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A transition of quantum walk induced by classical randomness changes the probability distribution of the
walker from a two-peak structure to a single-peak one when the random parameter exceeds a critical value. We
first establish the generality of the localization by showing its emergence in the presence of random rotation or
translation. The transition point can be located manually by examining the probability distribution, momentum
of inertia, and inverse participation ratio. As a comparison, we implement three supervised machine learning
methods, the support vector machine (SVM), multilayer perceptron neural network, and convolutional neural
network with the same data and show they are able to identify the transition. While the SVM sometimes
underestimates the exponents compared to the manual methods, the two neural-network methods show more
deviations for the case with random translation due to the fluctuating probability distributions. Our work
illustrates potentials and challenges facing machine learning of physical systems with mixed quantum and
classical probabilities.
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I. INTRODUCTION

While classical random walk finds broad applications in
physics, chemistry, biology, finance, and many other places
[1–3], the simplest quantum analog, the quantum walk (QW),
exhibits interesting probabilistic behavior due to the underly-
ing wave function even if all the operations are deterministic
[4]. Recently, there has been a trend in studying various
QWs with classical randomness [5–9], in the sense that the
parameter set or geometry of QWs is drawn from a classical
probability distribution. The resulting probability distribution
thus has contributions from both classical and quantum ran-
domness. As the classical randomness increases, a transition
from delocalization to localization emerges, which has stimu-
lated lasting research interest.

There have been experimental demonstrations of a
discrete-time QW with classical randomness in the quantum
operators of the evolution and exhibitions of the transi-
tion from quantum dynamics with multipeak probability
distributions in real or momentum space to classical-like
dynamics with Gaussian-like probability distributions. For
example, phase-disordered photons [7,10], trapped ions with
randomized phases [11], superconducting qubits with random
frequencies [12], and neutral atoms with random microwave
pulses [13] have been implemented to demonstrate the transi-
tion induced by classical randomness.

Previous theoretical investigations [9,14–16] have sug-
gested a possible resemblance between the localization
transition in QWs with classical randomness and the An-
derson localization [17], a paradigmatic phenomenon in
condensed matter physics. The Anderson localization was first

*cchien5@ucmerced.edu

developed in electronic transport, where electrons in a solid
encounter a localization transition as the parameters from the
underlying materials are drawn from a classical probability
distribution. Reference [18] proposed a scaling theory ap-
plicable to higher dimensions and showed that in one and
two dimensions, any amount of disorder will lead to electron
localization in the thermodynamic limit. Nevertheless, in a
finite system, the Anderson localization only occurs when
the system size exceeds the localization length. For exam-
ple, Ref. [14] evaluates the localization length inferred from
the inverse participation ratio (IPR). Although the Anderson
localization typically has spatial randomness while a QW usu-
ally has temporal randomness, they both exhibit localization
transitions due to classical randomness. As our simulation
results will show, for QWs in finite-size systems, the classical
randomness has to exceed a threshold for the system to be
localized. Therefore, even if imperfections or fluctuations in
the apparatus are unavoidable and may introduce classical
randomness into QW experiments, the quantum behavior may
still survive when the threshold is not crossed. Other types
of QWs, such as Grover QWs [19,20] and QWs in inhomoge-
neous [21,22] or driven Floquet systems [23], may also exhibit
localization in theory.

Meanwhile, machine learning has become a powerful tool
in physics problems like phase transitions [24,25], dynam-
ics [26], gravitational wave detection [27,28], searching for
new physics [29], etc. More applications are reviewed in
Refs. [30–34]. Since the identification of the localization
transition of QWs with classical randomness is a demanding
task when performed manually, we seek help from machine
learning to automate the analysis. We test two elementary
supervised machine-learning methods, the support vector ma-
chine (SVM) and multilayer perceptron neural network (MLP
NN), and a more sophisticated one, the convolutional neural
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network (CNN). Those methods have been applied to uni-
versal classifications of classical jammed systems [35] and
topological properties of materials [36]. Interestingly, we will
show that depending on the type of randomness, the three
methods may systematically underestimate the scaling behav-
ior of the localization transition due to the fluctuating patterns
and continuous transforms of the probability distributions.

To analyze the scaling behavior of the localization of QWs
with classical randomness, we introduce three types of clas-
sical probabilities, one discrete and the other two continuous,
into the rotation and translation operators of the QW. We first
use physical quantities, including the patterns of probability
distribution, moment of inertia (MoI), and IPR to manually
locate the critical point. We then test the hypothesis that the
labor- and time- demanding task of determining the scaling
behavior of the localization can be handled automatically by
supervised machine learning. We will show that the analyses
by machine-learning methods can differentiate the localized
and delocalized regimes and exhibit scaling behavior. For
QWs with discrete random rotation, the machine-learning
methods produce exponents close to those from the manual
methods. However, for QWs with continuous random rota-
tion, the machine-learning methods tend to underestimate the
exponents. In the case of QWs with random translation, the
NN-based methods exhibit more significant deviation in de-
termining the exponent of the localization, possibly due to the
more complicated structures of the probability distributions in
the transition regime. Therefore, QW with classical random-
ness provides an example with both quantum and classical
probabilities that is challenging to available supervised ma-
chine learning methods.

The rest of the paper is organized as follows. Section II
briefly reviews discrete-time QW and introduces three types
of classical randomness through the rotation or translation
operators. Section III presents the localization transition and
documents the three manual and three machine-learning
methods for analyzing the transition. Section IV compares the
results from the manual and machine-learning methods and
shows where the exponents of the localization transition from
machine-learning methods agree or disagree with the man-
ual methods. We also mention the Anderson localization and
discuss implications for experimental or theoretical research.
Finally, Sec. V concludes our paper.

