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Kernel-based learning framework for discovering the governing equations
of stochastic jump-diffusion processes directly from data
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Discovering the underlying mathematical-physical equations of complex systems directly from observational
data has been a challenging inversion problem. We propose a data-driven framework for identifying dynamical
information in stochastic diffusion or stochastic jump-diffusion systems. The probability density function is
utilized to relate the Kramers-Moyal expansion to the governing equations, and the kernel density estimation
method, improved by the Fourier transform idea, is used to extract the Kramers-Moyal coefficients from the
time series of the state variables of the system. These coefficients provide the data expression of the governing
equations of the system. Then a data-driven sparse identification algorithm is used to reconstruct the underlying
dynamic equations. The proposed framework does not rely on prior assumptions, and all results are obtained
directly from the data. In addition, we demonstrate its validity and accuracy using illustrative one- and two-
dimensional examples.
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I. INTRODUCTION

The nonlinearity, strong randomness, and multivariable
characteristics of most dynamical systems in reality expose
the great shortcomings and deficiencies of the traditional first-
principles-based derivations and empirical analyses, which
pose a great challenge for cross-integration in some critical
application areas. Fortunately the continuous development
of computing hardware and high-performance sensors has
accumulated a huge resource of data based on actual ob-
servations or numerical simulations for the application of
data-driven techniques, which provides new directions and
opportunities for the inverse problem of discovering the un-
derlying dynamics of complex dynamical systems directly
from the data. Given the availability of data to facilitate and
support the integration of machine learning and physical mod-
eling, such problems have stimulated the research interests of
many scholars in the engineering sciences and even in the
social sciences. Examples include earth system science [1],
epidemiology [2], fluid dynamics [3,4], finance [5], public
transportation [6], etc.

In recent years, as the fourth paradigm of scientific
discovery [7], data-based modeling has developed several
mainstream approaches in the field of analysis of complex
nonlinear systems, which not only improve the needs of prac-
tical applications but also provide new ideas for understanding
and predicting the dynamics of complex systems. Some
well-known methods include dynamic mode decomposition
(DMD) methods [8–11], Koopman operator theory (which
is usually combined with DMD) [12–15], physics-informed
neural networks (PINNs) [16–19], and sparse identification of

*School of Science, Xi’an Polytechnic University, Xi’an 710048,
China; jqfeng15@126.com,wqsun98@163.com

nonlinear dynamical systems (SINDy) [20–24], among other
techniques. However, most of these data-based modeling and
analytical techniques are limited to the remarkable results
achieved in solving some deterministic dynamical systems
whose governing equations are mostly ordinary differential
or partial differential equations. Due to the challenges of
strong stochasticity, chaotic behavior, and high-dimensional
properties of dynamical systems in real-world problems, it is
still necessary to explore new technologies to meet constant
practical needs.

A significant metric to describe the uncertainty quantifica-
tion of a complex system is its probabilistic response mapping
function, which contains spatial and/or temporal coordinates.
It has extremely important extensions and applications in
estimating the transition dynamics of complex systems, ex-
ploring the most probable transfer paths of system state
variables, and even reconstructing the equations of motion
of complex systems [25–27]. The stochastic evolution of the
probability response function can usually be expressed by the
Kramers-Moyal (KM) equation, which gives the equilibrium
relationship between the first-order difference of the probabil-
ity response function of the continuous process with respect
to the discrete timescale in the limit sense and the infinite
power series of the difference of the state variables at adjacent
moments. The KM expansion has been extended from its
earlier classical form based on the derivation of Markovian
processes to some new variations including the KM for de-
layed differential equations and the nonlocal KM to analyze
non-Markov processes [28,29]. The Pawula theorem proves
that the well-known Fokker-Planck equation is the special
form of the second-order truncated KM equation and that
the drift and diffusion coefficients of the stochastic diffusion
process correspond to the first two orders of KM coefficients,
respectively [30]. Therefore, estimating the KM coefficients
accurately is of positive significance for reconstructing the
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governing equations of motion for complex systems based
on the data. The Nadaraya-Watson estimator is a regression
model based on the kernel density estimation method pro-
posed successively by Nadaraya and Watson, which allows
the analysis of stationary and nonstationary time series by
estimating the time-dependent KM coefficients [31].

The kernel density estimation (KDE) method serves not
only as a core component of the Nadaraya-Watson estimator
but also as an important tool in statistical theory of data and
already has some well-established theoretical studies [32–34].
In particular, in recent years, some scholars have developed
many high-performance and visualized R or Python package
programs by integrating the theory of KDE with machine
learning methods, which have made the method become a
very sought-after and effective component for studying the
problems of complex systems [35–38]. The main challenges
of the classical KDE methods are the computational com-
plexity of the kernel components to estimate the probability
distribution of the large sample data in the average sense,
and the accurate selection of the bandwidth parameter for the
true probability density function of the sample to be estimated
under the asymptotic mean integrated squared error (AMISE).

The Binning technique can subdivide the sample inter-
vals into equally spaced grids smaller than the number of
samples, and reduce the computational burden of the KDE
by convolving the grid weights given by the data. In the
multivariate case, combining the idea of binning and the fast
Fourier transform method can save a lot of computational
time [39,40]. The bandwidth as a built-in parameter of the
kernel function is the most important issue that needs to
be considered whether in univariate or multivariate prob-
lems. There are three major types of bandwidth selectors
based on the AMISE theory: The rule-of-thumb approach, the
cross-validation method, and the plug-in method. However,
the rule-of-thumb approach requires certain prior information
(usually assuming that the true probability density function
is normal), the scheme of cross-validation ideas has a high
degree of variability in estimating the sample, although the
estimation results of the plug-in method are more stable, and
the computational complexity caused by the iteration step is
higher (especially for multivariate samples). Bernacchia et al.
proposed a self-consistent estimation method that can ac-
curately reproduce the potential probability distribution of
the sample data. This nonparametric estimation method by-
passes the subjective choice of parameters, does not require
any prior information, and proves the theoretical limit of its
squared error proportional to the size of the data set [41].
This method has greatly inspired this paper. O’Brien et al.
have successively expanded the application of this method
in one-dimensional and multidimensional practical problems
[42,43].

