t→0

ψ (t ) = 1, (2a)

lim
t→0

dψ

dt
= 0, (2b)

lim
t→0

d2ψ

dt2
= −〈∇2V 〉

3m
= −ω2

0, (2c)

where ω0 is the liquid-characteristic frequency associated with
the harmonic potential well.
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In our previous work [2,3], we have shown that while the
assumption of α = β works reasonably well for the low den-
sity liquids like liquid argon, it is inadequate for high density
liquids such as the liquid metals. We presented a generalized
formulation for the solution of Eq. (1) to include the cases
where α �= β and demonstrated its application to the liquid
metals and its alloys [2,3]. On further investigation on its
applicability to less-simple metals like the transition metals
in the liquid state, it became evident to us that the generalized
formulation is not adequate for such liquids. Also, we noticed
that even in the case of simple metals like the liquid alkali
metals and their alloys [2,3], the results of VAF obtained using
our generalized formulation deviate quite significantly from
the molecular dynamics results in the backscattering region as
well as the oscillatory region. This prompted us to look for
the possible shortcomings in the original GR theory [1] and to
address it for providing better quantitative results and hence
a better description of the molecular motion in liquids. The
subsequent investigations, modifications in the GR theory, and
its application to a variety of liquids are reported in our recent
publication [4] on which Lisý and Tóthová [5] (LT) have
commented.

The major highlight of our work presented in Ref. [4] is the
consideration of the time-dependent friction in the Brownian
description of atomic motion in liquids and the derivation of
the equation of motion,

d2ψ

dt2
+ (α + β0e−αt )

dψ

dt
+ ω2

0 e−αt ψ = 0. (3)

While we attempted to obtain analytical solution of Eq. (3),
it was observed that the possible general solution invariably
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involves special mathematical functions which makes the de-
termination of all the involved arbitrary constants subject
to the boundary conditions in Eq. (2) physically intractable.
In order to avoid inadvertent omission of any physically
meaningful part of the general solution, we opted and pro-
posed a numerical solution of Eq. (3) subject to the given
boundary conditions in Eq. (2). We used the NDSolve, a
built-in language function in Wolfram Mathematica, to obtain
the numerical solution of Eq. (3).

We duly mentioned the nonavailability of a tangible ana-
lytical solution of Eq. (3) as a limitation of our work in the
“Conclusion” section of Ref. [4]. Picking up the thread from
this point, the comment authors (LT) focused on obtaining the
analytical solution of Eq. (3). In the following, we discuss the
derivation given by LT [5].

On the change of variable by substituting x = (β0/α) e−αt ,
Eq. (3) turns out to be

d2ψ

dx2
− x

dψ

dt
+

(
ω2

0

αβ0

)
ψ = 0. (4)

Considering this to be a special case of the confluent hyper-
geometric equation (Kummer’s equation), a general solution
of Eq. (3) has been obtained in terms of two linearly indepen-
dent solutions as

ψ (x) = c1x 1F1

(
1 − ω2

0

αβ0
; 2; x

)
+ c2G2,0

1,2

(
−x

∣∣∣∣∣1 − ω2
0

αβ0

0, 1

)
,

(5)

where 1F1

(
1− ω2

0
αβ0

; 2; x
)

is a hypergeometric function and

G2,0
1,2

(
−x

∣∣∣∣1− ω2
0

αβ0

0, 1

)
is the Meijer G function.

The knowledge of the coefficients c1 and c2 is necessary
to obtain a complete solution ψ (x). To this end, LT use the
condition that the VAF should decay to zero at an infinite
time, i.e., ψ (x) → 0 for x → 0, which basically corresponds

to ψ (t ) → 0 for t → ∞. As the function G2,0
1,2

(
−x

∣∣∣∣1− ω2
0

αβ0

0, 1

)
in Eq. (5) does not converge to zero for x → 0 while

1F1

(
1− ω2

0
αβ0

; 2; x
)

converges to zero, it has been argued that

the condition of ψ (x) → 0 for x → 0 will be satisfied only if
c2 is taken to be equal to zero.

Elimination of c2 from Eq. (5) leads to an easy determina-
tion of c1 using the boundary condition ψ

(
x = β0

α

) = 1 and,
subsequently, an analytical expression for the VAF which will
decay to zero at t → ∞ for both the cases α < 0 and α > 0.
The expression for VAF obtained by LT is [5]

ψ (x) = x
α

β0

1F1

(
1 − ω2

0
αβ0

; 2; x
)

1F1

(
1 − ω2

0
αβ0

; 2; β0

α

) . (6)

The VAF results obtained using Eq. (6) for two cases of LJ
fluids are compared with those obtained by numerical solution
of Eq. (3) given in Ref. [4]. On the basis of the difference
observed between these results and stressing the need of
the fulfillment of the condition ψ (t ) → 0 for t → ∞, LT
draw the following main conclusions regarding our theoretical
treatment and results in Ref. [4]:

(1) The parameters α, β0, and ω0 given in Ref. [4] are
unreliable.

