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We reply to Whitelam’s Comment [Phys. Rev. E 108, 036105 (2023)] on our paper [Phys. Rev. E 100,
020103(R) (2019)] where we compute the exact large deviation (LD) statistics of a wide class of observables in
the rule 54 cellular automaton. Using some heuristic arguments, Whitelam states that despite the fact that the LD
functions we compute display singular behavior, this is not indicative of a LD phase transition or of dynamical
phase coexistence. Here, we refute this observation and confirm that the (standard) interpretation of our exact

results stands.
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In our paper [1], we computed exactly the large devia-
tion (LD) statistics of a class of trajectory observables of
the boundary driven and bulk deterministic rule 54 cellular
automaton (CA). We did this by obtaining via matrix product
states (MPS) the exact scaled cumulant generating function
(SCGF), i.e., the largest eigenvalue of the corresponding tilted
evolution operator. As is customary in LD studies of stochastic
systems, we solved the problem for finite size N and for long
times where the LD regime is applicable (times larger than the
inverse of the dynamical gap). The SCGF so obtained displays
an increasingly pronounced crossover with increasing size,
indicative of a LD phase transition between active and inac-
tive dynamical phases, as occurs in several other constrained
systems [2—4]. We also showed explicitly the distinct phases
by generating trajectories using the exact Doob or optimal
sampling dynamics.

While the results from our exact calculations above are not
in dispute, in Ref. [5] Whitelam raises an interesting question
about the interpretation of these results. This is based on an
observation in an earlier work by Whitelam and Jacobson
[6] about apparent yet nonexistent LD phase transitions in
single-particle systems, apparently resolved (see our remarks
below on that paper) by a rescaling of timescales with system
size. Whitelam applies a similar logic to our (many-body
rather than single-particle) system, concluding that the singu-
lar SCGF that we obtain cannot be interpreted as one due to a
dynamical LD transition and coexistence of phases. We now
explain how this interpretation is not applicable in our case.

Reference [6], on which Whitelam’s comment is based,
considers the case of single-particle systems, such as arandom
walker (RW) in a segment. Since genuine phase transitions
only occur in many-body systems in the large size limit, it is
evident that no LD transition is possible in that case. Neverthe-
less, Whitelam and Jacobson show in Ref. [6] that if one tilts
the evolution operator by certain dynamical observables, the
corresponding SCGF appears singular [7]. This occurs when
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there is a mismatch in scales: While the untilted evolution
operator is O(1) (as there is a single particle), the tilting per-
turbation scales exponentially with N in the RW example; this
introduces an artificially large N singularity in the otherwise
regular RW problem. Whitelam and Jacobson [6] resolve this
problem by rescaling the counting field in the SCGF with
size, arguing that this is a necessary time rescaling—a simpler
explanation is that this just restores the correct size scaling in
the tilted operator.

In contrast to the single-particle models of [6], the rule 54
CA is a many-body interacting system [1]. Furthermore, we
tilt with respect to extensive operators, that is, with the appro-
priate O(N) scaling. The model is made stochastic through
the boundary, and for all finite N the dynamical gap is nonva-
nishing. This leads to a LD principle for both the SCGF and
the LD rate function (the scaled logarithm of the probability
of the observable) that is linear in time 7. In the Comment,
Whitelam states that we need to look at a different timescale
than the customary 7. More specifically, the suggestion is
that one takes instead 7' /N, in analogy with the single-body
problems of Ref. [6], on the grounds that the model is ballistic
(due to the bulk conservation of quasiparticles). The argument
is that if this N-dependent speed is taken then in the large size
limit both the SCGF and rate function acquire a general form
that is nonsingular.

The problem with this argument is the following. The
rescaling of time above is equivalent to a rescaling of the
Legendre-transform parameter (or counting field) s in the
SCGF 6(s). For clarity it is convenient to change notation,
writing s = A/N, where A is the abscissa of the figure in the
Comment. In this way we distinguish between the original
counting field s and the rescaled one A. This rescaling corre-
sponds to focusing on a small window around s = 0, one that
shrinks with increasing N. At any finite N there is no transition
but a crossover which remains smooth in the limit N — oo.
This means that in a vicinity of s = 0, explored in terms of
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the rescaled field A, we necessarily have smooth behavior for
the SCGF. This, as expected, is what Fig. 1 of the Comment is
showing, not the absence of a transition: In terms of A only the
vanishing regime around s = 0 is accessible and not the full
range of the SCGF (and therefore the full range of dynamical
fluctuations). For more detailed discussions on the transition
region, see Ref. [4] for the simple exclusion process (SEP),
and Refs. [8—10] for kinetically constrained models.

The model we study in Ref. [1] is deterministic in the bulk
and the stochasticity comes only from the boundary sites. One
could ask whether this system is actually a few-body problem
in disguise, for which a LD transition would not be possible:
After all, the characteristic equation that defines the SCGF
is given by a quartic polynomial, as would occur in a four-
level system. This is not the case. First, one cannot simply
integrate out the bulk leaving a four-state boundary system,
since, given the delay in propagating the signal between the
boundaries, such tracing out would produce a non-Markovian
dynamics, where nontrivial spatial correlations would convert
into a nontrivial memory kernel. Second, the SCGF equa-
tion reducing to a quartic one is connected to the fact that the
“metastable manifold” is formed by the four leading eigenval-
ues (represented as rank-3 MPS) of the many-body evolution
operator [11]. Intuitively, these four eigenstates are the rel-
evant ones for the finite- (but long-) time dynamics of the
model and hence they are reflected in the computation of the
LDs.

A final observation in the Comment against the LD transi-
tion relates to the rare trajectories of the model. This is some-
what surprising: In Fig. 3 of Ref. [1] we show explicitly trajec-
tories in both phases (constructed from the exact, or Doob, op-
timal dynamics for the rare events). The Comment also states
that the dynamics is not intermittent. Again, we refer back to
Ref. [1]: In Fig. 1(c) we show a typical trajectory, displaying
fluctuating patterns of activity and inactivity, a clear sign of
intermittency in the dynamics (termed “dynamic heterogene-
ity” in the context of glassy dynamics). Furthermore, using the
methods applied to a different but related model in Ref. [12],
it should be possible to prove that the dynamical free energy
for the inactive “bubbles” in Fig. 1(c) scales with their (space-
time) perimeter rather than their area, a clear indication of an
underlying first-order phase transition (cf. Ref. [12]).

In summary, none of our exact calculations or results are
brought into question by the Comment. The disagreement is
only on the interpretation of the results in relation to the exis-
tence of competing dynamical phases. As we explain above,
we object to the time-scaling procedure proposed in the Com-
ment which is (i) not the standard in the field of dynamical
large deviations, and more importantly (ii) could always be
adapted to remove the signature of a true trajectory phase tran-
sition by impeding access to the relevant fluctuation regime.
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