In this paper, the Nadaraya-Watson estimator is used to
study the problem of identifying the multivariate stochastic
jump-diffusion process. Random jump events in the given
sample are detected and described by estimating the higher
order conditional moments of the KM equation in real time.
Once the drifts, diffusion coefficients, and jump parameters
of the Itô stochastic differential equations for the underlying
dynamics of the state variables are calculated, the correspond-
ing abstract governing equations of motion can be given by

combining the ideas of SINDy so as to reconstruct the un-
derlying dynamical processes of the system directly from the
data. Since the estimated drift and diffusion coefficients are
clearly given with the trends of the state variables, this can
reduce the computational complexity of the SINDy procedure
by reducing the prior information needed to construct the
library of functions. The framework proposed in this paper
is based on a strict theoretical basis, and there is a strong
physical interpretation that “black box” models such as neural
network methods do not have. The results obtained are not
simple data forms but abstract mathematical equations, which
can provide a new reference for obtaining potential physical
laws from data.

The article is structured as follows. In Sec. II we in-
troduce the background knowledge of the multidimensional
stochastic jump-diffusion process including the derivation of
its corresponding KM equation and its discriminant formula
with the stochastic diffusion process. In Sec. III we complete
the construction of the Nadaraya-Watson estimator using the
self-consistent KDE algorithm and represent the higher or-
der KM coefficients using the Nadaraya-Watson estimator.
With the help of the trends in the data mapping relationships
between the estimated KM coefficients and the state vari-
ables, the appropriate library of basis functions is constructed
and the corresponding abstract mathematical expressions are
given using the symbolic regression algorithm. In Sec. IV
the validity and adaptiveness of the framework are tested
by simulating three one-dimensional and/or two-dimensional
stochastic jump-diffusion processes. Finally, Sec. V concludes
the study and gives some perspectives.

II. PROBLEM STATEMENT

Consider a class of typical multidimensional stochastic
jump-diffusion dynamical systems, whose Itô interpreted gov-
erning differential equations can be given as

dx(t ) = a(x, t )dt + b(x, t )dW(t ) + c(x, t )dJ(t ),

x(0) = x0, t ∈ [0, T ], (1)

where x0 is the state vector at the initial moment; x(t ) ∈
Rd denotes the d-dimensional state variable; a(x, t ) ∈ Rd

indicates the general nonlinear drift function vector, which
depends on the stochastic variable vector x(t ); b(x, t ) ∈ Rd×s

represents the diffusion matrix; W(t ) ∈ Rs stands for the
Wiener process vector, which are independent from each
other, i.e., 〈dWidWj〉 = 0(i �= j, i, j = 1, . . . , s); the jump
amplitude parameter c(x, t ) ∈ Rd×l usually assumed as a ran-
dom matrix that satisfies the normal distribution N (0, σ 2

c );
and J(t ) ∈ Rl usually modeled as the Poisson jump processes
with Borel measurable and bounded jump rate λ ∈ Rl on the
filtered probability space (�,F , {Ft }t∈[0,T ],P ) that satisfies
the condition of mutual independence, i.e., 〈dJidJj〉 = 0(i �=
j, i, j = 1, . . . , l ). In addition, the Wiener process W(t ) and
the Poisson jump process J(t ) in the above equation are also
independent of each other.

In practice, for continuous systems, the sample data are
observed at discrete moments. Therefore, a fixed very small
snapshot τ of time is allowed to obtain N observations in
time period t ∈ [0, T ]. The time-continuous Euler-Maruyama
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(EM) scheme is given on the basis of a random initial state
as

x(n+1)
k = x(n)

k + ak (x(n), tn)τn

+
s∑

i=1

bk,i(x(n), tn)�W (n)
i

+
l∑

j=1

ck, j (x(n), tn)�J (n)
j , (2)

where ak is the drift coefficient of the kth components of
the state vector x(t ) ∈ Rd , bk,i is the component of the kth
row and ith column of the diffusion matrix b, and ck, j is the
element of the kth row and jth column of the matrix of the
jump amplitude c, for k ∈ 1, 2, . . . , d , i ∈ 1, 2, . . . , s, and j ∈
1, 2, . . . , l . �W (n)

i = (W (n+1)
i − W (n)

i ), and �J (n)
j = (J (n+1)

j −
J (n)

j ) denote the independent increments of the Wiener process
and the jump process, respectively. For the EM scheme, we
need to emphasize the explicit dependence on the initial value
x(0) = x0 in the notation. In this case, the coefficients ak ,
bk,i, and ck, j are Lipschitz. In addition, ak , bk,i and ck, j all
satisfy the linear growth condition, i.e., there exist h1, h2, h3 ∈
(0,∞) such that

|ak (x)| � h1(1 + |x|),
|bk,i(x)| � h2(1 + |x|),
|ck, j (x)| � h3(1 + |x|). (3)

It is well known that SDE (1) admits a unique strong solution
that can be approximated by the EM scheme at strong conver-
gence order 1/2 [44].

The short-time propagator of the system state vector x(t )
can be captured by the KM expansion [45] as

∂ p(x, t | x′, t ′)
∂t

= LKM[p(x, t | x′, t ′)], (4)

with the initial conditional probability p(x, t | x′, t ) = δ(x −
x′), where δ is the generalized Dirac delta function. t and
t ′ are two adjacent moments after the discretization of the
continuous process, respectively, and the positive difference
timescale τ between them is a very small value that tends
to 0. In this case, for a stochastic system with d compo-
nents x j ( j = 1, . . . , d ), the expansion of LKM can be given
as

LKM[p(x, t | x′, t ′)]

=
∞∑

n=1

(−1)n

n!

