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Recently, Lad, Patel, and Pratap [Phys. Rev. E 105, 064107 (2022)] revisited a microscopic theory of molecular
motion in liquids, proposed by Glass and Rice [Phys. Rev. 176, 239 (1968)]. They argued that the friction
coefficient for a Brownian particle in a liquid should exponentially depend on time and derived an equation of
motion for the particle’s velocity autocorrelation function (VAF). The equation was solved numerically and fitted
to the results of molecular dynamics simulations on different liquids. We show that this solution, obtained under
the condition of zero derivative of the VAF at time t = 0, is physically incorrect at long times. This is evidenced
by our exact analytical solution for the VAF, not found by Lad et al., and numerically, by using the same method
as in the commented work.
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In Ref. [1], the authors revisit the theory by Glass and Rice
(G&R) [2] of the molecular motion in classical monoatomic
liquids. G&R introduced a formalism that was utilized to cal-
culate the velocity autocorrelation function (VAF) of a particle
in a liquid. They assumed that the fluctuations arising from
the motion of the molecules in the long-range soft part of
the intermolecular field are sufficiently rapid to result in an
irregular Brownian motion. In addition, G&R represented the
effects of the strong short-ranged repulsive core collisions by a
time-dependent average force field. The resulting equation of
motion corresponds to the classical Langevin equation with
the frictional force proportional to the instantaneous veloc-
ity �υ(t ) of the particle with a constant friction coefficient β

and an additional systematic force. The obtained equation is
transformed into the equation for the normalized VAF, ψ (t ) =
〈�υ(0)�υ(t )〉/〈υ2(0)〉,

d2ψ

dt2
+ (α + β )

dψ

dt
+ (

ω2
0 e−αt + αβ

)
ψ = 0, (1)

where ω0 is a liquid-characteristic frequency associated with
the harmonic potential well and α is a molecular relaxation
rate. The VAF is subjected to the conditions limt→0ψ (t ) = 1,
limt→0dψ (t )/dt = 0, and limt→0d2ψ (t )/dt2 = −ω2

0. Equa-
tion (1) is then solved in [2] assuming α =β. In Ref. [1], it is
shown that Eq. (1) yields limt→0d2ψ (t )/dt2 = −(ω2

0 + αβ )
and thus does not satisfy the last of the above limits. It is
proposed to resolve this inconsistency (for β �= 0 at t = 0
and nonzero α) by considering the time-dependent friction
coefficient β. With this assumption and employing the condi-
tions at t → 0, the authors derive, instead of (1), the equation
[Eq. (21) in Ref. [1]]

d2ψ

dt2
+ (α + β0e−αt )

dψ

dt
+ ω2

0 e−αtψ = 0, (2)
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where β0 is the initial value of the time-dependent friction
β(t ) = β0e−αt . Equation (2) is the main feature of the work
[1]. Next, the authors use α, β0, and ω0 as fitting parameters,
solve Eq. (21) numerically, and determine these quantities
from the best agreement with the molecular-dynamics results
for the VAF for various systems at different densities and
temperatures. According to Ref. [1], the equation of motion
(2) gives an excellent account in a broad range of liquid
densities. A better description of the VAF in low-density fluids
was demonstrated for α > 0, whereas α < 0 is inevitable to
obtain consistent results for high-density liquids. However,
an elaborate quantitative analysis and physical interpretation,
especially for the case α < 0, is constrained due to the non-
availability of a tangible analytical solution of Eq. (2) [1]. It
was concluded that “This is the primary issue that yet remains
to be addressed to acquire an in-depth understanding of the
time dependence of the dynamical friction and its implications
on the dynamical correlations at short times in liquids.”

Here we show that Eq. (2) can be solved exactly in terms
of the well-known and widely studied special functions. The
solution can be obtained in the following way. After changing
the variable t to x = (β0/α) exp(−αt ), Eq. (2) becomes

x
d2ψ

dx2
− x

dψ

dx
+ ω2

0

αβ0
ψ = 0. (3)

This is a special case of Kummer’s equation or the conflu-
ent hypergeometric equation; see, e.g., [3] (Chap. 13) or [4]
(Chap. VI)

x
d2ψ

dx2
+ (γ − x)

dψ

dx
− aψ = 0, (4)

where a = −ω2
0/αβ0. Two linearly independent solu-

tions to this equation are confluent hypergeometric func-
tion �(a, γ ; x) = 1F1(a; γ ; x) and x1−γ

1F1(a−γ + 1, 2−γ ; x)
[5] (Chaps. 8, 9, 9.2). In the case γ = 0 the series
representing the former solution diverges and one can choose
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the other independent solution ex/2Wa,−1/2(−x) [4] (Chap.
VI, 6.9). Whittaker’s function W can be expressed through

the more general Meijer G function, G2,0
1,2(−x|1+ω2

0/αβ0

0, 1 ) =
ex/2W−ω2

0/αβ0,−1/2(−x) [4] (Chap. V, 5.6). The general solution
to Eq. (3) thus can be written as

ψ (x) = c1x1F1
(
1 − ω2

0

/
αβ0; 2; x

)

