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The relative speed distribution function [Eq. (2)] in the Comment is discussed. It shows that Eq. (2) in the
Comment is not the distribution function that should be explored in our work and is therefore not applicable to
our research.
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In his Comment on our paper, the author introduced a rela-
tive velocity distribution function which is different than ours,
consequently, a different collision force of a particle moving
through a thermal equilibrium rarefied gas was given [1,2].
However, we do not think the distribution functional given in
the Comment is applicable to our work.

We agree with the Comment that the difference is derived
from the relative velocity distribution function of field atoms,
i.e., Eq. (2) in the Comment [1],
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where μ = m1m2/(m1 + m2) is the reduced mass (the test
particle and a gas molecule, with mass m1 and m2), and T is
the gas temperature (energy units are used so that kBT → T ).
In our work, the mean collision force of a particle with a given
velocity moving through the thermodynamic equilibrium gas
was studied, then the velocity distribution function of the
gas molecules relative to the test particle was investigated. If
Eq. (1) is really “the relative velocity distribution function of
field atoms” depicted in the Comment, it is not applicable to
our work.

Additionally, there are several other issues in the Com-
ment. The author deemed Eq. (1) can be obtained by shifting
the following Eq. (1) in his Comment,
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In his description, Eq. (2) is the distribution of the relative
velocities when a test particle is in thermal equilibrium with
the gas [1]. However, we do not think the shifting is tenable
and some concerns are stated below. First, the physical mean-
ings of some symbols used in the Comment are unclear: (i)
v1 was depicted as the drifting velocity of the test particle in
Eq. (1), whereas in Eq. (2) it was used to denote a velocity of
the test particle with mass m1 that is in thermal equilibrium
with the gas. (ii) The physical meaning of v + v1 in Eq. (1)
is unclear. If v = v1 − v2 as defined in the Comment, then
v + v1 = 2v1 − v2, which cannot be the relative velocity. (iii)
v2, N , and dN (v) were not defined throughout the Comment.
Second, Eq. (1) was depicted as the relative velocity distri-
bution function of field atoms. It should be noted, however,
that the relative velocity distribution function of field atoms is
independent of the chosen reference frame under the Galilean
transformation, and reads

f ′
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where v′ is the relative velocity between two field atoms, and
μ′ is the reduced mass of the two field atoms. Note that the
test particle is not involved here, then μ′ = m2

2/(m2 + m2) =
m2/2 is not μ that was used in Eq. (1). It easy to see that
Eq. (1) is in conflict with Eq. (3), and the shifting from Eq. (2)
to Eq. (1) is questionable.

Essentially, Eq. (1) is a distribution of two types of
molecules in thermal equilibrium. However, the study in our
paper is about the nonequilibrium case where the test particle
is moving with a given velocity. So, Eq. (1) cannot be the
distribution function we needed.

The relative velocity distribution studied in our paper can
be derived as follows. As shown in Fig. 1, the relative velocity
between the molecule and the test particle is vr = v2 − V1,
where V1 is the velocity of the test particle (uppercase letters
are used to avoid misunderstandings regarding the Comment),
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FIG. 1. Relations of V1, v2, and vr , where V1 is the velocity of
the test particle in the laboratory frame, vr is the velocity of the
molecule relative to the particle, and v2 = V1 + vr is the velocity
of the molecule in the laboratory frame.

and v2 is the velocity of the molecule with v2 = vr + V1.
In the laboratory frame, the velocity distribution of the gas
molecules is the Maxwell distribution
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which is independent of the mass and the velocity of the test
particle. In the nonrelativistic regime, we are going to assume
that the number of background molecules in a velocity volume
keeps the same value in all frames. If dN is the differential
number of the molecules in differential volume dvxdvydvz in
velocity frame I (the laboratory frame), dv′

xdv′
ydv′

z is the dif-
ferential volume in frame II (the v1 frame) transformed from
frame I, and dN ′ is the molecule number in dv′

xdv′
ydv′

z, then
we have dv′

x = dvx, dv′
y = dvy, dv′

z = dvz, and dN ′ = dN .
The velocity distribution of the background molecule m2 in
the v1 frame is given by
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where N is the total molecule number. We can see that f (t )(vr )
is independent with the mass of the reference object. Integrat-

ing f (t )(vr ) over the solid angle, the speed distribution of the
background molecules relative to the particle can be given as
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It is Eq. (15) in our paper [2]. Based on Eq. (6), the general
mean collision force in the present symbols and unit can be
obtained as
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which is the result in our paper [Eq. (21)] [2], where D is the
radius of the scattering cross section, and n2 is the number
density of the background molecules. The low- and high-
speed limiting friction equations in our paper can be derived
from the above general equation.

We must declare that the mean collision force Eq. (7)
obtained in our paper [2] is a statistical result, and is the mean
term of the random dynamics of the particle that is depicted
by the Langevin equation. In fact, the test particle will acquire
a thermal velocity (random) component during the collision
process, so in this sense, Eq. (7) is not a complete derivation
of the collision force. In the study of the dynamics of particles
of large masses, our derivation can be used directly where
the random component can be neglected; but in the study
of the dynamics of small masses, the random force must be
investigated and a full form Langevin equation is needed. In
our next work on this subject, some statistical properties of
the random collision force will be contributed.
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