II. THEORETICAL BACKGROUND

A. Discrete quantum walk

We consider a discrete-time QW on a 1D lattice following
the description of Ref. [37], beginning with a quantum walker
described by a wave function defined on a 1D lattice with
two internal orthonormal coin states (|+〉, |−〉) on each site.
The total state of the walker is taken to be a superposition
of the |+〉, |−〉 degrees of freedom, |ψ〉 = ∑

x(αx,+|x,+〉 +
αx,−|x,−〉), where x labels the lattice sites and αx,+ =
〈x,+|ψ〉, αx,− = 〈x,−|ψ〉 are the complex-valued probabil-
ity amplitudes for each coin state.

The QW uses two operators, the rotation operator Ĉ and the
translation operator T̂ . The translation operator is defined by
T̂ |ψx,+〉 = |ψx+1,+〉 and T̂ |ψx,−〉 = |ψx−1,−〉. Thus, the

translation operator acts to shift the |+〉 state by one lattice
site in the positive direction and the |−〉 state by one site in the
negative direction. The rotation operator is defined as a gen-
eral unitary operator acting on the coin states at each site and

is given by Ĉ(θ, φ1, φ2) =
(

cos(θ ) eiφ1 sin(θ )
eiφ2 sin(θ ) −ei(φ1+φ2 ) cos(θ )

)
.

The rotation operator mixes the |+〉 and |−〉 states at each
lattice site, acting as the quantum analog to the coin flip of
the classical random walk. Throughout the paper, we will set
φ1 = φ2 = π

2 so the coin operator is only dependent on θ , i.e.,

Ĉ =
(

cos(θ ) i sin(θ )
i sin(θ ) cos(θ )

)
. The total state of the walker after

some time steps N is found through repeatedly applying the
rotation and translation operators to the walker’s initial state.
|ψ (t )〉 = T̂ ĈT̂ Ĉ · · · T̂ Ĉ|ψ0〉 = (T̂ Ĉ)N |ψ0〉.

If the QW only runs up to a time N in the simulation,
the lattice considered has size of at least (2 × N ) + 1, so
the boundary will not be exceeded if the walker starts in the
middle. Here an extra lattice site to accommodate the initial
location is added to the middle of the lattice, so the lattice has
a symmetric amount of steps in both directions. We consider
an initial state with an equal superposition of the |+〉 and
|−〉 states at the origin, |�0〉 = 1√

2
(|0,+〉 + |0,−〉) and study

how the wave function spreads out in the lattice.

B. Quantum walk with classical randomness

In addition to the quantum probability from the wave func-
tion in a QW, we introduce classical randomness that may
come from imperfections or fluctuations of the apparatus or
environment. There are many ways to add classical random-
ness to QW. As mentioned, Ref. [14] allows random values of
the phase angle φ in the rotation operator. Here we introduce
three other types of classical randomness that will be analyzed
later.

1. Discrete random angles in rotation

We first introduce classical randomness to the QW by using
two rotation operators instead of just one. The two rotation
operators Ĉ1,2 have their θ values given by θ1 = θ0 + �θ and
θ2 = θ0 − �θ while all the φ angles are set to π/2. At each
step of the walk, we flip a fair classical coin to choose from
θ1,2. Explicitly, P(θ = θ1) = 1/2 = P(θ = θ2) at each step.
The walk is evolved through the normal application of the
chosen coin operator and the translation operator repeatedly.
Therefore, the two rotation operators and the translation oper-
ator are deterministic, but the classical coin adds an additional
probability distribution to the QW. In our simulations, we scan
through values of �θ over the range 0 � �θ � θ0 to locate
the localization transition.

2. Continuous random angle in rotation

To connect to systems with continuous classical random-
ness, we consider a QW with a random rotation, where the
angle θ of the rotation operator is determined by a uniform
distribution, in contrast to the binary distribution in the previ-
ous case. Explicitly, the angle θ in each step of one simulation
is given by θ (t ) = θ0 + �θ (t ), where �θ (t ) is drawn from
a uniform distribution between (0,�θM ) for a given �θM .
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The φ angles are fixed at π/2. Next, we scan through different
values of �θM by running individual simulations for each
value of �θM and obtain the probability distributions from
the wave function. We remark that Ref. [16] also implements
continuous changes of the rotation to study the localization
and entanglement between the rotation and translation degrees
of freedom of QWs.

3. Random translation

We consider another type of classical randomness in
QWs. In line with the QW operation, there is only one
fixed rotation operator throughout the walk. However, an
inverse-translation operator is introduced and is defined by
T̂ −1|ψx,+〉 = |ψx−1,+〉 and T̂ −1|ψx,−〉 = |ψx+1,−〉, such
that it reverses the action of the original translation oper-
ator, T̂ −1T̂ |ψx〉 = |ψx〉. We introduce a QW with random
translation by adding classical probability at every step to
choose whether the translation T̂ or the inverse translation
T̂ −1 is applied after the rotation operator. A probability Pr

is assigned to the inverse translation. Explicitly, P(T̂ −1) = Pr

and P(T̂ ) = 1 − Pr . If Pr = 0, it is the QW without classi-
cal randomness while the maximal randomness occurs when
Pr = 0.5. If Pr > 0.5, the result is symmetric with respect to
that with 1 − Pr because of the parity symmetry between T̂
and T̂ −1.

III. LOCALIZATION TRANSITION

The classical randomness can be increased by increasing
�θ , �θM , or Pr in the aforementioned models, and a localiza-
tion transition starts to emerge. In the following, we discuss
how the localization transition can be identified via different
methods.

A. Manual methods

1. Final probability distribution

The probability distribution of the walk at a given time
can be found by summing over the probabilities on both coin
states: P(x) = (|ψ+(x)|2 + |ψ−(x)|2). Selective representa-
tives of the final probability distributions of the cases with
discrete random rotation and random translation are shown
in Fig. 1. One can see that when the classical randomness is
weak, such as small �θ or Pr , the quantum walker spreads
out with two peaks in both directions of the lattice. How-
ever, when the classical randomness is strong, the probability
distribution concentrates around the initial location with a
single-peak structure, indicating localization of the walker.
Therefore, a localization transition occurs at a critical value
of the classical randomness. As shown in the middle panels of
Fig. 1, the probability distributions may behave differently in
the transition regime for different types of classical random-
ness. For the discrete and continuous random rotations, the
probability distribution becomes flat at the transition. How-
ever, the case with random translation exhibits a three-peak
structure in the transition regime.