∂v1,...,vd∏d
j=1 ∂x

v j

j

[K (v1,...,vd )(x, t )p(x, t | x′, t ′)],

(5)

where v j denotes the differential order for the jth compo-
nent of the state vector x, which takes on the entire set of
natural numbers N; the subscript of the summation symbol
n =∑d

j=1 v j .

The conditional moments of the system (1) with finite time
span τ are usually defined as

K (v1,v2,...,vd )(x, t ) =
〈

d∏
j=1

dx j (t )v j

〉∣∣∣∣∣∣
x(t )=x

=
〈

d∏
j=1

(x j (t + τ ) − x j (t ))v j

〉∣∣∣∣∣∣
x(t )=x

=
∫
Rd

⎡
⎣ d∏

j=1

(x j (t + τ ) − x j (t ))v j

⎤
⎦

× p(x, t + τ | x′, t )dx. (6)

The conditional moments K (x, t ) and the KM coefficients
D(x, t ) of the system satisfy the following relationship:

D(v1,v2,...,vd )(x, t ) = lim
τ→0

1

τ
K (v1,v2,...,vd )(x, t ). (7)

According to the Pawula theorem, the KM expansion of
a general stochastic diffusion process is truncated at n = 2.
However, there exist nonvanishing KM coefficients greater
than 2 for stochastic processes with random jump event effects
[46].

III. SYSTEM IDENTIFICATION FRAMEWORK

In general, the observed data are either stationary or non-
stationary. Most of the measured time series are nonstationary,
which means that the KM coefficients may be explicitly
time-dependent. The kernel function estimation method pro-
posed by Nadaraya and Watson allows us to estimate the
time-dependent local KM coefficients. This method can be
used to analyze both stationary and nonstationary stochastic
processes. The statistical features of the noise can be ana-
lyzed based on the limiting vanishing behavior of the KM
condition moments with timescale τ , and then the governing
equations of the dynamics can be reconstructed.

To estimate the conditional moments in Eq. (6) from
the time-series sample, the conditional probability density
function of the state transfer process should be considered.
According to Bayesian theory, the conditional probability
density function of the system at the rth moment shows the
dependence on its state at the previous r − 1 moments, and for
general processes its conditional probability can be defined as

p(xr, tr | xr−1, tr−1; . . . ; x1, t1)

= pr (xr, tr ; . . . ; x1, t1)

pr−1(xr−1, tr−1; . . . ; x1, t1)

= pr (xr, tr ; . . . ; x1, t1)∫
pr (xr, tr ; . . . ; x1, t1)dxr

. (8)

Through the probabilistic transformation of the state vari-
ables of the original stochastic system in Eq. (8), Eq. (7) can
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be rewritten as

D(v1,v2,...,vd )(x, t )

= lim
τ→0

∫
Rd

[
1
τ

∏d
j=1 [x j (t + τ ) − x j (t )]v j

]
p(x, t ) dxt∫

Rd p(x, t ) dxt
.

(9)

In applied science, the problem of point estimation of con-
tinuous density from a discrete set of data is very common. As
a very theoretically mature and widely used data smoothing
method, the KDE method can estimate the potential distribu-
tion of the data based only on the data itself by choosing a
variety of kernel functions. For the multivariate problem stud-
ied in this paper, p̂(x, t ) in Eq. (9) is an approximate estimate
of the joint probability density function p(x, t ), which can be
classically written by KDE theory [33] as

p̂(x, t ) = 1

N

N∑
i=1

|H|−1/2K[H−1/2(x − xi )]

= 1

N

N∑
i=1

KH(x − xi ), (10)

where K is the kernel function operator, KH(·) =
|H|−1/2K[H−1/2(·)], H is a bandwidth matrix of d × d
dimensions, which is symmetric and positive definite, and d
is determined by the state variable x of the problem under
study. x is the center of the kernel component, and the
traditional KDE is estimated with each data point as the
center.

The traditional form of KDE like Eq. (10) requires a choice
of kernel bandwidth parameters. However, this selection is not
straightforward; it may require making assumptions about the
potential distribution of the sample data and then selecting the
optimal bandwidth by constructing an AMISE model based on
the differentiability of the kernel function. With the principle
of not assuming additional prior information and saving com-
putational resources, we prefer to focus on finding the optimal
shape of the kernel rather than finding the optimal bandwidth
for the kernel function. Inspired by the idea of an enhanced
self-consistent KDE of arbitrary dimensionality proposed by
Bernacchia [41], Eq. (10) can be rewritten in the form of
a sum of convolutions between data-centric kernel functions
and delta functions:

p̂(x, t ) = 1

N

N∑
i=1

KH(x − xi )

= 1

N

N∑
i=1

∫
Rd

K (z) · δ(x − xi − z)dz

= 1

N

N∑
i=1

K (x) × δ(x − xi ), (11)

where × is the convolution symbol and δ is the generalized
Dirac delta function.

By using the idea of the Fourier transform, we can eas-
ily obtain the equivalent form of KDE p̂(x, t ) in frequency

space

φ(ω) = Fω[p̂(x, t )] = Fω

⎡
⎣ 1

N

N∑
j=1

K (x) × δ(x − x j )

⎤
⎦

= κ (ω) · 1

N

N∑
j=1

eix jω

= κ (ω) · C(ω), (12)

where Fω denotes the Fourier transform operator for mapping
from data space x to frequency space ω; κ represents the
Fourier transform of kernel K ; and C(ω) is denoted as the
empirical characteristic function of the data. In fact, there is
agreed to exist an optimal transformation kernel κ̂ (ω) = N ·
(N − 1 + |φ|−2)−1 which minimizes the mean square error
between the true probability density function p(x, t ) of the
sample data and the optimal KDE result p̂(x, t ) [42].

