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Comment on “Microscopic kinetic theory of the mean collision force of a particle
moving in rarefied gases”
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In a recent paper [T. Wei et al., Phys. Rev. E 106, 034101 (2022)] a derivation of the resistance force acting on a
small classical particle moving through a rarefied gas has been presented. Unfortunately, the obtained expression
is inaccurate. The purpose of this Comment is to provide the accurate expression and to discuss several related
aspects.
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In a recent paper [1] an expression for the resistance force
acting on a small classical test particle moving through a rar-
efied gas has been reported. The authors focused on the regime
where the particle size is much smaller than the mean free
path; that is, the Knudesen number is large (free molecular
regime). This is where Stokes’ law is not applicable. They
used an elastic hard-sphere collision model and assumed that
the background gas is in equilibrium and characterized by the
Maxwellian velocity distribution. Under these assumptions
they derived a general expression for the collision (resistance)
force and analyzed two limiting cases: low speed (test particle
drift velocity is much lower than the thermal velocity of back-
ground gas atoms) and high speed (test particle drift velocity
is much higher than the thermal velocity of background gas
atoms). The force derived in Ref. [1] is proportional to the
reduced mass, which is generally not correct. In the follow-
ing, the correct expression is first derived, the origin of the
inaccuracy is identified, and a few related remarks are made.

Let us consider a test particle of mass m1 moving through a
gas of field atoms having mass m2, number density n2, and an
isotropic Maxwellian distribution of velocities. The key ingre-
dient in evaluating the properties of collision processes is the
distribution function over relative velocities [2]. The kinetic
energy of any two particles in the laboratory reference frame is
the sum of the energy of their relative motion, μv2/2, and the
energy of the center of mass (m1 + m2)V 2/2. Here v = v1 −
v2 is the relative velocity, V = (m1v1 + m2v2)/(m1 + m2) is
the velocity of the center of mass, and μ = m1m2/(m1 + m2)
is the reduced mass. If a test particle is in thermal equilibrium
with the gas (sometimes this is not the case, like, for instance,
in nonequilibrium plasmas, where different species can have
different temperatures) the distribution of the relative veloci-
ties can be derived as [3]
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where T is the temperature (energy units are used so that
kBT → T ), dv = 4πv2dv, dV = 4πV 2dV , and dv1dv2 =
dv dV. The distribution of relative velocities is therefore just
the Maxwellian distribution taken with the reduced mass in-
stead of the bare mass of field atoms. When a test particle is
heavy so that m1 � m2, its thermal motion can be neglected
and the use of the bare mass m2 in the relative velocity
distribution would be appropriate. The same follows from
Eq. (1), because μ � m2 in this limit. For comparable masses
m1 � m2, the use of the reduced mass is essential.

Assuming that the test particle is drifting with the velocity
v1, it is convenient to work in the reference frame moving with
the test particle. Relative velocity distribution function of field
atoms becomes a shifted Maxwellian distribution [4,5]

fM (v + v1) =
( μ

2πT

)3/2
exp

[
−μ(v + v1)2

2T

]
. (2)

It is further convenient to introduce a characteristic thermal
velocity vT = √

T/μ. An expression for the resistance force
in the free-molecular regime for simple scatering trajectories
can be written as [4]

Fr = μn2

∫
vv fM (v + v1)σ (v)d3v, (3)

where σ (v) is the velocity-dependent momentum transfer
cross section. Equation (3) is rather general and can be applied
to systems with quite disparate interactions. The properties of
interaction govern the functional form of σ (v). A first cal-
culation of this kind was apparently performed by Langevin,
who focused on the “low speed” regime v1 � vT and con-
sidered special cases of Maxwell molecules with σ (v) ∝ 1/v

and elastic scattering of rigid spheres with σ (v) = const [6].
Examples related to plasma-related systems such as dusty
or complex plasma can be found in Refs. [7–9]. A useful
summary of momentum transfer rate coefficients for collisions
between various species (including charged and uncharged
particles) can be found in Ref. [10].

For the elastic hard-sphere collision model, the momen-
tum transfer cross section σ is simply determined by the
geometrical cross section, σ = πd2 = π (r1 + r2)2, where r1

and r2 are the radii of the test sphere and background
gas spheres (atoms), respectively. The integral (3) can be
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relatively straightforwardly evaluated, leading to
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The minus sign implies that the resistance force is acting
against the direction of motion of the test particle.