By comparing the final probability distributions with fixed
N steps of evolution but different values of classical random-
ness, the transition region can be found visually by identifying
the probability distributions that has a flattened-out pattern or

FIG. 1. Localization transition of QW with classical random-
ness: The probability distributions indicate the system in the
delocalized (top row), critical (middle row), and localized (bot-
tom row) regimes as the classical randomness increases. The left
(right) column shows the case with discrete random rotation (ran-
dom translation) with θ0 = π

6 and N = 490. (a)–(c) are at �θ = 0,
�θ = 0.035, and �θ = 0.09, respectively. (d)–(f) are at Pr = 0.005,
Pr = 0.045, and Pr = 0.15, respectively.

a three-peak structure. Later, we will see that the three-peak
structure of QWs with random translation imposes challenges
for some network-based machine learning.

2. Moment of inertia

Next, we use the idea of MoI from classical mechanics to
introduce another measure of localization. The MoI is related
to the second moment of the mass distribution. Based on the
idea, here we define MoI(t ) = ∑

x2P(x, t ), where x labels
the position in the lattice and P(x, t ) is the probability for
the walker to be at x at a given time t . Due to the mirror
symmetry of the lattice and initial condition, the contributions
from x > 0 and x < 0 are equal. The MoI is calculated at
each step in the evolution after the rotation and translation
operators have been applied.

Figure 2(a) shows the MoI as a function of time for QWs
with discrete random rotation. In the long-time limit (say,
N > 10), the MoI of the case with small classical random-
ness is found to be proportional to the square of time (N2).
This agrees with the asymptotic behavior of the variance of
a spreading quantum wave packet [38] and similar analy-
ses in the QW literature [39,40]. As �θ increases beyond a
threshold, the long-time MoI starts to deviate from the N2

dependence due to the localization of the probability distri-
bution.
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FIG. 2. (a) Moment of inertia (MoI) of a discrete random rotation
QW with θ0 = π

6 plotted as a function of time. The solid (dashed) line
corresponds to �θ = 0.001 (�θ = 0.24). (b) MoI of the final step at
N = 210 plotted against each value of �θ . The dashed lines indicate
the two delocalized and localized regions of the walk.

To extract the critical value, Fig. 2(b) shows the MoI at
a fixed value of N as a function of the random angle. Given
the fixed N , if the randomness �θ is smaller (or larger) than
the critical value, the probability distribution spreads out (or
localizes) in the delocalized (or localized) regime, and the
MoI reaches (or falls below) the value proportional to N2. The
critical value �θc can be found by locating the kink in the
MoI curve. Similar procedures can be applied to QWs with
random continuous rotation or random translation. Despite the
quantitatively different behavior in the transition regime as
shown in Fig. 1, the MoI is able to indicate the critical value
of �θ or Pr from the final probability distribution of the three
cases studied here. However, the kink in the MoI sometimes
may not be sharp, leaving room for possible deviation when
determining the critical value.

3. Inverse participation ratio

The IPR uses higher moments of the wave function to re-
veal the concentration of the distribution. We follow Ref. [14]
with the definition

IPR = (
∑

x ||ψx,+〉|2)2∑
x ||ψx,+〉|4 . (1)

The IPR is maximal if the wave function spreads out evenly
and decreases if there are spikes in the distribution. For QWs
with discrete random rotation, Fig. 3(a) shows the IPR curves
as a function of time for selected �θ below and above the

FIG. 3. Inverse participation ratio (IPR) of QW with discrete
random rotation (a) as a function of time with θ0 = π

6 and �θ = 0.01
(solid line) and �θ = 0.23 (dashed line) and (b) as a function of �θ

with θ0 = π

6 and N = 210. The vertical dashed line at the maximum
offers an estimation of the transition.

critical value. As one can see, the IPR increases with time for
both cases because the IPR identifies peak(s) in the distribu-
tion, regardless of one peak in the localized regime or two
peaks in the delocalized regime.

Figure 3(b) shows the IPR for a fixed run time N as a func-
tion of the magnitude of classical randomness. The maximum
of the IPR indicates the transition point, where the probabil-
ity distribution is relatively flat across the space. However,
one can see that the final-state IPR decreases for smaller or
larger �θ . The reason is that the IPR does not discern if the
wave function has one peak, as in the localized case, or two
peaks, as in the delocalized case. Therefore, the IPR cannot
differentiate the different phases. However, the coincidence of
a relatively flat wave function at the transition allows us to use
the maximum of the IPR as a quick check for the scaling of
the critical behavior. For a QW with random translation, the
probability distribution in the transition region is relatively flat
compared to the localized or delocalized regimes, despite its
three-peak structure. Therefore, the IPR still shows a maxi-
mum in the transition regime and locates the critical value.

B. Supervised machine learning

Despite the success of the aforementioned methods for
identifying the localization transition of QWs with classical
randomness, one usually needs to examine a large number
of data sets from the large parameter space for an estimation
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of the transition region, making the process very demanding
on time and resources. Here we investigate the potential for
machine learning to automatically identify and differentiate
between the delocalization and localization behavior of QWs
with various classical randomness. Similar to the task of
identifying phase transitions in physical systems by machine
learning [41,42], we implement two basic supervised learning
methods to find the critical values of the QW with classical
randomness. We first feed to the machine the data from weak-
and strong- randomness regimes with two different labels, re-
spectively. After the machine can confidently differentiate the
two cases according to the labels, we generate data with inter-
mediate randomness and ask the machine for the probabilities
of the new data belonging to the two groups. The critical
point is determined by the maximal confusion point, where
the machine outputs equal probabilities. The three supervised
machine-learning methods that will be tested are the SVM,
MLP NN, and the CNN.