The relationship between the optimal transform kernel and
the empirical characteristic function is defined as

κ̂ (ω) ≡ N

2(N − 1)

⎡
⎣1 +

√
1 − 4(N − 1)

N2|C(ω)|2 I 
A(ω)

⎤
⎦, (13)

where I 
A denotes the frequency filter, which is 1 for the set 
A
of frequencies accepted in the KDE and 0 otherwise. For the
stability of the KDE, the set of acceptable frequencies {ω|ω ∈

A} needs to be specified to satisfy |C(ω)|2 � C2

min = 4(N −
1)N−2. The bounded frequency set 
A not only can exclude
arbitrary additional subsets of other admissible frequencies,
but also reflects the arbitrariness of the initial guess φ0 of the
iterative solution. Furthermore, the stability condition on 
A
forces κ (ω) to be real-valued, which ensures that the kernel
K (x) assumed in its data space is symmetric. If the empirical
characteristic function is also integrable, φ can converge to
the true potential distribution as N increases. Finally, once the
optimal φ̂ is obtained, the estimation of the probability density
function p̂(x, t ) of the sample space can be reverted using the
inverse Fourier transform.

Thus based on the idea of KDE, Eq. (9) can be
further transformed into the following Nadaraya-Watson
estimator:

D(v1,v2,...,vd )(x, t )

= lim
τ→0

∑N
i=1

[
1
τ

∏d
j=1 [x j (t + τ )−x j (t )]v j

]×F−1
t (φ̂(ω))∑N

i=1 F−1
t [φ̂(ω)]

.

(14)

Clearly, the data requirements of the proposed compu-
tational framework depend largely on the estimation of the
underlying distribution of the time series. To reduce the cost
of the computation of this framework, an effective approach
is to use the nonuniform fast Fourier transform method [47]
for acceleration. This fast self-consistent KDE algorithmic
framework converges as the number of sample data N in-
creases, and not only has a computational accuracy that is
not inferior to the state-of-the-art classical KDE estimation,
but also overcomes the problems of dimensional catastrophe
and computational complexity to some extent, and even the
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convergence is further accelerated when the sample data
exceeds 104; these findings are illustrated by examples by
O’Brien [43].

A. Case I: Stochastic diffusion process

When the optimal probability density function p̂(x, t ) is
estimated precisely, by means of the Nadaraya-Watson es-
timator in Eq. (14), we can obtain the KM coefficients of
arbitrary order for the potential dynamical system (1). The
KM coefficients are important to characterize the governing
equations of motion for potential dynamical models, espe-
cially for general stochastic diffusion processes, i.e., processes
in which the system (1) without admixture of random jump
events.

dx(t ) = a(x, t )dt + b(x, t )dW(t ),

x(0) = x0, t ∈ [0, T ]. (15)

According to the Pawula theorem, the first two orders of
KM coefficients of the diffusion process correspond exactly to
the drift and quadratic diffusion coefficients of its governing
equations. For only the differential order of the kth component
xk (k = 1, . . . , d ) of the state vector x can be taken to the set
of positive integers, and the differential orders of all other
components are 0. Thus, there are

D(vk=1,vk′ =0(k′ �=k))(x, t ) = lim
τ→0

1

τ
〈dxk (t ) 〉|x(t )=x

= lim
τ→0

1

τ
〈[xk (t + τ ) − xk (t )]1 〉|x(t )=x

= lim
τ→0

1

τ

[
akτ +

s∑
i=1

bk,i 〈dWi 〉
]

= ak, (16)

D(vk=2,vk′ =0(k′ �=k))(x, t ) = lim
τ→0

1

τ

〈
dx2

k (t )
〉|x(t )=x

= lim
τ→0

1

τ
〈[xk (t + τ ) − xk (t )]2〉|x(t )=x

= lim
τ→0

1

τ

〈[
akτ +

s∑
i=1

bk,idWi

]2〉

= lim
τ→0

1

τ

〈
a2

kτ
2 +
(

s∑
i=1

bk,idWi

)2〉

+ 2ak

s∑
i=1

bk,i〈dWi〉 =
s∑

i=1

b2
k,i,

(17)

D(vk�3,vk′ =0(k′ �=k))(x, t ) = 0. (18)

B. Case II: Stochastic jump-diffusion process

Similarly, for the multidimensional stochastic jump-
diffusion system (1), the relationship between the correspond-
ing KM coefficients and the main parameter terms of the

equation can be summarized as follows:

D(vk=1,vk′ =0(k′ �=k))(x, t ) = lim
τ→0

1

τ
〈dxk (t )〉|x(t )=x

= lim
τ→0

1

τ
〈[xk (t + τ ) − xk (t )]1〉|x(t )=x

= lim
τ→0

1

τ

⎡
⎣akτ +

s∑
i=1

bk,i〈dWi〉 +
l∑

j=1

〈ck, j〉〈dJj〉
⎤
⎦

= ak, (19)

D(vk=2,vk′ =0(k′ �=k))(x, t ) = lim
τ→0

1

τ

〈
dx2

k (t )
〉|x(t )=x

= lim
τ→0

1

τ
〈[xk (t + τ ) − xk (t )]2〉|x(t )=x

= lim
τ→0

1

τ

〈
a2

kτ
2 +
(

s∑
i=1

bk,idWi

)2

+
⎛
⎝ l∑

j=1

ck, jdJj

⎞
⎠

2〉

+ 2ak

s∑
i=1

bk,i〈dWi〉 + 2ak

〈
l∑

j=1

ck, jdJj

〉

+ 2

〈(
s∑

i=1

bk,idWi

)⎛⎝ l∑
j=1

ck, jdJj

⎞
⎠〉

=
s∑

i=1

b2
k,i +

l∑
j=1

σ 2
ck, j

λ j, (20)

D(vk=2n,n>1,vk′ =0(k′ �=k))(x, t ) = 〈[dx2n]〉|x(t )=x

=
l∑

j=1

2n!