The expression of this kind was derived by Baines et al. in
relation to the behavior of dust grains in interstellar gas [see
Eq. (4.5) from Ref. [11]]. The only difference is that the case
when the mass of the sphere is large in comparison with the
mass of the gas atoms (and hence μ = m2) was considered
there. Equation (4) is similar to the key result of Eq. (21) from
Ref. [1], but with an important difference. The background
gas thermal velocity

√
T/m2 appears in Ref. [1] in place of

the relative thermal velocity vT = √
T/μ. The reason behind

this difference is that in Ref. [1] the averaging is performed
over the velocity distribution function of the background gas
and not over the distribution of relative velocities. As already
pointed out, when a heavy particle moves through a gas of
lighter particles (like, e.g., in Ref. [11]), this point is not
important since μ � m2. For comparable masses, Eq. (21)
from Ref. [1] is inaccurate.

For a low relative speed v1 � vT we obtain in the first
approximation
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This result coincides with that derived by Langevin [6], but
not with that from Ref. [1]. The force is proportional to
μ1/2 rather than μ. This has important direct consequences.
Equation (5) defines the mobility, b, of a test particle from
F = bv, where F is the external force and v is the equilibrium
velocity [4]. The mobility is related to the diffusion coefficient
via the Einstein relation D = T/b. In the special case when
m1 = m2 = m (and thus μ = m/2), we obtain the classical
expression for the self-diffusion coefficient of a rarefied gas
of hard spheres of diameter d and density n [4,6]:

D = 3

8nd2

√
T

πm
. (6)

This corroborates the presented derivation.
In the opposite limit of high relative speed, v1 � vT, we

get in the first approximation

Fr � −μn2σv2
1 . (7)

In this regime the force is proportional to the reduced
mass. This agrees with the first-order terms from Ref. [1],
because thermal motion can be ignored compared to the
drift in the first approximation. Higher terms are, however,
incorrect.

The interest in the resistance force experienced by a sphere
(spherical droplet) moving through a gas was particularly trig-
gered by experiments of Millikan and coworkers, who used
the oil-drop method for measuring the elementary electric
charge [12] and coefficients of slip in gases [13]. Among the
outstanding observations he made was the fact that the nature
of droplet surface and the exact properties of gas-surface in-
teractions exert a very important influence upon the resistance
force. The assumption of specular reflection is generally in-
appropriate. An excellent theoretical account of this problem
was provided by Epstein [14]. For a sphere that is much larger
and heavier than atomic scales, but is much smaller than the
atomic mean free path, he derived the expression, which reads
(using the present notation)

Fr = −δ
8
√

2π

3
n2a2√m2T v1, (8)

where a is the radius of the sphere (and σ = πa2 is the
momentum transfer cross section for specular reflection). This
is identical to Eq. (5), except the numerical factor δ, which
depends on the details of how atoms interact with the sphere
surface (the high-speed regime was not considered at this
time as irrelevant for the regime of Millikan experiments).
Epstein considered various scenarios for atom-sphere interac-
tions and obtained δ = 1 for specular reflection (interestingly,
δ = 1 also for atom sticking and remaining on the sphere
surface); δ = 13

9 � 1.444 for diffuse reflection with conser-
vation of velocity; δ = 1 + 9π

64 � 1.442 for a sphere that is
a perfect thermal nonconductor; and δ = 1 + π

8 � 1.393 for
a sphere that is a perfect thermal conductor. This can be
compared with the experimental value δ � 1.368 found by
Millikan.

The force of resistance acting on a particle moving through
a rarefied gas is also very important in the field of com-
plex (dusty) plasma [15–19]. This is the main mechanism
responsible for friction when a particle is moving through a
stationary low-ionized plasma. This force is often called the
neutral drag force, but it is also not uncommon to use the
term “Epstein drag,” recognizing Epstein’s pioneering con-
tribution. As a main mechanism of dissipation, neutral drag
severely affects particle transport and dynamics, as well as
dominates damping of waves. Equation (8) has been verified
experimentally. For melamine-formaldehyde micron-size mi-
crospheres in an argon gas the coefficient δ has been measured
as δ � 1.26 ± 0.13 using the single-particle laser acceleration
method, and δ = 1.44 ± 0.19 using the vertical resonance
method [20].
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