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Comment on “Validity of path thermodynamic description of reactive systems:
Microscopic simulations”
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The assertions made in a recent paper [Phys. Rev. E 107, 014106 (2023)] regarding the validity of path
thermodynamics are ill founded and contradict well-known results. Following up on a previous Comment,
I show that, for both models of chemical reaction networks considered in the aforementioned paper, path
thermodynamics yields values of the entropy production rates fully consistent with those expected from standard
chemical thermodynamics in the large-system limit.
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Since 2017, three papers have been published [1–3], as-
serting that reactive systems would only be described by the
stochastic process of some intermediate species X and that
each elementary reaction would have to be identified by the
changes in the composition of this sole intermediate species
X at the exclusion of the other species participating in the
reaction. As a consequence, the consumption and production
of the other species, which play essential roles in maintaining
the system away from equilibrium and causing the production
of entropy, are overlooked in Refs. [1–3].

In my previous Comment [4], I explained that, accord-
ing to path thermodynamics, it is necessary to account for
all species, whether intermediate or not, in order to identify
the sequence of elementary reactions taking place so as to
evaluate the rate of entropy production, as formulated, in
particular, in Ref. [5]. In this Comment, I summarize the
claims of Ref. [3] and show that it contains contradictions with
Schnakenberg’s 50-yr-old theory of Markov jump processes
[6]. Moreover, I also show that, for the models considered in
Ref. [3], the values of entropy production computed within the
formalism of path thermodynamics are fully consistent with
the standard values predicted by chemical thermodynamics,
provided its principles are duly respected.

In short, numerical results are presented in Ref. [3] for two
separate models of chemical reaction networks (see Table I),
based on Bird’s direct simulation Monte Carlo algorithm.
Their point is to test the reversibility for the stochastic pro-
cess {X (t )} followed by the intermediate species X . The
two models are chosen because, in model I, the intermediate
species X has the same stoichiometric coefficient (νX,+1 =
νX,+2 = 1) in both forward reactions, whereas in model II,
they are different (νX,+1 = 2, νX,+2 = 1). The results reported
in Ref. [3] show that the stochastic process {X (t )} of the
intermediate species X is reversible in model I, but not in
model II, even though both are out of equilibrium. However,
it is wrongly inferred therein that these facts invalidate path
thermodynamics.

Before I proceed, I should emphasize that the reversibility
of stochastic processes generated by some random variables

is by no means in contradiction with the process being out
of equilibrium. As a matter of fact, two examples of such
processes were given in my previous Comment [4], where
I mentioned that the stochastic process {X (t )} of the in-
termediate species X in the simple reaction network A �
X � B is indeed reversible even when the system is subject
to nonequilibrium conditions. In the same way, the velocity
{v(t )} of a Brownian particle driven away from equilibrium
by a constant external force can follow a reversible process al-
though the joint variables of position and velocity {r(t ), v(t )}
do not.

The validity of these facts is not denied, which has helped
formulate path thermodynamics for reactive systems. Rather,
they show the limitations of restricting the description of reac-
tive systems to the sole intermediate species X and the need,
in chemical thermodynamics, to consider all the species in
order to identify each elementary reaction [7,8]. The reason is
that the different elementary reactions are distinguished by the
changes in composition of all the chemical species involved
in each reaction. For models I and II described in Table I,
these species are (X, A, B,C) and the total numbers of their
molecules may undergo the changes (X, A, B,C)

ρ−→ (X +
νXρ, A + νAρ, B + νBρ,C + νCρ ), where (νXρ, νAρ, νBρ, νCρ )
are the stoichiometric coefficients of the species in the re-
action ρ. Even if the species (A, B,C) are kept at constant
concentrations, the reactions can continuously consume or
produce molecules in the pool of these species, so that the sys-
tem should be open to inlet and outlet mass flows and the pool
should include the system and the external reservoirs. There-
fore, the total numbers (A, B,C), which count the molecules
that are consumed or produced with respect to some initial
conditions, change in time due to the successive reactions and
we should a priori consider the complete stochastic process
formed by the joint trajectories {X (t ), A(t ), B(t ),C(t )}.