2n(n!)

(
σ 2

ck, j

)n
λ j . (21)

According to the derivation of Eq. (21), for the special
hypothesis l = 1, i.e., the case where the jth component x j of
the state vector x is excited by only one corresponding jump
term dJj . The variance σ 2

ck, j
of the jump amplitude parameter

obeying the Gaussian distribution and the jump rate λ j of the
Poisson jump term can be given by

σ 2
ck, j

= D(vk=6,vk′ =0(k′ �=k))(x, t )

5D(vk=4,vk′ =0(k′ �=k))(x, t )
,

λ j = D(vk=4,vk′ =0(k′ �=k))(x, t )

3σ 4
ck, j

. (22)

Furthermore, for a very small timescale τ , it is allowed to
construct a function Q(x) for distinguishing the jumpy and
purely diffusive behavior of the stochastic process through
the higher order conditional moments obtained in the sampled
time series x:

Q(x) = K (vk=6,vk′ =0(k′ �=k))(x, τ )

5K (vk=4,vk′ =0(k′ �=k))(x, τ )
≈
{

b2
k,iτ, diffusive,

σ 2
ck, j

, jumpy,
(23)

here bk,i is also considered as the diffusion coefficient in the
case when the kth state component is also perturbed by only
one Gaussian white noise process.
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When dealing with actual collected data, we cannot obtain
infinite time resolution, which means that the above limit
τ → 0 is not possible. The best case is to analyze the smallest
possible time difference. For stochastic diffusion processes,
the KM coefficients have a theoretical value of 0 with differ-
ential order n � 3, but it is often found that these terms do
not vanish due to finite time effects. In order to effectively
reduce the error in the estimation of conditional moments,
an arbitrary-order finite-time correction method is introduced,
which is effective for both arbitrary Markovian diffusion pro-
cesses and jump diffusion processes [48].

D(1) = lim
τ→0

1

τ
M1,

D(2) = lim
τ→0

1

τ

[
M2 − M2

1

]
,

D(3) = lim
τ→0

1

τ

[
M3 − 3M1M2 + 2M3

1

]
,

D(4) = lim
τ→0

1

τ

[
M4 − 4M1M3 − 3M2

2 + 12M2
1 M2 − 6M4

1

]
,

D(5) = lim
τ→0

1

τ

[
M5 − 5M1M4 − 10M2M3 + 30M1M2

2

+ 20M2
1 M3 − 60M3

1 M2 + 24M5
1

]
,

D(6) = lim
τ→0

1

τ

[
M6 − 6M1M5 − 10M2

3 − 15M2M4

+ 30M3
2 + 120M1M2M3 + 30M2

1 M4 − 270M2
1 M2

2

− 120M3
1 M3 + 360M4

1 M2 − 120M6
1

]
, (24)

where M denotes the conditional moment and its subscript
denotes the differential order.

However, the abstract mathematical symbolic relationship
between the KM coefficients and the state variables is the core
of the inverse problem of identifying the underlying dynamics
from the data, rather than the simple data results of the statis-
tical measures. The development and evolution of the SINDy
idea cannot be ignored as a vital help in achieving this goal,
so a similar structure is introduced in the proposed computa-
tional framework. Therefore, the optimization problem can be
expressed as

�̃ = arg min
�∈Rm

1

2Ns
‖D(v) − �(x)�‖2

2 + R(�), (25)

where m indicates the number of function elements in the as-
sumed basis function library; Ns denotes the number of input
data; �(x) is the library of candidate basis functions that may
contain polynomials, exponential functions, and trigonomet-
ric functions; � is the sparse coefficient matrix composed of
sparse vectors corresponding to each function element in the
library of basis functions; and R(�) is a regularization factor
used to improve the sparsity of the solution of the model. In
this paper, it is appropriately considered as regularized in the
l1-norm sense, and then the optimization model becomes a
Lasso regression.

Based on the relationship between the KM coefficients
D(v)(x, t ) (v = {v1, . . . , vd}) and the state vector x calculated
by Eq. (14), the trend of the evolution of the KM coefficients
with the state variables can be initially determined, which can

provide useful prior information for the selection of the library
of basis functions in the framework of the symbolic regression
algorithm and can reduce the computational complexity in the
iterative process. The above symbolic regression idea can give
an explicit mathematical expression of the KM coefficients
with the state vector x. Therefore, the underlying dynamics of
the stochastic system can be reconstructed by relating the KM
coefficients to the drift, diffusion coefficients and the jump
parameters of the system in the framework of the Itô stochastic
differential equation.

We give the exact calculation steps in the pseudocode
Algorithm 1, and the concise flowchart is in Fig. 1.

Algorithm 1 The Kernel-based system identification algorithm.

Input: The data x(t) observed for a multivariate stochastic
dynamical system with a similar structure to Eqs. (1) or (15)
under the Itô interpretation, and a certain timescale τ .

Output: The drift function a(x, t ), diffusion term b(x, t ),
variance σ 2

c of the jump amplitude parameter, and jump rate λ

of the jump term for the stochastic dynamical system under the
Itô interpretation.

1: Use the self-consistent KDE (11)-(13) to estimate the joint
probability distribution of the historical time of the observed
data of the system.

2: Calculate the higher-order KM coefficients D(v)(x, t ) of the
system according to the Nadaraya-Watson estimation model
(14).

3: Divide the conditional moments K (v) by the very small
timescale τ to obtain the KM coefficients D(v) and correct them
appropriately using (24).

