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Comment on “Exact large deviation statistics and trajectory phase transition of a deterministic
boundary driven cellular automaton”
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Buča et al. [Phys. Rev. E 100, 020103(R) (2019)] study the dynamical large deviations of a boundary-driven
cellular automaton. They take a double limit in which first time and then space is made infinite, and interpret
the resulting large-deviation singularity as evidence of a first-order phase transition and the accompanying
coexistence of two distinct dynamical phases. This view is characteristic of an approach to dynamical large
deviations in which time is interpreted as if it were a spatial coordinate of a thermodynamic system [Jack, Eur.
Phys. J. B 93, 74 (2020)]. Here, I argue that the large-deviation function produced in this double limit is not
consistent with the basic features of the model of Buča et al. I show that a modified limiting procedure results
in a nonsingular large-deviation function consistent with those features, and that neither supports the idea of
coexisting dynamical phases.
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The authors of Ref. [1] study the dynamical trajectories of
a boundary-driven cellular automaton on a lattice of size N .
They obtain the scaled cumulant-generating function (SCGF)
θN (s) for a particular time-integrated observable, by invoking
the limit of long time T and extracting θ (s) from the largest
eigenvalue of a tilted rate matrix (s is the tilting- or Legendre-
transform parameter). They then take the limit of large system
size N , the result being a kinked function limN→∞ N−1θN (s)
[Eq. (10) of the paper]. The authors state that this kinked func-
tion signals a first-order dynamical phase transition with an
accompanying dynamical phase coexistence. However, while
Eq. (10) is reminiscent of the singular large-deviation function
of the Ising model below its critical temperature, which does
display phase coexistence [2,3], a similar interpretation is not
consistent with the basic phenomenology of the model of
Ref. [1].

Principally, the model has a well-defined mean or typ-
ical value of the chosen observable, even in the limit
N → ∞, given by Eq. (8) of the paper. If the function
limN→∞ N−1θN (s) is the cumulant-generating function then it
should be able to generate this mean value, but it cannot: It is
not differentiable at s = 0, and contains none of the model pa-
rameters α to δ that appear in Eq. (8). Thus Eq. (10) is not the
SCGF, and Eqs. (8) and (10) of the paper are not consistent in
the limit of large N , the latter containing less information than
the former [4]. Equivalently, the large-deviation rate function
associated with Eq. (10) possesses a line of zeros. If a large
deviation principle applies, we would expect a rate function
with a unique zero that corresponds to the model’s typical
behavior [3,5].

A singularity that emerges in the limit N → ∞ does not
necessarily imply the presence of coexisting phases [6]. The
emergence of a singularity means only that the large-deviation
principle (LDP) has broken down. I argue that the cause of the
singularity for the present model is not the emergence of dis-
tinct phases but the divergence of the model’s basic timescale.

The large-deviation formalism assumes the long-time limit, in
order to associate the SCGF with the largest eigenvalue of the
tilted rate matrix, but this assumption breaks down when the
N → ∞ limit is taken in the manner done in the paper.

However, there is a way to take the limit N → ∞ that
preserves the long-time assumption. Under this modified
procedure, an LDP exists, and the resulting large-deviation
functions are consistent with the basic physics of the model,
including Eq. (8) of the paper. Neither these large-deviation
functions nor the physics of the model support the idea of
phase coexistence.

To proceed, we can look for an LDP with a large
parameter (or speed) T̃ ≡ T/τ (N ), where τ (N ) is the dom-
inant model timescale, by writing PT (x) ∼ exp[−T ϕN (x)] ≡
exp[−T̃ ϕ̃N (x)]. Here, PT (x) is the probability of observing
a particular value x of the observable, and the rate func-
tions on speed T and T̃ are respectively ϕN (x) and ϕ̃N (x) =
τ (N )ϕN (x). The SCGF corresponding to ϕN (x) is θN (s), while
the SCGF corresponding to ϕ̃N (x) is obtained by sending
s → s/τ (N ), giving the function θN (s/τ (N )).