The reactive systems considered in Ref. [3] may be de-
scribed by Markov jump processes with the transition rates
given in Table I for both models. The central issue however is
that the complete stochastic process for the joint probability
distribution P(X, A, B,C, t ) ≡ P(X, n, t ) with n = (A, B,C)
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TABLE I. Kinetics and thermodynamics for the two models compared in Ref. [3]. The reaction constants are denoted kρ with ρ = ±1, ±2,
� is the extensivity parameter, X is the number of molecules of the intermediate species, and a, b, c are the molecule fractions of the
chemostatted species. AC and JC are respectively the affinity and the overall rate associated with the given cycle C. Similar results hold
for other cycles. For the intermediate species X , the stationary value of the molecule fraction is given by xs = 〈X 〉s/�.

Model I Model II

Reaction network A + X
k+1�
k−1

2X 2A
k+1�
k−1

2X

B + C
k+2�
k−2

B + X B + C
k+2�
k−2

B + X

Rates W+1(X ) = k+1 a X W+1(X ) = k+1 a2 �

W−1(X ) = k−1X (X − 1)/� W−1(X ) = k−1X (X − 1)/�
W+2(X ) = k+2 b c � W+2(X ) = k+2 b c �

W−2(X ) = k−2 b X W−2(X ) = k−2 b X

Cycle C = X
ρ=+1−→X + 1

ρ=−2−→X C = X
ρ=+1−→X + 2

ρ=−2−→X + 1
ρ=−2−→X

Cycle affinity AC = ln
k+1k−2 a

k−1k+2 c
AC = ln

k+1k2
−2 a2

k−1k2
+2 c2

Overall rate JC = k+1axs − k−1x2
s = −(k+2bc − k−2bxs ) JC = k+1a2 − k−1x2

s = −(k+2bc − k−2bxs )/2

In/out flows (d/dt )〈A〉s = −(d/dt )〈C〉s = −�JC (d/dt )〈A〉s = −(d/dt )〈C〉s = −2 �JC

is ruled by the master equation

d

dt
P(X, n, t )

=
±r∑

ρ=±1

[Wρ (X − νXρ ) P(X − νXρ, n − �nρ, t )

−W−ρ (X ) P(X, n, t )], (1)

with r = 2 and the stoichiometric coefficients �nρ =
(νAρ, νBρ, νCρ ) and not by the reduced master equation

d

dt
P(X, t ) =

±r∑

ρ=±1

[Wρ (X − νXρ ) P(X − νXρ, t )

−W−ρ (X ) P(X, t )], (2)

for the marginal probability distribution of the process
{X (t )}, P(X, t ) = ∑

A,B,C P(X, A, B,C, t ) ≡ ∑
n P(X, n, t ).

Equation (1) is equivalent to Eq. (19) of my previous
Comment [4], and is well known to be the basic master
equation of the complete process [9–13]. Contrary to what
is assumed in Refs. [1–3], the reduced master equation (2)
is not the unique master equation for the description of
the reactive system. There is no contradiction with any
fundamental property of jump processes in considering the
complete master equation (1) alongside the reduced master
equation (2), which refers to processes with different state
spaces.

Nevertheless, it is claimed in Ref. [3] that only the reduced
master equation (2) should be considered. In the case of
model I, this has the unavoidable consequence of replacing
it with a different, less detailed model, where the transitions
X −→ X ± 1 have the rates W± ≡ W±1 + W±2 and the two
elementary reactions 1 and 2 are no longer distinguishable.
This model, henceforth referred to as model 0, is the one
actually studied in Ref. [3] in place of model I. However,
lumping together the two elementary reactions reduces the
state space of the four random variables (X, A, B,C) of model

I to the state space of the sole random variable X of model 0,
which is mathematically and physically different from model
I, as further explained below.

In the case of model II, the two elementary reactions
remain distinguishable and they cannot be lumped together,
because they correspond to the different transitions X −→
X ± 2 and X −→ X ± 1, respectively.