(2) The equation of motion [Eq. (3)] for a Brownian
particle in liquids obtained in Ref. [4] assuming the time
dependence of its friction coefficient gives incorrect results
if solved under the condition dψ

dt = 0 at t = 0.
(3) The interesting theory [1] with possible important con-

sequences for the physics of fluids and the Brownian motion
should be reconsidered.

For the first point, we acknowledge that in our paper [4]
there are typographical mistakes in reporting the values of β0

and ω0 in Table I for the LJ system at ρ = 0.2. The correct
values of β0 and ω0 are 5.5×1012 s−1 and 36.9×1012 s−1

respectively. All the other values reported in Tables I–III
are correct. We have already given a detailed discussion on
the derivation of the values of α, β0, and ω0, its physical
significance, and reliability in Ref. [4]. The fact that the re-
sults obtained using the numerical solution of Eq. (3) are in
close agreement with the classical molecular dynamics (MD)
results for a variety of liquids with a wide range of density is a
testimony to the reliability of the parameters. In the following
discussion, we show that the other two remarks about the the-
oretical treatment and the results reported in our paper [4] are
unjustified because the derivation of the analytical solution,
Eq. (6), is flawed from the viewpoint of physics involved in
Eq. (3) that represents the equation of motion of a Brownian
particle in a liquid.

There is no contention about the general solution of Eq. (3)
given by Eq. (6) in terms of the special functions, namely the
hypergeometric function and the Meijer G function. In fact,
as mentioned earlier, we were also aware of the analytical
solution of Eq. (3) in terms of special functions in the case
of α �= 0. However, a complete and correct solution warrants
rigorous determination of the arbitrary constants c1 and c2

appearing in the general solution subject to the boundary
conditions in Eq. (2). For this, it is essential that any special
function that is a part of the general solution should be a
regular and continuous function in the given range of time. For
example, in the GR formulation [1] and our generalized GR
formulation [2,3] with time-independent friction coefficient,
the equation of motion could be reduced in the form of a
Bessel differential equation and its general solution consists of
the Bessel functions of the first and the second kind which are
regular and continuous functions in the time range of interest.
For this case, a systematic method, employing the boundary
conditions [Eq. (2)], has been prescribed by GR [1] for the
determination of c1 and c2.

Thus, if Eq. (6) is to present a complete solution encom-
passing the correct physical scenario of the atomic dynamics
of the liquid, it is imperative to determine c1 and c2 subject to
the boundary conditions that, in the present case, turn out to
be

lim
x→β0/α

ψ (x) = 1, (7a)

lim
x→β0/α

dψ

dx
= 0, (7b)

lim
x→β0/α

d2ψ

dx2
= −ω2

0/β
2
0 . (7c)

036108-2



COMMENTS PHYSICAL REVIEW E 108, 036108 (2023)

FIG. 1. Meijer G function as a function of time on (a) linear scale and (b) log scale. The irregularity and discontinuity of the function
becomes evident when plotted on the log scale.

The Meijer G function in Eq. (3) is a complex function for
α > 0. For α < 0, it is an irregular function showing oscilla-
tions with large increasing amplitudes as shown in Fig. 1. If
we see the time dependence of the Meijer G function on linear
scale, it shows negligibly small fluctuations about zero for the
initial period of ∼0.5 ps and then it exhibits oscillations with
rapidly increasing amplitudes [Fig. 1(a)]. However, to get a
better perspective of the behavior of the Meijer G function in
the time range of interest, we plot it on a log scale in Fig. 1(b).
It clearly demonstrates the irregular and discontinuous time
dependence of the function. Therefore, it is evident that it
is not possible to determine both the constants c1 and c2 by
using the boundary conditions in Eq. (7). As a result, the LT
stress on determination of these coefficients is based on the
condition that the VAF should decay to zero at an infinite
time, i.e., ψ (x) → 0 for x → 0 which basically corresponds

to ψ (t ) → 0 for t → ∞. As limx→0 1F1

(
1− ω2

0
αβ0

; 2; x
)

