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Variational perturbation theory for dynamic polarizabilities and dispersion coefficients
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An efficient method based on the variational perturbation theory (VPT) is proposed to conveniently calculate
the atomic real- and imaginary-frequency dynamic polarizabilities and the interatomic dispersion coefficients.
The developed method holds the great advantage that only the system ground state wave function and correspond-
ing radial mean values are needed. Verification of the VPT method on one- and two-electron atoms indicates that
the present approximation shows good agreement with calculations based on the sophisticated sum-over-states
method. We apply the VPT method to examine the approximate Z-scaling laws of polarizabilities and dispersion
coefficients in the He isoelectronic sequence, and to investigate the plasma screening effect on these quantities
for embedded atoms. Our calculation demonstrates very well that the VPT method is capable of producing
reasonably accurate static and dynamic polarizabilities as well as two- and three-atom dispersion coefficients for
plasma-embedded atoms in a wide range of screening parameters.
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I. INTRODUCTION

The standard method to calculate polarizability is built
upon the perturbation theory, where the second-order correc-
tion to energy originating from the dipole interaction between
an atom and external electric field scales quadratically to the
field strength, with the coefficient being defined as half of
the polarizability [1–4]. Perhaps the most extensively used
method for calculating polarizabilities of atomic systems em-
ploys the so-called sum-over-states technique [2,3]. In these
calculations, one generally needs the initial ground state of
the system prepared with high quality, a complete set of final
states covering both the discrete bound and continuum spec-
tra, and accurate calculations of all related transition oscillator
strengths. Such a method, although it produces quite reliable
and accurate polarizabilities for general atomic systems, is
nevertheless subject to low efficiency and requires significant
computational effort.

An alternative and actually earlier developed method is
based on the Hylleraas variational perturbation theory (VPT).
The prototype of this method can be traced back to the pi-
oneering work of Kirkwood [5] and Buckingham [6], where
the static polarizability of an atom can be approximated uti-
lizing only the ground state wave function and corresponding
radial quantities. Dalgarno [1] demonstrated that the VPT
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method gives a rigorous lower bound to polarizability and can
also be reformulated from the Hylleraas variational method
[7]. A thorough review of the earlier development of the
VPT method and its reconstruction based on the Linderberg
inequality are available in the work by Montgomery and Pupy-
shev [8]. Some recent interest in applying the VPT method has
been focused on, e.g., the variation of dipole polarizabilities in
spatially confined atoms [8–12].

The dynamic polarizabilities, with either real or imaginary
photon frequencies, have attracted more interest in recent
years due to both their fundamental importance and practical
applications. The real-frequency dynamic polarizabilities are
closely related to quantities like tune-out and magic wave-
lengths, which play important roles in developing new atomic
clocks [3,13–16]. The imaginary-frequency dynamic polariz-
abilities find their usefulness in the calculation of dispersion
coefficients for the long-range van der Waals interactions be-
tween two or among many atoms [3,17–20]. The Hylleraas
VPT method, although it has been well established for static
polarizability, has not been suitably adapted for frequency-
dependent dynamic polarizabilities. On the other hand, there
is an increasing need for a large amount of and efficient cal-
culations of polarizabilities, both static and dynamic, as well
as interatomic dispersion coefficients for, e.g., highly charged
isoelectronic sequences [21–25] and atoms or ions embed-
ded in different plasma screening environments [26–36]. The
purpose of the present work is to develop the VPT method
to calculate frequency-dependent dynamic polarizabilities and
interatomic dispersion coefficients, so as to provide a simple,
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efficient, and yet reasonably accurate method to approach
such a task.

This paper is organized as follows. The basic knowledge
of the VPT method and the present extension of the method
to dynamic polarizabilities and dispersion coefficients are
described in Secs. II A and II B, respectively, followed by
the compact expressions for one- and two-electron atoms in
Sec. II C. Section III presents our detailed test on the static and
dynamic polarizabilities as well as on the two- and three-atom
dispersion coefficients for the H atom, He atom, He-like ions,
and plasma-screened atoms. We summarize the present work
in Sec. IV. Atomic units (a.u.) are used throughout this paper.
The polarizability has the dimension of volume in a.u., and
numerical values presented in this work are in units of a3

0
where a0 is the Bohr radius.

II. VARIATIONAL PERTURBATION THEORY

A. Static dipole polarizability

The static dipole polarizability of an N-electron atom can
be expressed in the sum-over-states formalism [3] as

α = 2
∑
j �=0

〈�0|z|� j〉〈� j |z|�0〉
Ej − E0

, (1)

where �0 is the ground state wave function, z = ∑N
q=1 zq

represents the z component of the electric dipole transition
operator for an N-electron system, and {� j} are the com-
plete orthonormalized set of the eigenfunctions of the system
Hamiltonian with eigenenergies {Ej}. By defining the orthog-
onal projection operator

P0 = 1 − |�0〉〈�0| =
∑
j �=0

|� j〉〈� j |, (2)

the static dipole polarizability can be formally written as

α = 2〈�0|zP0(H − E0)−1P0z|�0〉. (3)

The fundamental idea of applying the Hylleraas VPT
method for polarizability is to reexpand the subspace spanned
by {� j}( j �=0) in terms of a simplified k-dimensional basis set

ζ j = P0ξ j ( j = 1, . . . , k), (4)

where P0 is defined by Eq. (2) and the ξ j must be some
functions from the domain of definition of the Hamiltonian
having the same symmetry as z�0. The goodness of the VPT
approximation depends closely upon the choice of the basis
functions ξ j . Perhaps the simplest and also the most easily
applicable form is [8,12]

ξ j =
N∑

p=1

zpr j−1
p �0, (5)

in which rp is the distance from the origin to the pth electron
and zp is the corresponding z component.