Given that the model’s dynamics is ballistic, I assume that
the dominant timescale is linear in system size, i.e., τ (N ) =
N , and plot in Fig. 1 the large-deviation functions on speed
T̃ = T/N . As N becomes large, these functions tend to a lim-
iting, nonsingular form, validating the assumption of an LDP
on speed T̃ . The colored lines were produced by numerically
evaluating Eq. (4) of Ref. [1]. The black dashed line was
produced by taking the limit N → ∞ analytically (having first
sent s → s/N) and evaluating the resulting equation numer-
ically. The resulting function is the limiting form to which
the SCGF tends. The inset of Fig. 1 shows the corresponding
limiting rate function, limN→∞ ϕ̃N (x), which quantifies the
logarithmic probability of observing certain values x of the
time-integrated observable. As expected from a well-defined
LDP, this has a unique zero corresponding to the typical value
of the observable [Eq. (8) of the paper]. That is, the limiting
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FIG. 1. Large-deviation functions of the boundary-driven cellu-
lar automaton of Ref. [1] on speed T/N (compare Fig. 2 of that
paper). Functions tend to a nonsingular form in the large-N limit,
indicating the existence of a well-defined LDP. Inset: Limiting form
of the corresponding rate function, which quantifies the logarithmic
probability of observing a value x of the dynamical observable. This
function describes the fluctuations of the observable in the large-N
limit. It is consistent with Eq. (8) of the paper, the unique zero
corresponding to the model’s typical behavior.

procedure consistent with a well-defined LDP is to assume
that T is large, in order to associate the SCGF with the largest
eigenvalue of the tilted generator, then rescale the Legendre-
transform parameter s by the system’s dominant timescale, in
this case N , and then take N → ∞.

The functions of Fig. 1 do not support the idea of coex-
isting dynamical phases at the level of the time-integrated
observable (coexistence of this nature can be seen in, e.g., the
right-hand panel of Fig. 6 of Ref. [6]). The logarithmic proba-
bility of observing trajectories of the model of Ref. [1] having
values x of the time-integrated observable is −T/N multiplied
by the function shown in the inset of Fig. 1. This function
resembles the Gibbs free energy of the Ising model above its
critical temperature, where there is a single phase [2,3]. The
rate function shows dynamical fluctuations to occur about a
well-defined mean value (the rate function has a unique zero),
to be Gaussian about the mean (the rate function is quadratic
about its zero), and to have non-Gaussian tails.

Another way a system could be said to exhibit coexistence
is if the trajectories that realize particular values of the time-
integrated observable are intermittent, switching back and
forth between distinct values of the instantaneous counterpart
of the time-integrated observable (coexistence of this nature
can be seen in, e.g., the middle panel of Fig. 6 of Ref. [6]).
Whether or not this is the case cannot be deduced directly
from the rate function [7], and must be assessed by direct
calculation of rare trajectories. The authors of Ref. [1] rule
out this scenario in the text, and show in Fig. 3 some rare tra-
jectories of the model. Those trajectories display fluctuations,

because the model is stochastic, but they are not intermittent
in the sense of exhibiting switches between two distinct states.

Kinked large-deviation functions that emerge in a double-
limit procedure, in which first time and then space are
taken infinite, are usually described as dynamical phase
transitions, accompanied by dynamical phase coexistence
[8]. However, for some models, such as that of Ref. [1],
singularities can arise in this limit in the absence of phase-
transition-like phenomenology. Therefore the automatic use
of the terminology is not appropriate, and the implication
for how the system behaves in the large-size limit may be
inaccurate.

For instance, for large system size and below its criti-
cal temperature, the Ising model’s Helmholtz free energy is
kinked and its Gibbs free energy possesses a line of zeros.
Such features have become synonymous with the idea of
a phase transition. However, these singular large-deviation
functions tell us only that the LDP on the bulk speed has
broken down, and do not give us all the necessary information
about the system: The flat-bottomed Gibbs free energy of the
Ising model cannot tell us even its typical magnetization [2].
Information about phase coexistence in the Ising model comes
instead from consideration of the spin-up–spin-down symme-
try of its energy function, the microscopic cooperativity of the
energy function that induces nonzero surface tension, and the
resulting surface free energy that reveals the existence of two
typical behaviors, the coexisting phases [2]. A literal interpre-
tation of Fig. 2 of Ref. [1] suggests something similar: In the
limit of large N , dynamical phases with large and small values
of x “coexist” at the point s = 0, meaning that the natural
(i.e., unbiased) dynamics of the model should support those
(and only those) two phases. However, this interpretation is
problematic when set against the physics of the model: Its
dynamical rules are not cooperative, and there is no obvious
physical reason it would support two phases, however large
is the lattice. Consistent with this expectation, Eq. (8) shows
that the typical behavior of the unbiased model in the limit
N → ∞ corresponds to a single, intermediate value of x.

I argue that the resolution of this inconsistency is to note
that the space and time dimensions of a dynamical model
are not equivalent: We must take the large-N limit so that
the scaled observation time T/τ (N ) remains large, or else we
have made an ergodic system nonergodic in an artificial way.
For the model of Ref. [1], the modified procedure described in
this Comment results in the large-deviation functions shown
in Fig. 1. These functions are well defined, validating the
assumption of an LDP on the scale T/τ (N ), and are consistent
with the idea that the model does not exhibit phase coexis-
tence.
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