1. SVM

We begin with the SVM and train a supervised version
from the sklearn linear SGD classifier on two data sets with
the same amount of run time and θ0. The first (or second)
set of samples is from simulations with a small range of the
classical randomness in the delocalized (or localized) regime
supplemented with the label 0 (or 1). The classifier is the
modified hubber loss function to generate binary classification
probabilities instead of the typical hinge loss function tailored
towards pure true-false binary classification. When training
the classifier, a fraction of the samples from each set were
held back to act as a verification set that the trained classifier
could correctly distinguish between the two final states. Once
the classifier has been trained on the labeled data sets, we
perform a test using the reserved samples and checking the
classification probabilities to confirm that it is able to distin-
guish between the delocalization and localization behavior.
The small range for generating the training data in the re-
spective regimes with weak and strong randomness has been
adjusted to reach high accuracy in the training. We remark that
if the range is too small, the data may not give the machine
enough information about the configurations. However, if the
range is too large, the information of the transition regime may
be involved in the data and affect the reliability of the decision
of the critical value.

During the training of the ML model, the full set of training
data was split with an 80/20 ratio between the training set and
a testing set to check the model’s accuracy. Once the model
was trained by the training data set, we checked its accuracy in
predicting the labels on the reserved, unseen probability dis-
tribution of the testing set and its potential dependence on the
amount of samples used within the training data set. The ac-
curacy of labeling the unseen testing set is shown in Fig. 4(a),
which shows a near perfect prediction accuracy already with
a small sample size. Given that the model is trained by two
fairly distinct (one-peak versus two-peak) distributions, this
nearly perfect accuracy is not surprising and only confirms
that the trained machine is able to distinguish unambiguously
between the localized and delocalized regions.

FIG. 4. (a) For the split training and testing data, the SVM’s
accuracy dependence on the training sample size is relatively flat.
(b) Testing the SVM to classify the localization transition of QW
with discrete random rotation. Here θ0 = π

6 and N = 100. The ver-
tical dashed line indicates the maximal confusion, which locates the
value of �θc. (c) Dependence of the critical value determined by the
SVM on the size of the training data set.

After the training and testing, the additional data set used
to identify the transition region is generated throughout the
parameter regime with intermediate randomness. At each �θ

or Pr , the probability distribution is obtained up to time step N .
Using a classifier trained on a given N , the additional data in
the transition regime are fed into the classifier. After plotting
the probabilities associated with the data in the intermediate
regime as shown in Fig. 4, the critical value (�θc or Pr,c) near
the transition point is taken to be the maximally confusing
point, where the two classification probabilities are equal.

We have also checked the influence of the amount of sam-
ples used for training the classifier on the predicted critical
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value. To find a minimum sample size, we were mainly con-
cerned with the relative stability of the estimates of the critical
values from the classifier. As seen in Fig. 4(c), a relatively
small training data set is already able to distinguish the overall
trend of the localization transition, but the results are more
convergent as the total amount of samples used increases. For
the localization problem, we found that with a training set
of about 2000 samples, the estimates for the critical value
already settle into a more stable pattern with few extreme
estimates. Increasing the size of the training data further does
not lead to visible improvement. In the following, we will
present results with a training data set of sample size 1800,
as it achieves the minimization of the outlying estimates while
being computationally manageable for a large range of �θ, Pr

values.

2. Neural networks: MLP

Next, we implement a fully connected feed-forward NN
called the MLP NN as a supervised learning method to
identify the localization transition of QWs with classical
randomness. We use the network provided by sklearn’s MLP-
Classifier which implements a MLP binary classifier network.
In constructing this classifier, we follow the same procedure
that was outlined and used with the SVM method. Since we
wish to compare with the SVM, we train and employ the NN
on the same data sets that were used with the SVM. When
training the NN, sklearn’s GridSearchCV library was used to
help in working a range of given hyper-parameters to find po-
tential combinations that lead to either greater efficiency in the
computational resources needed for convergence or ones that
would lead to greater accuracy in the critical value estimates.
Although there is a broad range of hyperparameters available,
we focused on two of the more immediate parameters, the
hidden layer sizes and the regularization parameter α.

In our investigation, we used a network that consisted of
six total layers: One input layer whose number of neurons
is automatically adjusted to the size of the input data, four
hidden layers, and one output layer that contains two neurons
for the binary classification task. The four hidden layers were
taken to have 400, 200, 100, and 50 neurons, respectively, for
the simulation data with time up to N = 1000, as we found
this to be a relatively simple middle ground that did not add
a great amount of computational time while improving the
overall estimates. As we increased the simulation time from
N = 80 to N = 1000, we found that the network was able
to make reasonable estimates with these hidden layer sizes
and that adjusting the any of the layer’s neuron number to
the increasing lattice size showed a negligible improvement
on the final estimates. Moreover, since the first layer of the
network is automatically shaped to accommodate the size
of the training data, there was no processing needed before
the data sets could be used in the network other than the
normalization mentioned below. After some trial and error,
the regularization parameter was taken to be α = 0.001 since
this combination of parameters provided reasonable accuracy.
While both the SVM and MLP NN methods take the critical
value to be the point of maximal classifier confusion, the NN
was found to show a more sudden change in the classification
probabilities rather than the more gradual transition found

through the SVM. Thus, for the MLP NN, we take the critical
value to be the first point where the classification probability
of being delocalized falls below 50% as an estimation of the
maximally confused point.

3. Neural networks: Convolutional

Lastly, we implemented a supervised CNN using the Ten-
sorFlow framework and libraries to estimate the localization
transition by using the same training and testing data as those
used in the SVM and MLP NN. Here the CNN was created to
provide binary classification probabilities and consists of four
one-dimensional, convolutional layers with a final dense layer
that uses two neurons and the softmax activation function
to provide the binary classification probabilities. To achieve
binary classifications for the localization transition, we chose
to use the Sparse Categorical Crossentropy loss function as it
is the recommended loss function for this type of classification
task.