4: Use Eq. (23) to determine the type of potential stochastic
system for the time-series, while the variance σ 2

c of the
distribution of the jump magnitude coefficients and the jump
rate λ of the jump excitation are given by Eq. (22).

5: Select the appropriate candidate function library �(x) based on
the known data mapping relationship (x, D(v)(x, t )).

6: for epoch: i = 1 → m do
7: �̃ = arg min�∈Rm

1
2Ns

‖D(v) − �(x)�‖2
2 + R(�),

8: Set a small threshold ε

9: If |� j | � ε, set � j = 0, ( j = 1, . . . , i).
10: return the optimal sparse matrix �̃.

IV. NUMERICAL EXPERIMENTS

The time series sampled in the real world show different
types of stationary or nonstationary dynamic characteristics
due to local randomness. Nonstationary dynamic problems
caused by random jump events have been widely involved in
option pricing [49], fluid mechanics [50], energy conversion
[51], and other fields. In this paper, a nonparametric approach
is applied to separate the deterministic drift and diffusion
coefficients from the data of the stochastic jump process, and
the parameters of the jump intensity and the distribution of
the jump components are effectively identified. In order to
test the superiority of the proposed algorithm, we compared
it with kramersmoyal [52], an open-source package written
in Python, which is derived from calculating KM coefficients
using the traditional KDE method [53]. The experimental data
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FIG. 1. The flow diagram of the proposed algorithmic framework.

for all numerical examples in this paper are obtained with the
Euler-Mayurama integration scheme.

A. One-dimensional example

Consider a simple one-dimensional example for a jump-
diffusion process with a nonlinear drift term, whose governing
equations of motion can be defined as

dxt = N (x, t )dt +
√

G(x, t )dW (t ) + ξdJ (t ), (26)

where the drift function N (x, t ) = −0.5x3 − 3; the quadratic
diffusion term, in the context of making the equation sat-
isfy the Lipschitz condition and the linear growth condition,
considers a representative nonlinear structure for harmonic
excitation as G(x, t ) = [sin(x) + 5]2; W (t ) is the Wiener pro-
cess; the jump amplitude parameter ξ ∼ N (0, σ 2

ξ ), where
σ 2

ξ = 0.8; the jump rate of the Poisson jump term is λ = 1;
and the initial value x0 is a randomly specified real number
from the standard normal distribution. The trajectory of the
system with random jump term collected by using the Euler-
Mayurama method in the time interval t ∈ [0, 4000] is on the
timescale τ = 0.001. For simplicity of illustration, the time
series for t ∈ [0, 100] is given in Fig. 2. It can be seen that
the fluctuation of the trajectory of the system with additional
random jump events is more inhomogeneous and unstable
than the general purely stochastic diffusion process.

(1) For the case of the stochastic diffusion process, Eq. (26)
does not contain the jump term. Comparative results between
the drift and diffusion coefficients calculated with the pro-
posed method and those calculated with kramersmoyal are
given in Fig. 3, respectively. It is clear that the kramersmoyal
package developed based on the idea of traditional KDE has
great volatility in the estimation of KM coefficients in the edge
part, which is well handled by our method. The specific reason
may mainly stems from the difficulty of traditional KDE to
effectively capture the heavy-tailed probability distribution of
the time series of the stochastic dynamical system.

(2) For the stochastic jump-diffusion process in the form
as Eq. (26), obviously, the stochastic dynamical system

becomes more complex as the random excitation term in-
creases. The variance σ̂ 2

ξ = 0.7930 of the distribution of the
random jump amplitude parameter ξ can be estimated by
Eq. (22), and the jump rate λ = 0.9683 of the jump term
can also be obtained. The coupled Poisson jump term is
distinguished by Eq. (23), i.e., the system is not a purely
stochastic diffusion process. Furthermore, based on Eqs. (19)
and (20), we can derive the drift term N̂ (x, t ) = D(1)(x, t ) and

the diffusion term
√

Ĝ(x, t ) =
√

D(2)(x, t ) − σ̂ 2
ξ λ̂. Thus, the

nonlinear drift and diffusion terms for system (26) estimated
directly by Eq. (14) are shown in Fig. 4. As the complexity
of the random perturbations increases, the shortcomings of
kramersmoyal in clarifying the jump noise and accurately
estimating the diffusion term become more apparent.

According to the data mapping relationships given by the
drift and diffusion terms respectively in Fig. 4, we can ap-
propriately select the candidate function library as �(x) =
{1, x, x2, x3, sin(x), cos(x)}. For demonstration purposes, the

FIG. 2. The trajectory of the state variable of the stochastic jump-
diffusion process (26) in the time interval t ∈ [0, 100].
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FIG. 3. For the case of the stochastic diffusion process, (a) true and estimated drift terms and (b) true and estimated diffusion terms. The
green solid lines labels “1st-km” or “2st-km” are the results calculated with kramersmoyal , and the black solid lines named “1st-Ikm” or
“2st-Ikm” are the results estimated with our improved method.

library here is relatively simple, and in fact, as long as the
KM coefficients are estimated accurately, it is easy to give a
suitable expression through a class of symbolic regression al-
gorithms. In Table I we give mathematical explicit expressions
for the drift and diffusion terms, respectively. In fact, the ran-
dom jump events exacerbate the unsteadiness and randomness
of the data samples, and for the stochastic diffusion model,
the identification results of the proposed algorithm will only
be better than those given in Table I.

B. Two-dimensional example I

Simple systems in one dimension are not representative
in real situations, although they are common. To further
illustrate the validity and generalizability of the proposed
model for multidimensional systems in practical applications,
this subsection will consider a dynamical problem evolving
from the background of the sound absorption process of
the membrane-type acoustic metamaterial. Membrane-type
acoustic metamaterials have received widespread attention
from scholars in the fields of physical and acoustic engineer-
ing because of their good sound insulation, low mass, and low
construction cost [54,55], and the coupled structural-acoustic
response of the system can be explained by a combination

TABLE I. Identified drift and diffusion terms for one-
dimensional system (26).