For the sake of path thermodynamics, we must always
identify the elementary reactions involved in the random
jumps of the process in order to evaluate the entropy produced
during the time evolution. That is to say, we should con-
sider the joint stochastic trajectories {X (t ), A(t ), B(t ),C(t )},
as mentioned earlier. The knowledge of these trajectories is
equivalent to knowing the joint sequence {Xl , ρl} of the num-
bers Xl of molecules between the jumps and the successive
elementary reactions ρl causing these jumps. The entropy
production rate can thus be computed using the stochastic
formulation of path thermodynamics by Lebowitz and Spohn
[14]. In this formulation, the entropy production rate is given
by [5]

1

kB

diS

dt
= lim

t→∞
1

t

n(t )∑

l=1

ln
Wρl (Xl )

W−ρl (Xl + νXρl )
, (3)

where Wρl (Xl ) denotes the transition rate of the elementary

reaction Xl
ρl−→ Xl + νXρl and W−ρl (Xl + νXρl ) the rate of the

reversed reaction Xl + νXρl

−ρl−→ Xl , kB is Boltzmann’s con-
stant, and the sum is carried out over the sequence of n(t )
elementary reactions {ρl} occurring in time t . In the large-
system limit � � 1, Eq. (3) becomes equal to the standard
formula of chemical thermodynamics for the entropy produc-
tion rate,

1

kB

diS

dt
= �

r∑

ρ=1

(w+ρ − w−ρ ) ln
w+ρ

w−ρ

, (4)

where the reaction rates are defined in terms of the transi-
tion rates, according to wρ (x) ≡ lim�→∞ �−1Wρ (�x). It is
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straightforward to deduce the result (4) from Eq. (3), since
�(w+ρ − w−ρ ) is the net occurrence rate of ln(W+ρ/W−ρ ) �
ln(w+ρ/w−ρ ) in the sum of Eq. (3) for every elementary
reaction 1 � ρ � r [5]. If, in contrast, the sum in Eq. (3)
were restricted to the sole transitions causing the changes
X −→ X + �X with integer values �X for the intermediate
species X , the entropy production rate (4) would not be given
by the sum of the entropies produced by each elementary
reaction, which would be in contradiction with standard chem-
ical thermodynamics [7]. By refusing to consider the former
approach and arguing that only the latter is possible, as is the
case in Refs. [2,3], the conclusions reached are bound to be
inconsistent.

Let us further remark that several Markov jump processes
may be considered for a given reaction network. This key
point is well known. According to Schnakenberg’s theory
[6], a graph can be associated with a Markov jump process
by assigning vertices to each of the states and edges to the
allowed transitions between the states. The graph associated
with the model formed by the reactions A + 2X � 3X and
B + C � B + X (which is similar to model I) is shown in
Fig. 2 of Ref. [6] and this graph presents two edges connecting
every pair of vertices. As a consequence, there exist cycles in
such graphs, which allow us to define the affinities driving
the system out of equilibrium. In a steady state, the entropy
production rate (4) can be expressed as the product of the
affinity AC and the mean overall rate JC associated with some
cycle C according to

1

kB

diS

dt
= �AC JC . (5)

See Table I for application to models I and II. Thus, Schnaken-
berg showed in 1976 that a Markov jump process may be
defined in such a way that the two elementary reactions can
always be distinguished, which invalidates what is asserted in
Ref. [3].

Figure 1 shows the values of the entropy production rates
computed using (3) and (4) for the models 0, I, and II, with
the corresponding Schnakenberg graphs displayed as insets.
On top of the values predicted by Eq. (4), we report the nu-
merical results of simulations of the stochastic processes here
performed with Gillespie’s algorithm, which is more readily
applicable and much faster than Bird’s algorithm, allowing
larger molecule numbers on a personal computer. The entropy
production rate of path thermodynamics is computed with
Eq. (3) and plotted as the open symbols in Fig. 1. We observe
the excellent agreement with the expectations from standard
thermodynamics (pluses joined by solid lines) as given by
Eq. (4) or (5). Away from equilibrium, the affinity AC and
the overall rate JC are different from zero and the entropy
production rate is positive in both models I and II. On the con-
trary, the graph of model 0 has no cycle, so that no affinity can
be defined for it, which therefore behaves as an equilibrium
process.