= 0

and the Meijer G function converges to a nonzero finite value

given by limx→0 G2,0
1,2

(
−x

∣∣∣∣1− ω2
0

αβ0

0, 1

)
= 1

�(1+ ω2
0

αβ0
)
, it is suggested

that Eq. (5) would be physically meaningful [i.e., ψ (x) → 0]
only if c2 is considered to be zero. This argument implies
that the hypergeometric function and the Meijer G function
in Eq. (5) must converge to zero simultaneously for x → 0.
It rules out the possibility of finding a combination of the
values of c1 and c2 (like the case of GR formulation [1]) such
that ψ (x) = 0 for nonzero values of the special functions. As
the Meijer G function is complex for α > 0 and an irregular
function for α < 0, it is excluded from the analytical solution.
In such a scenario, Eq. (6) presents a partial solution of Eq. (3)
and it does not include all the possible dynamical information

FIG. 2. VAF for LJ system at T = 1.5 with density, (a) ρ = 0.2 where the correct values of β0 and ω0 are 5.5×1012 s−1 and 36.9×1012 s−1

respectively. The value of α = 2.03×1012 is correct. (b) ρ = 0.84 where all the necessary parameters reported in Ref. [4] are correct. The
insets in the figure indicate that the first order derivative of VAF are nonzero at t = 0.
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in the equation of motion. It is for this reason that the VAFs
obtained using Eq. (6) for LJ fluids (Fig. 2) decay rapidly
compared to the MD results and those obtained from the
numerical solution of Eq. (3).

Another problem that points to the inappropriateness of the
analytical solution in Eq. (6) is that it does not satisfy the nec-
essary boundary conditions in Eqs. (7b) and (7c). The insets
in Fig. 2 clearly indicate that the first order derivatives of the
VAFs are nonzero at t = 0, which is contrary to the boundary
condition in (7b). To demonstrate that Eq. (6) does not obey
the boundary conditions in Eqs. (7a) and (7b), we derive the
following expressions for the first and second order derivates
of VAF in Eq. (6) using the formulas for the derivatives of

1F1(μ; ν; x) [6]:

∂ψ (x)

∂x
= α

γβ0

[
1F1(a; 2; x) + ax

2 1F1(a + 1; 3; x)

]
, (8)

∂2ψ (x)

∂x2
= αa

γ β0

[
1F1(a + 1; 3; x) + (a + 1)

6 1F1(a + 2; 4; x)

]
,

(9)

where γ = 1F1(a; 2; β0

α
) and a = 1− ω2

0
αβ0

.
In the case of LJ fluid at ρ = 0.2, using ω0 = 5.5×

1012 s−1, β0 = 36.9×1012 s−1, and α = 2.03×1012 s−1, it

is found that ∂ψ (x)
∂x

∣∣∣
x=β0/α

= 0.97 and ∂2ψ (x)
∂x2

∣∣∣
x=β0/α

= 0.14

which clearly violates the boundary conditions (7b) and (7c).
Similar results can be found for the LJ fluid at ρ = 0.84.

We are surprised that LT have ignored the above aspects.
Moreover, they have overlooked the checking of validity of
the VAFs obtained using Eq. (6) by comparing it with the
MD results. It is understandable that the starkly different VAF
obtained by numerical solution of Eq. (3) for the case of LJ

fluid with ρ = 0.2 (due to an unintended typographical error
in the values of the parameters in Ref. [4]) might have led LT
to believe that there is either a problem with the parameters or
Eq. (3) itself. However, they did not see that the VAF given
by Eq. (3) for LJ fluid with ρ = 0.84 is still in excellent
agreement with the MD results whereas those obtained using
Eq. (6) show large deviations from MD results (Fig. 2).

We would like to emphasize that, in our paper [4], we have
reported a total of 21 results of VAFs obtained using Eq. (3)
for a variety of liquids along with the necessary parameters.
Except for the nonreproducibility of the VAF from Eq. (3) for
just one LJ system using reported values of the parameters in
[4], the LT do not present any other substantial results that
show any lacunae in the theory and the results presented by
us in Ref. [4]. Therefore, the generalized statements made by
the Comment authors regarding our work [4], like “the param-
eters α, β0, and ω0 are unreliable,” “Eq. (3) giving incorrect
results,” and “the need of reconsideration of the theory,” are
not warranted.

To summarize, it is sufficiently clear that the analytical
solution [Eq. (6)] derived by LT is not complete and it does
not satisfy all the necessary boundary conditions. So, it is not
an appropriate analytical solution of Eq. (3) for the description
of atomic dynamics in liquids. Also, until and unless proven
otherwise, we do not find any problem in the equation of
motion, Eq. (3), that is derived by us in Ref. [4].
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