The number of neurons used in the convolutional layers
was chosen to be a function of the number of the lattice size
with the first layer having 2N + 1 neurons that matches the
lattice size and the second, third, and fourth layers having
half, one-fourth, and one-eighth the initial number of neu-
rons rounding up to the nearest integer, respectively. After
each layer, we also used TensorFlow’s Dropout regularization
function to randomly reset the output of multiple neurons in
an effort to reduce the chance of overfitting in the model.
In practice, this acts to reduce the number of potential pa-
rameters created in the network as it is being trained. This
was performed three times with the first two dropping 50%
of the neurons, and the final operation dropping only 20%
of the final layers neurons. In practice, this layer structure
will automatically adapt to the increasing number of lat-
tice sites in the simulations. Since the layers automatically
adjust themselves to the lattice size of the given data set,
we did not perform any processing on the data other than
the normalization to meet the machine-learning convention
mentioned below. While the model was retrained for each
increase in the lattice size to adjust the number of neurons
in each layer, no changes were made to the overall network
structure for data from larger lattice sizes, as we found no
tangible improvement in the estimates as the number of nodes
increased.

For QWs with random translation, we found it necessary
to add L2 kernel regularization to each layer in the CNN to
reduce the network’s tendency to overfit these more varied
probability distributions. Similar to dropout regularization,
L2 (or ridge) regularization attempts to limit the number of
potential parameters during training to reduce the chance of
overfitting. However, unlike the dropout method, L2 regu-
larization is performed on the network’s loss function and
penalizes the model when it begins creating a large number of
parameters. Within our paper, we used the packages provided
by TensorFlow and a regularization factor of λ = 0.01 was
used. Using this change, we note that the regularization im-
proved the estimations for smaller simulation times (N = 80
to N = 500), where there is a greater range of Pr values
in the transition regime, and thus greater variability in the
probability distributions when locating the transition point.
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Since the size of the lattices of QW considered in this
paper was always an odd number, we chose the size of the
convolution kernel to be three as this removed the need for the
data to be padded to make sure the entirety of the probability
distribution was used in the convolution. For each new feature
set, the model was trained for ten epochs as we found this to be
a satisfactory amount of epochs that reduced the training time
while ensuring the model was well trained. The rest of the
training and testing procedures follow the same procedure that
was used with the two previous machine-learning methods.
The estimation of the critical point is similarly found through
the same way as the MLP NN method.

4. Comparison of machine learning methods

We estimated the critical values for each of the three types
of QW with classical randomness (discrete random angle,
continuous random angle, and random translation) using the
same training and testing data sets. A comparison between
the three learning methods will demonstrate their abilities to
generate reliable estimates and more importantly pick up on
the scaling trend from the localization transition. Additionally,
we investigated the normalization of the data for each method.
The probability distribution P(x) of the QW has the default
normalization that

∑
x P(x) = 1. However, the convention in

supervised machine learning is to normalize the distribution
so P(x) spans the range of [0,1]. Therefore, we normalize
each probability distribution by its maximal value to ensure
Pmax = 1 in each data set to match the normalization that
is used within areas like image recognition where machine
learning is heavily used. The normalization was performed on
both the training and estimation data sets. We found that while
the normalization did not improve the estimates given by the
SVM, the estimates from the MLP NN and CNN did show
much less overall variation because NNs are usually designed
with the magnitude normalization in mind.

The critical values shown in Fig. 5 confirm that the three
supervised machine-learning methods are capable of classi-
fying the localization transition. Moreover, their estimations
of the critical values are fairly close. Interestingly, a more
complex NN design like the CNN produces results that are
similar to the simpler SVM and MLP NN methods. On the
other hand, each method appears to produce the same effect
in their estimates in that rather than picking out a singular
point like the manual methods of the probability distribution,
MoI, and IPR, the machine learning programs tend to generate
their estimate from a small range around the transition point.
Later on, we will see this is likely the cause of the lower expo-
nents of the localization reported from the machine-learning
methods.

IV. COMPARISON AND DISCUSSION

A. Comparison of different methods

In our simulation, the evolution time determines the size
of the lattice that the quantum walker can explore. To de-
termine the scaling behavior of the localization, we first
pick a fixed evolution time N and run the simulations for
a range of �θ or �θM for the random-rotation case or Pr

for the random-translation case. By examining manually the

FIG. 5. Critical values of the localization transition from the
SVM (crosses), MLP NN (dots), and the convolutional NN (tri-
angles) for QW with (a) discrete random rotation, (b) continuous
random rotation, and (c) random translation. All panels are with
θ0 = π

6 .

probability distribution, MoI, or IPR, we locate where the
localization transition occurs and label the critical value �θc

or Pr,c for the chosen N . Next, we plot the critical �θc or Pr,c

versus N of the three manual methods and SVM in Fig. 6.
By fitting each set of critical values with power laws, the
exponents of localization are extracted. Table I summarizes
the exponents from the six methods for the three types of ran-
domness. The relatively small uncertainties of the exponents
only reflect that the squared residuals of the fitting from the
scattered critical values as shown in Fig. 6 cannot be reduced
further by adjusting the slope on the log-log plot. We have
checked that adding more points from the analysis in the
small (or large) parameter regime or increasing the simulation
time from N = 500 to N = 1000 does not lead to qualitative
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FIG. 6. Comparison of the critical values separating the localized
and delocalized regimes estimated from the four methods for QW
with (a) discrete random rotation, (b) continuous random rotation,
and (c) random translation. The dashed lines show the power-law
fit. Here human, Mol, IPR, and SVM correspond to the probability
distribution, momentum of inertia, inverse participation ratio, and
SVM, respectively.

TABLE I. Exponents of the power-law dependence of the critical
value on the size of QW. The human method is from the manual
determination of the probability distribution.