+ c2G2,0
1,2

(
−x

∣∣∣∣1 + ω2
0/αβ0

0, 1

)
. (5)

The same form of the solution of Eq. (3) is obtained by
the Wolfram Mathematica differential equation solver DSolve
[6]. The coefficients c1 and c2 can be determined from the
used in Ref. [1] initial conditions ψ (t = 0) = 1 and dψ/dt =
0 at t = 0 which, for ψ (x), are

ψ

(
x = β0

α

)
= 1,

dψ (x)

dx

∣∣∣∣
x=β0/α

= 0. (6)

However, the VAF must satisfy the physical con-
dition ψ (t ) → 0 at t → ∞ corresponding to the loss
of correlation with the initial value ψ (0) with the in-
crease of time, which is inconsistent with the solu-
tion obeying the conditions (6). So, for α > 0 one
has at t → ∞ (x → 0) limx→0x1F1(1−ω2

0/αβ0; 2; x) = 0

but limx→0G2,0
1,2(−x|1 + ω2

0/αβ0

0, 1
) = 1/	(1 + ω2

0/αβ0), where

	(z) is the Gamma function [6]. The solution (5) thus can be
physically correct only when c2 = 0. For α < 0 at t → ∞
(x → −∞), ψ (x) from Eq. (5) converges to 0. To have the
solution applicable for both α > 0 and α < 0, we put c2 = 0
and use the necessary condition ψ (x = β0/α) = 1 that fol-
lows from the definition of the normalized VAF. The Meijer
G function can be excluded from the solution (5) also because
at α > 0 it is a complex function and at α < 0 because of an
irregular behavior making it unusable to describe the systems
of interest (see the note on numerical calculations below).
Then the solution for ψ (x) has the form

ψ (x) = x
α

β0

1F1
(
1 − ω2

0

/
αβ0; 2; x

)
1F1

(
1 − ω2

0

/
αβ0; 2; β0

/
α
) . (7)

The behavior of ψ(x) does not agree with the results ob-
tained in Ref. [1]. This is illustrated by the plots of this
function in Figs. 1 and 2 using the parameters that are given
in Ref. [1] as obtained from the fit of the numerical so-
lution of Eq. (2) to the molecular dynamics simulation for
Lennard-Jones fluids at two different densities. At the same
time, numerical solutions of Eq. (2) subjected to the condi-
tions ψ (t ) = 1 and dψ (t )/dt = 0 at t = 0 are shown. These
solutions are obtained in the same way as in Ref. [1], i.e., by
using NDSolve [6]. It is seen that the analytical solution (7)
significantly differs from the numerical solutions of Eq. (2).
The calculations are presented in Fig. 1 (for α > 0) and Fig. 2
(α < 0) for the same time range as in [1], up to 3 ps and 1.5 ps,
respectively. The slope of ψ (t ) is much slower than in Ref. [1]
and it converges to a nonzero constant for α > 0 (≈0.95 in
this case). The value of ψ (t ) at t = 3 ps is slightly larger than
0.95, while in [1] it is about 0.25. The calculations in [1] thus
should be corrected. However, the most important merit of this
figure is the demonstration that the numerical solution does
not satisfy the condition ψ (t ) → 0 at t → ∞. The numerical

FIG. 1. VAF for Lennard-Jones system calculated numeri-
cally from Eq. (2) (full line) subjected to conditions ψ (0) = 1,
(dψ/dt )t=0 = 0, and from the analytical solution (7) with the condi-
tion ψ (0) = 1 and ψ (t → ∞) → 0 (dashed line). The parameters
are from Ref. [1]: α = 2.03 × 1012 s−1, β0 = 3.69 × 1012 s−1, and
ω0 = 0.55 × 1012 s−1.

solution for the VAF [with the condition dψ (t )/dt = 0 at
t = 0] shown in Fig. 2 also differs from that presented in
Ref. [1] where the minimum of the VAF curve is reached at
a larger time and its absolute value is slightly smaller. In this
case the limit of ψ (t ) at t → ∞ is correct. Note that at α < 0
the Meijer G function changes from approximately 11 at t = 0
to −1.6 × 1029 at t = 1.5 ps. It is a rapidly oscillating function
with an increasing amplitude that approaches the value ∼10386

at t around 3.4 ps, then it abrupts to ∼3 × 102 and slowly
goes to 0 as t → ∞ [6]. Such irregular behavior and giant
oscillations support the exclusion of this function from the
general solution (5).

Figures 1 and 2 evidence that the calculations presented
in Ref. [1] possess unreliable parameters α, β0, and ω0. We
conclude that the equation for the VAF of a Brownian particle
in liquids obtained in Ref. [1] assuming the time dependence
of its friction coefficient gives incorrect results if solved un-
der the condition dψ (t )/dt = 0 at t = 0. This suggests that
the otherwise interesting theory [1] with possible important

FIG. 2. The same as in Fig. 1 for parameters [1] α = −1.17 ×
1012 s−1, β0 = 14.79 × 1012 s−1, and ω0 = 11.71 × 1012 s−1.
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consequences for the physics of fluids and the Brownian mo-
tion should be reconsidered.
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