N (x, t )
√

G(x, t )

Basis �(x) True Learned True Learned

1 −3 −3.0049 5 4.9509
x 0 0 0 0
x2 0 0 0 0
x3 −0.5 −0.4592 0 0
sin(x) 0 0 1 1.0151
cos(x) 0 0 0 0

of structural and acoustic mode shapes [56]. Therefore, this
example considers a new membrane-type acoustic metama-
terial, and its specific structure is shown in Fig. 5. It is a
coupled resonant system formed by a membrane-type acoustic
metamaterial in a closed cavity under the action of magnetic
poles and external plane waves. The model consists of two
external magnets placed symmetrically and coaxially, a mem-
brane with a centered magnetic-proof mass. The interaction
between the magnets on both sides of the magnetic-proof mass
and the external magnets creates an attractive force on both
sides of the mass, and the mass is also subjected to air loading
due to incident acoustic waves, which in turn resonates.

The law of motion of the membrane vibrating and bending
with time under the combined action of the attractive force of
the magnets and the incident acoustic waves can be described
by the following differential equation [57]:

Mẍ(t ) + (2ζiωiM + ρcβ2S)ẋ(t )

+
(

K + ρc2β2S

D
+ k1

)
x(t ) + k3x3(t ) = 2βSpin(t ),

(27)

where ẍ, ẋ, and x denote the acceleration, velocity, and
displacement variables of the membrane during vibration, re-
spectively. M = Mi/φ

2
i,0, K = Mω2

i , β = 〈φi〉/φi,0, where φi,0

and 〈φi〉 are the maximum and the surface averaged values of
the ith modal shape, respectively. Mi, ζi, and ωi are the model
mass, the damping ratio, and the intrinsic frequency of the ith
modal shape, respectively. ρ and c are the density of air and
the speed of sound, respectively. S is the surface area of the
membrane, and D is the effective depth of the cavity. k1 and k3

are the linear and nonlinear stiffness coefficients derived from
the magnetic force, respectively. pin is regarded as the power
spectrum of the acoustic wave incident on the absorber, which
is used to describe the intensity of the acoustic wave.
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FIG. 4. For the case of the stochastic jump-diffusion process, (a) true and estimated drift terms and (b) true and estimated diffusion terms.
The green solid lines named “1st-km” or “2st-km” are the results calculated by kramersmoyal , and the black solid lines named “1st-Ikm” or
“2st-Ikm” are the results estimated by using our improved method.

To facilitate the numerical validation of the proposed
model, consider its dimensionless equation as

ẍ(t ) + α1x(t ) + α2ẋ(t ) + α3x3(t ) = �(t ), (28)

where α1 and α2 denote the stiffness and damping coefficients,
respectively, and α3 denotes the nonlinear stiffness coeffi-
cient. Assume that the coupling term �(t ) between the power
spectrum for the incident acoustic wave and the timescale
in Eq. (28) is a hybrid noise structure, which consists of
the standard Gaussian white noises Wt and Poisson jump
processes Jt . In this example, it is practical to assume that
the incident acoustic wave is simulated by Gaussian white
noise and Poisson jump noise. The random jump process can
enrich the acoustic wave cacophony making the analysis of
the problem more realistic.

Defining y � dx/dt and organizing the terms, it can be
further transformed into the following two-dimensional first-

order stochastic differential equation:

dx = ydt,

dy = (−α1x − α3x3 − α2y)dt + ηdWt + ξdJt , (29)

where the drift coefficients are a1 = y and a2 = −α1x −
α3x3 − α2y, respectively. The diffusion coefficients are b1 = 0
and b2 = η, respectively. dWt and dJt are independent incre-
ments of the standard Gaussian white noise and Poisson jump
process that are independent of each other, respectively. Given
the parameter values α1 = −1, α2 = 10, α3 = 3, η = 0.8, ξ ∼
N (0, σ 2

ξ = 0.6), and λ = 0.9. The time series collected using
the Euler-Mayurama integration method in the time interval
of [0, 9000] at a timescale of 0.001, with sample data size
of 9 × 106. For t ∈ [0, 1000], the phase diagram of system
(29) is shown in Fig. 6(a), and the trajectories of the state
displacement component x and the state velocity component y
with time t are shown in Figs. 6(b) and 6(c), respectively.

FIG. 5. Diagrams of the membrane-type acoustic metamaterial: (a) three-dimensional and (b) side plane.
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FIG. 6. (a) Phase diagram of the state variables of system (29). Trajectories of (b) the displacement component x and (c) the velocity
component y over time.

According to Eq. (22), we can calculate the variance σ̂ 2
ξ =

0.5269 of the distribution of the jump magnitude coefficient
ξ and the jump rate λ̂ = 0.9576 with estimated higher order
conditional moments D̂(0,6) and D̂(0,4). Once the jump terms
are clarified, it is easy to estimate the remaining drift and
diffusion terms of the system based on Eqs. (19) and (20).
The error thermograms of the drift and diffusion coefficients
computed by our proposed framework and the kramersmoyal
method with respect to the true values are given in Fig. 7,
respectively. It is clear that the results estimated by the
kramersmoyal method are not as good as those computed by
our proposed method. Although the trajectories of the states in
these edge regions appear rarely, they may contain important
information about the jump phenomenon, which is important
for the efficient identification of the stochastic jump-diffusion
process. For the state vector [x, y] of system (29), it is ap-
propriate to consider polynomials within three degrees of
freedom (including their cross terms) as the basis func-

tion library �(x) = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3}. The
results of the drift and diffusion terms estimated by the
associated KM coefficients are shown in Table II. The two-
dimensional strong nonlinear system is more complex, and the
proposed system identification algorithm shows acceptable
results.