�θc (discrete) �θc (continuous) Pr,c

SVM 0.36 ± 0.04 0.25 ± 0.02 0.28 ± 0.04
MLP NN 0.32 ± 0.02 0.25 ± 0.01 0.07 ± 0.06
CNN 0.39 ± 0.07 0.32 ± 0.04 −0.08 ± 0.06
MoI 0.62 ± 0.02 0.36 ± 0.02 0.51 ± 0.04
Human 0.32 ± 0.01 0.36 ± 0.01 0.69 ± 0.03
IPR 0.46 ± 0.02 0.41 ± 0.01 0.52 ± 0.02

differences in the scaling behavior and exponents. Moreover,
we have checked that the value of �θc is insensitive to the
value of θ0 for QW with random rotation, as long as θ0 is away
from 0 or multiples of π/2.

Figure 6(a) shows the critical values of �θc of QW with
discrete random rotation. The three manual methods from
the final probability distribution, MoI, and IPR find a similar
trend in the critical values, indicating a power-law depen-
dence of the localization with the randomness magnitude. A
closer examination shows that the exponent from the SVM is
comparable to those from the manual method based on the
final probability distribution and the IPR. However, the SVM
result exhibits large fluctuations of the critical values as the
simulation time increases. This is likely due to the uncer-
tainty in determining where the structures of the probability
distribution change in large-size data. Meanwhile, the MoI
produced a higher exponent compared to all others, possibly
due to the less-sharp region in determining the critical value
mentioned in the discussion of Fig. 2(b). Since the network-
based machine-learning methods and SVM produce similar
results as shown in Fig. 5, we do not show the NN results
again to avoid overcrowding the panel.

Next, Fig. 6(b) shows the critical values of �θc from the
three manual methods and the SVM for QWs with continuous
random rotation. Despite the difference in the classical distri-
bution (discrete versus continuous), the resemblance between
Figs. 6(a) and 6(b) indicates that similar scaling behavior
is likely behind the localization. Some steplike patterns are
due to the limited resolution of the parameters, and we have
checked that increasing the resolution does not lead to signif-
icant changes of the results. For this case, the exponents from
the three manual methods are close to each other while those
from the three machine-learning methods are close to each
other. The exponents from the SVM and MLP NN fall below
the other methods while that of the IPR is slightly above.

Finally, Fig. 6(c) shows the critical values of Pr,c of QW
with random translation from the manual methods and SVM.
The analysis hints that the scaling behavior of the localization
transition may be general. However, there is a much greater
amount of variation across different methods. As shown in Ta-
ble I, the MoI agrees with the IPR while the method based on
final distribution produced a higher value. On the other hand,
the SVM produced a lower estimation of the exponent while
the two network-based methods exhibit systematical deviation
and could not catch the trend of the exponent. The substan-
tial variation is due to an increase in the fluctuations within
the probability distributions of QW with random translation
when compared to those from QW with random rotation.
Nevertheless, the power-law dependence of the data supports
the general idea of scaling behavior behind the localization
transition.

The SVM only produces an exponent comparable to the
manual methods for QWs with discrete random rotation and
underestimates it in the other two cases. On the other hand,
the two NN-based methods show exponents close to the SVM
for the two QW cases with random rotation, but their expo-
nents deviate from the other methods for QW with random
translation because for small values of N , the NN-based
methods tend to generate estimates that are slightly into the
delocalized regime but give estimates closer to the localized
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regimes for larger N values, possibly because of the noisy
behavior in the probability distribution. The systematic under-
and overestimations flatten out the scaling trend and render the
systematically lower scaling exponents. As shown in Table I,
the manual methods of QWs with random translation also
tend to show larger deviations compared to the results of QWs
with random rotation, suggesting QW with random translation
could be a challenging problem for classification methods.

As shown in Fig. 1, the transition regime of QW with
random translation is complicated due to the coexistence of
the central peak and the two side peaks. In an effort to dis-
suade the MLP-NN and CNN from systematically under- or
overestimating the transition points, we split the probability
distributions up into three regions: (1) −N < x < −N/2, (2)
−N/2 < x < N/2, and (3) N/2 < x < N . Regions (1) and (3)
contain the left- and rightmost peaks seen in Fig. 1(e) while
region (2) contained the neighborhood of the origin showing
the evolution from a flat, delocalized distribution to the local-
ized central peak. The three regions were then separately used
as the new training data sets to generate the new transition
region estimates. Using these sets of disseminated data for
the two NN-based methods, we found no observable improve-
ments in the transition estimates using either of these regions.
The results also help us see that the two NN-based methods
used here weigh in both local and global features of the data
rather than catching some local prominent variations. With the
NN-based methods, however, this lack of improvement further
highlights the difficulty that the commonly available machine-
learning methods may face when attempting to differentiate
systems that have mixed quantum and classical probabilities.

B. Similarities and differences with Anderson localization

The Anderson localization [17] is a textbook example of
localization induced by classical randomness in quantum sys-
tems. It is usually described by the random hopping model on
a lattice with the Hamiltonian

HA =
∑
〈i, j〉

ti jc
†
i c j + H.c. +

∑
j

Vjc
†
j c j . (2)

Here c†
j (c j) is the creation (annihilation) operator on site j, ti j

is the hopping coefficient between the nearest-neighbor pair
〈i, j〉, and Vj is the on-site potential. The classical randomness
of the hopping model can be introduced by drawing ti j or Vj

from uniform distributions within the range (−W,W ) in each
step. While the 1D and 2D ground states in the thermody-
namic limit are localized [43], there can be delocalized states
in 3D above a threshold energy. The classical randomness of
the random hopping model is quenched in real space as the
system evolves. In contrast, the classical randomness of QW
discussed here is uniform in space but varies with time as
the system evolves. Despite the different ways of introducing
classical randomness, localization transitions are observed in
both cases. We mention that Ref. [24] showed that machine
learning can differentiate the phases across the Anderson lo-
calization in a quasiperiodic lattice, where the deterministic
parameters induces the localization transition, in contrast to
the typical Anderson localization that mixes quantum and
classical probabilities.