These results show that path thermodynamics is perfectly
valid for both models I and II, which have the expected posi-
tive entropy production rate under nonequilibrium conditions.
However, the entropy production rate of model 0, i.e., the
lumped model I as considered in Ref. [3], is equal to zero be-

FIG. 1. Entropy production rate (EPR = diS/dt) vs a2 for model
0 (open circles), model I (open diamonds), and model II (open
squares) computed with the stochastic method using Eq. (3). The
pluses joined by the solid lines give the expectation (4) from standard
macroscopic thermodynamics. The extensivity parameter is equal to
� = 104 and the total time interval to compute the EPR is taken
as t = 104. For model I, the parameter values are k+1 = k−1 = 1,
k+2 = k−2 = 5/6, b = 6a/5, c = a/2, the steady state is xs = a/

√
2,

and the expected entropy production rate (4) is given by k−1
B EPRth =

(�/2)a2(
√

2 − 1) ln 2 � 0.143 56 a2�. For model II, they are k+1 =
k−1 = k+2 = k−2 = 1, a = 1, b = 5a/3, c = a/3, xs = a(

√
209 −

5)/12, and k−1
B EPRth = �(a2 − x2

s ) ln 9 � 0.832 63 a2�. For model
0, the parameter values and the steady state are the same as for model
I, but EPRth = 0. The mean accuracy k−1

B 〈|EPRnum − EPRth|〉 is
equal to 3 × 10−6, 0.75, and 2.6 for models 0, I, and II, respectively.
The Hill-Schnakenberg graphs of the models are shown as insets.

cause that jump process does not make the distinction between
the two elementary reactions of model I.

Furthermore, there is no attempt in the numerical results
presented in Ref. [3] to evaluate the entropy production rate
of models I and II, and to test proposals that have been pub-
lished in the literature. As a matter of fact, the computation
of entropy production can be performed using any simulation
algorithm for the reason that the transition rates of the elemen-
tary reactions are necessarily defined within the algorithm, so
that the inlet and outlet mass flows of the chemostatted species
can also be measured. Indeed, reaction networks are driven
away from equilibrium by the mass flows required to chemo-
stat some species (i.e., A, B, and C in this case). Although
the fractions of chemostatted species are kept invariant in
time, these species may be consumed or produced at nonzero
rates, unless the system is in equilibrium and the detailed
balance conditions hold. In models I and II, the species B is
a spectator for the two reactions, so that B(t ) remains con-
stant and (d/dt )〈B〉 = 0. However, the stochastic processes
{A(t )} and {C(t )} are nonstationary if the reactive system is
driven away from equilibrium. In so-called steady states, the
stationary condition for the intermediate species X is satisfied
because (d/dt )〈X 〉s = −(d/dt )〈A〉s − (d/dt )〈C〉s = 0. The
consumption or production rates of the chemostatted species
A and C are given in Table I for models I and II in the limit
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� � 1. In this regard, the species A and C act as fuel and
product sustaining the nonequilibrium conditions.

To conclude, the criticisms expressed in Ref. [3] about
the validity of path thermodynamics are unfounded. The fun-
damental principles of chemical thermodynamics should not
be ignored. The issue is very concrete and concerns tangible
quantities in the real world, as shown by many examples of
everyday life. For instance, in electric circuits such as a resis-
tor, a diode, or an electrolytic cell connected to a battery, the
entropy production rate is given by diS/dt = P/T = V I/T
in terms of the dissipated power P = V I , the temperature
T , the applied voltage V , and the electric current I across
the device. In this analogy, the electric current I corresponds
to e(d/dt )〈C〉 and the affinity is given by AC = eV/(kBT ),

where e denotes the elementary electric charge. The concen-
tration of ions may significantly differ depending on the type
of cells, but the entropy production rate is always determined
by the applied voltage and the corresponding electric cur-
rent. Another example is home heating. Thermal insulation
can have different efficiencies and the outside temperature
may vary with the seasons. Yet, the thermodynamic cost of
heating is better assessed by the fuel gauge than the internal
temperature, i.e., by |〈C〉t − 〈C〉0| rather than 〈X 〉 in this other
analogy. Really, the issue is of concern to all of us.

The author thanks Thomas Gilbert for valuable sugges-
tions. This research is supported by the Université Libre de
Bruxelles (ULB).
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