C. Two-dimensional example II

More practically, the system is coupled with multiple ran-
dom noises of different intensities, including Gaussian white
noise and Poisson jump noise. To illustrate the level of ac-
curacy of the estimation and identification of the proposed
method, on the basis of system (29), we proceed to consider
a two-dimensional stochastic system excited by a mixture of
three Gaussian white noises of different intensities and four

FIG. 7. Error between the solutions computed by our proposed framework and the true drift coefficients (a) a1, (b) a2 and the true diffusion
coefficient (c) b2, respectively. The error between the solution calculated with kramersmoyal and the true drift coefficients (d) a1, (e) a2, and
the true diffusion coefficient (f) b2, respectively.
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TABLE II. Identified drift and diffusion terms for two-dimensional system (29).

a1(x, t ) a2(x, t ) b1(x, t ) b2(x, t )

Basis �(x) True Learned True Learned True Learned True Learned

1 0 0 0 0 0 0 0.8 0.7513
x 0 0 1 1.6261 0 0 0 0
y 1 0.9710 −10 −10.0640 0 0 0 0
x2 0 0 0 0 0 0 0 0
xy 0 0 0 0 0 0 0 0
y2 0 0 0 0 0 0 0 0
x3 0 0 −3 −2.5097 0 0 0 0
x2y 0 0 0 0 0 0 0 0
xy2 0 0 0 0 0 0 0 0
y3 0 0 0 0 0 0 0 0

jump processes with different jump rates:

d

[
x
y

]
=
[

a1

a2

]
dt +

[
b11 b12 b13

b21 b22 b23

]
∗
⎡
⎣dW1

dW2

dW3

⎤
⎦

+
[

c11 c12 c13 c14

c21 c22 c23 c24

]
∗

⎡
⎢⎢⎣

dJ1

dJ2

dJ3

dJ4

⎤
⎥⎥⎦, (30)

where ∗ denotes the multiplication symbol of the matrix; the
drift coefficients are a1 = y, a2 = x − 3x3 − 10y. The diffu-
sion coefficient component vectors are b1 = [b11, b12, b13] =
[0.2, 0.4, 0.6] and b2 = [b21, b22, b23] = [0.3, 0.5, 0.7], re-
spectively. dW1, dW2, and dW3 are Gaussian white noises
with mean value of 0 and variances of 2, 4, and 6,
respectively. The variances of the Gaussian distributions
obeyed by the jump amplitude coefficients are σ2

c =
[0.2, 0.4, 0.6, 0.8; 0.3, 0.5, 0.7, 0.9]. The jump rates λ =
[λ1, λ2, λ3, λ4]T of the jump terms dJ = [dJ1, dJ2, dJ3, dJ4]T

are [0.2, 0.4, 0.6, 0.8]T . For the time interval t ∈ [0, 9000],
the time series generated by the Euler-Mayurama method for
system (30) on the timescale τ = 0.001 is shown in Fig. 8.

FIG. 8. Phase diagram of system (30) over time.

Although for the case of multiple noise mixing, we may
not be able to effectively obtain the diffusion coefficients
of the corresponding components and the statistical prop-
erties of each noise according to Eqs. (20) and (21), the
corresponding drift coefficients can still be easily calculated
with Eq. (19). The candidate function library is still selected
as �(x) = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3}. Table III shows
that the proposed algorithmic framework can achieve good
identification of deterministic parts even for the multinoise
system (30).

V. CONCLUSION

Complex systems involving a large number of degrees of
freedom in nature generally exhibit nonstationary dynamics.
Such instabilities are usually accompanied by random jump
processes, and separating the class of effects caused by ran-
dom jump events from diffusion processes is an important
issue for a detailed understanding of the stochastic dynamics
of complex systems. In this paper we address this general
problem by introducing a nonparametric method for KDE. By
incorporating the KDE technique, which is improved by the
idea of the Fourier transform, into the general KM coefficients
of the stochastic jump-diffusion model, the drift and diffusion
terms under the Itô interpretation are thus identified from ob-
servations whose physical laws are unknown. It provides the
possibility for the symbolic regression algorithm to efficiently

TABLE III. Identified drift terms for two-dimensional system (30).

a1(x, t ) a2(x, t )

Basis �(x) True Learned True Learned

1 0 0 0 0
x 0 0 1 1.2291
y 1 0.9859 −10 −9.9207
x2 0 0 0 0
xy 0 0 0 0
y2 0 0 0 0
x3 0 0 −3 −2.9929
x2y 0 0 0 0
xy2 0 0 0 0
y3 0 0 0 0
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identify the stochastic dynamical systems by establishing the
exact relationship between the higher-order KM coefficients
and the main structural terms of the equations in Itô’s frame-
work. The only information relied upon in this paper is a time
series of the observed system without any other prior assump-
tions. The proposed computational framework can effectively
identify the potential governing equations not only for the
stochastic jump-diffusion systems with multiple degrees of
freedom in the form of Eq. (1), but also for arbitrary Marko-
vian stochastic diffusion processes in the form of Eq. (15).

Comparisons with the method mentioned in Ref. [53]
reflect the higher accuracy of the proposed framework.
Moreover, the proposed computational framework has better
accuracy of global estimation for computing KM coefficients.
It can capture the influence exerted by sparse and random
jump events more precisely and use it to improve the accu-

racy of the recognition of the system. In addition, It should
be noted that the systems mentioned in this paper are all
autonomous systems, i.e., the equations of the systems do
not explicitly contain the time t . Similar inverse problems for
nonautonomous systems that explicitly contain time t will be
considered in the future.

The relevant code can be obtained by contacting the au-
thors.
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