Reference [44] provides a functional form for the 1D lo-
calization length of the Anderson model. A relation between
the localization length Lloc and the amplitude of the disorder
W is written in the form Lloc ∝ W −2 ⇒ W ∝ L−0.5

loc . Their ex-
perimental results support this scaling behavior. In our results
of QWs with classical randomness, we also identified a local-
ization transition and summarized the the exponents extracted
from the localization transition in Table I. We remark that
Ref. [45] showed that if certain symmetry is present in QWs, it
may escape the localization from spatial disorder but remains
localized with temporal disorder. Moreover, Ref. [7] realized
photonic QW up to 28 walk steps and contrasted static and
time-dependent phase disorders. Their results confirmed the
different probability distributions due to the different types
of randomness, demonstrating the subtle difference between
static and dynamic disorders. Therefore, a more unified view
of spatial and temporal randomness in quantum systems still
awaits future research.

C. Implications

Our analysis of QWs with classical randomness has shown
possible scaling behavior of the localization transition, which
transcends different methods for inducing classical random-
ness. Realizations and measurements of QWs with classical
randomness have been achieved. For example, Ref. [13] used
atomic Bose-Einstein condensate to experimentally imple-
ment a discrete-time QW. Classical randomness called “noise”
has been introduced through the phase factor of the coin
operator, resulting in a change of the momentum distribution
associated with the transition from quantum to classical walk
dynamics. In Ref. [11], a single ion in a linear Paul trap
allows for the control of its internal states through a series
of controlled π

2 pulses. Like Refs. [13,14], they introduce
classical randomness through the coin phase parameter, using
a random noise generator for each of the pulses, and show the
change from the quadratic propagation speed of QW to the
linear speed of a classical random walk. In Ref. [10], optical
implementations of a discrete-time QW using entangled pairs
of photons split at each step with one being directly used in the
walk while the other acting as a trigger for the measurements.
By differing the angle of the mirrors in each step, the photons
can decohere. Over a small number of walk steps (N = 6),
the probability distributions are shown for the QW and for the
decohered walk.

The underestimate of the exponent of a QW with random
translation from the MLP NN and CNN provides an exam-
ple that mixing classical and quantum probabilities is still a
challenging task for machine-learning methods. While we can
manually resort to physical quantities such as the MoI or IPR
to pinpoint the critical point, the machine associates certain
features with the labels for classification. We have seen the
classification may be constrained by limitation of the data
size or distraction from the fluctuating part in the bulk of the
data. Our results thus present an open challenge for machine
learning to better differentiate systems with both classical and
quantum probabilities.

In our investigations with NN-based classification, we had
tested the MLP NN classifier as it provides a plain and im-
mediate interface to various problems. While this classifier is
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able to generate classification predictions of a certain level of
accuracy, it may show a tendency to overfit the predictions
[46–48] and thus bias the final results. We also tested the
CNN based classifier [49–51], which has previously shown
improvement over the MLP classifier in the overall accuracy
of estimations and reduced potential for overfitting when used
on more complex data sets [52–54]. Interestingly, the CNN
produced similar results close to the MLP NN when identify-
ing the critical values of the QW with classical randomness
studied here. Therefore, benchmarking machine learning
with the localization transition is a problem worth future
investigations.

V. CONCLUSION

The localization of QWs with classical randomness allows
us to explore the scaling behavior of the transition. While the
localization transition realizable in many experiments can be
characterized manually by physically inspired quantities, such

as the MoI or IPR, the supervised learning methods using the
simple SVM and MLP NN and the more sophisticated CNN
also catch the transition from the simulation data. Depending
on the type of randomness, the machine-learning methods
may agree or underestimate the exponents compared to the
manual methods. A challenge emerges as the two NN-based
methods seem to deviate systematically for the case of QW
with random translation, possibly due to the more structured
probability distributions in the transition regime. Our results
may inspire future research on systems with mixed quantum
and classical probabilities and applications of machine learn-
ing to those systems.
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and C. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011).
[8] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio,

L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni,
Nat. Photon. 7, 322 (2013).

[9] T. Rakovszky and J. K. Asboth, Phys. Rev. A 92, 052311
(2015).

[10] M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-
Guzik, and A. G. White, Phys. Rev. Lett. 104, 153602 (2010).

[11] F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt,
and C. F. Roos, Phys. Rev. Lett. 104, 100503 (2010).

[12] J. Ghosh, Phys. Rev. A 89, 022309 (2014).
[13] S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, and G. S.

Summy, Phys. Rev. Lett. 121, 070402 (2018).
[14] S. Derevyanko, Sci. Rep. 8, 1795 (2018).
[15] R. Duda, M. N. Ivaki, I. Sahlber, K. Poyhonen, and T. Ojanen

Phys. Rev. Res. 5, 023150 (2023).
[16] L. H. Yao and S. Wald, Phys. Rev. E 108, 024139 (2023).
[17] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[18] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[19] N. Inui, Y. Konishi, and N. Konno, Phys. Rev. A 69, 052323

(2004).
[20] M. Zeng and E. H. Yong, Sci. Rep. 7, 12024 (2017).
[21] Y. Shikano and H. Katsura, Phys. Rev. E 82, 031122 (2010).
[22] A. Wojcik, T. Luczak, P. Kurzynski, A. Grudka, T. Gdala, and

M. Bednarska-Bzdega, Phys. Rev. A 85, 012329 (2012).
[23] I. Vakulchyk, M. V. Fistul, P. Qin, and S. Flach, Phys. Rev. B

96, 144204 (2017).

[24] J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).
[25] Y. Che, C. Gneiting, T. Liu, and F. Nori, Phys. Rev. B 102,

134213 (2020).
[26] J. Timoshenko, A. Anspoks, A. Cintins, A. Kuzmin, J. Purans,

and A. I. Frenkel, Phys. Rev. Lett. 120, 225502 (2018).
[27] M. B. Schäfer, F. Ohme, and A. H. Nitz, Phys. Rev. D 102,

063015 (2020).
[28] V. Boudart and M. Fays, Phys. Rev. D 105, 083007 (2022).
[29] G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman, and D.

Shih, Nat. Rev. Phys. 4, 399 (2022).
[30] A. Tanaka, A. Tomiya, and K. Hashimoto, Deep Learning and

Physics (Springer Nature, Singapore, 2019).
[31] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.

Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys.
91, 045002 (2019).

[32] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson,
C. K. Fisher, and D. J. Schwab, Phys. Rep. 810, 1 (2019).

[33] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S.
Wang, and L. Yang, Nat. Rev. Phys. 3, 422 (2021).

[34] E. Bedolla, L. C. Padierna, and R. Castaneda-Priego, J. Phys.:
Condens. Matter 33, 053001 (2021).

[35] S. Franz, S. Hwang, and P. Urbani, Phys. Rev. Lett. 123, 160602
(2019).

[36] N. Claussen, B. A. Bernevig, and N. Regnault, Phys. Rev. B
101, 245117 (2020).

[37] J. Wang and K. Manouchehri, Physical Implementations of
Quantum Walks (Springer Nature, New York, 2014).

[38] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics,
2nd ed. (Addison Wesley Longman, Boston, MA, 2010).

[39] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J.
Watrous, in Proceedings of the Thirty-Third Annual ACM Sym-
posium on Theory of Computing, STOC ’01 (ACM, New York,
2001), p. 3749.

[40] P. Blanchard and M.-O. Hongler, Phys. Rev. Lett. 92, 120601
(2004).

[41] A. Canabarro, F. F. Fanchini, A. L. Malvezzi, R. Pereira, and R.
Chaves, Phys. Rev. B 100, 045129 (2019).

035308-10

https://doi.org/10.1103/PhysRevLett.119.230601
https://doi.org/10.1186/1471-2105-10-17
https://doi.org/10.1098/rsif.2008.0014
https://doi.org/10.1103/PhysRevA.97.012308
https://doi.org/10.1103/PhysRevA.77.022302
https://doi.org/10.1103/PhysRevA.83.022320
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1103/PhysRevA.92.052311
https://doi.org/10.1103/PhysRevLett.104.153602
https://doi.org/10.1103/PhysRevLett.104.100503
https://doi.org/10.1103/PhysRevA.89.022309
https://doi.org/10.1103/PhysRevLett.121.070402
https://doi.org/10.1038/s41598-017-18498-1
https://doi.org/10.1103/PhysRevResearch.5.023150
https://doi.org/10.1103/PhysRevE.108.024139
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevA.69.052323
https://doi.org/10.1038/s41598-017-12077-0
https://doi.org/10.1103/PhysRevE.82.031122
https://doi.org/10.1103/PhysRevA.85.012329
https://doi.org/10.1103/PhysRevB.96.144204
https://doi.org/10.1038/nphys4035
https://doi.org/10.1103/PhysRevB.102.134213
https://doi.org/10.1103/PhysRevLett.120.225502
https://doi.org/10.1103/PhysRevD.102.063015
https://doi.org/10.1103/PhysRevD.105.083007
https://doi.org/10.1038/s42254-022-00455-1
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1088/1361-648X/abb895
https://doi.org/10.1103/PhysRevLett.123.160602
https://doi.org/10.1103/PhysRevB.101.245117
https://doi.org/10.1103/PhysRevLett.92.120601
https://doi.org/10.1103/PhysRevB.100.045129


LOCALIZATION OF QUANTUM WALKS WITH CLASSICAL … PHYSICAL REVIEW E 108, 035308 (2023)

[42] C.-H. Song, Q.-C. Gao, X.-Y. Hou, X. Wang, Z. Zhou, Y. He,
H. Guo, and C.-C. Chien, Phys. Rev. Res. 4, 023005 (2022).

[43] A. Isihara, Condensed Matter Physics (Dover Books, Mineola,
New York, 1991).

[44] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Nature (London) 453, 891 (2008).

[45] H. Obuse and N. Kawakami, Phys. Rev. B 84, 195139 (2011).
[46] S. Lawrence and C. L. Giles, in Proceedings of the IEEE-INNS-

ENNS International Joint Conference on Neural Networks.
IJCNN 2000. Neural Computing: New Challenges and Perspec-
tives for the New Millennium (IEEE, New York, NY, 2000), Vol.
1, pp. 114–119.

[47] S. Lawrence, C. L. Giles, and A. C. Tsoi, in Proceedings of the
National Conference on Artificial Intelligence (Burnaby, BC,
Canada, 1997), pp. 540–545.

[48] D. H. Mantzaris, G. C. Anastassopoulos, and D. K.
Lymberopoulos, in Proceedings of the 2008 8th IEEE Inter-
national Conference on BioInformatics and BioEngineering
(IEEE, New York, NY, 2008), pp. 1–6.

[49] A. Botalb, M. Moinuddin, U. M. Al-Saggaf, and S. S. A. Ali, in
Proceedings of the 2018 International Conference on Intelligent
and Advanced System (ICIAS) (IEEE, New York, NY, 2018),
pp. 1–5.

[50] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back,
IEEE Trans. Neural Networks 8, 98 (1997).

[51] S. B. Driss, M. Soua, R. Kachouri, and M. Akil, in Real-
Time Image and Video Processing 2017, edited by N.
Kehtarnavaz and M. F. Carlsohn, International Society for Op-
tics and Photonics (SPIE, Bellingham, WA, 2017), Vol. 10223,
p. 1022306.

[52] V.-E. Neagoe, A.-D. Ciotec, and G.-S. Cucu, in Proceed-
ings of the 2018 International Conference on Communications
(COMM) (2018), pp. 201–206.

[53] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J.
Schmidhuber, in Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence, IJCAI ’11,
(AAAI Press, Washington DC, 2011), Vol. 2, pp. 1237–1242.

[54] S. R. Park and J. W. Lee, in Proceedings of the Interspeech 2017
(ISCA, Grenoble, France, 2017), pp. 1993–1997.

035308-11

https://doi.org/10.1103/PhysRevResearch.4.023005
https://doi.org/10.1038/nature07000
https://doi.org/10.1103/PhysRevB.84.195139
https://doi.org/10.1109/72.554195