Performing the spectral decomposition of the Hamiltonian
operator in Eq. (3) based on the new k-dimensional basis set
{ζ j}( j=1−k), the integral calculation of the dipole polarizability
is then reduced to the matrix multiplications in the form

α = 2[B]†[D]−1[B], (6)

where the column vector [B] is composed of elements

Bj = 〈ζ j |z|�0〉 ≡ 〈ξ j |P0z|�0〉, (7)

and the Hamiltonian matrix [D] has the elements

Di j = 〈ζi|H − E0|ζ j〉 ≡ 〈ξi|H − E0|ξ j〉. (8)

Substituting Eq. (5) into Eqs. (7) and (8) and after some
algebraic manipulations, we finally have

Bj = N (N + 1)

6

〈
r j+1

p

〉 + 1

3

∑
p>q

[〈
r2

pr j−1
q

〉 − 〈
r2

pqr j−1
q

〉]
, (9)

and

Di j = N (2 + i j)

6

〈
ri+ j−2

p

〉
. (10)

Here we have simplified the notation of ground state radial
expectation values 〈�0| f (r)|�0〉 as 〈 f (r)〉.

The great advantage of the Hylleraas VPT method for
calculating dipole polarizability relies upon the fact that it
depends only on the system ground state wave function and
radial expectation values like 〈rn

1〉, 〈rn
1r2

2〉, and 〈rn
1r2

12〉. Un-
like the sophisticated sum-over-states formalism displayed in
Eq. (1), where one generally needs to construct complete
(both discrete bound and continuum) final excited states and
calculate the corresponding transition oscillator strengths, the
VPT method does not need any information about the excited
states. Additionally, it has been strictly proved that the VPT
method predicts a lower bound for the dipole polarizability
[1,8] and the approximation approaches the exact quantity by
gradually increasing the dimension of the basis set {ζ j}, i.e.,

αk1 � αk2 � α (k1 � k2). (11)

For example, for k = 1 the VPT method was originally named
Kirkwood’s approximation [5],

αK = 2
B2

1

D11
. (12)

For k = 2, the VPT method is commonly known as Bucking-
ham’s approximation [6]

αB = 2
B2

1D22 − 2B1B2D12 + B2
2D11

D11D22 − D2
12

. (13)

It is therefore natural that

αK � αB � α. (14)

B. Dynamic polarizability and dispersion coefficients

The extension of the Hylleraas VPT method to dynamic
polarizability is not that straightforward if one starts from the
matrix multiplication form of Eq. (6). The sum-over-states
formalism for the dynamic polarizability [3] reads

α(ω) = 2
∑
j �=0

(Ej − E0)〈�0|z|� j〉〈� j |z|�0〉
(Ej − E0)2 − ω2

, (15)

where ω is the photon frequency. Following a similar pro-
cedure as in Eq. (3), the formal expression for dynamic
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polarizability is given by

α(ω) = 2〈�0|zP0
H − E0

(H − E0)2 − ω2
P0z|�0〉

= 2〈�0|zP0(H − E0 + ω)−1(H − E0)

× (H − E0 − ω)−1P0z|�0〉, (16)

where the Hamiltonian operators (H − E0 + ω)−1, (H − E0),
and (H − E0 − ω)−1 commute with each other. Applying the
spectral decomposition to all three Hamiltonian operators
based on the k-dimensional basis set {ζ j}( j=1−k) results in

α(ω) = 2[B]†[D+]−1[D][D−]−1[B], (17)

where

D+
i j = Di j + Wi j, (18)

D−
i j = Di j − Wi j, (19)

and

Wi j = ω〈ζi|ζ j〉 ≡ ω〈ξi|ξ j〉. (20)

The elements in column vector [B] and Hamiltonian matrix
[D] are given by Eqs. (7) and (8), respectively.

For the special choice of the basis function in Eq. (5), the
overlap matrix element is obtained as

〈ξi|ξ j〉 = N

3

〈
ri+ j

p

〉 + 1

3

∑
p>q

〈
(�rp · �rq)

(
ri−1

p r j−1
q + r j−1

p ri−1
q

)〉
,

(21)

where the vector term �rp · �rq can be easily transformed into
scalar products of radial variables through the cosine law

�rp · �rq = 1
2

(
r2

p + r2
q − r2

pq

)
. (22)

From Eq. (17) it can be readily observed that the application
of Hylleraas VPT method to dynamic polarizability has the
same advantage as it does for static polarizability, i.e., the
calculation depends only on the ground state wave function
and the corresponding radial expectation values.

The imaginary-frequency dynamic polarizability α(iω)
somehow attracts more interest in the literature due to its close
relationship with the dispersion coefficients in constructing
the van der Waals potential among atoms [17–20]. For a pair
of atoms (a and b), the long-range interaction can be expressed
as

Vab = − C6

R6
ab

− O
(
R−8

ab

) − · · · , (23)

where the dispersion coefficient C6 comes from the instanta-
neous dipole-dipole interaction and is defined by

C6 = 3

π

∫ ∞

0
αa(iω)αb(iω)dω. (24)

The leading term of the nonadditive long-range interaction for
a three-atom system is given by

Vabc = − C9

R3
abR3

bcR3
ac

(3 cos θa cos θb cos θc + 1) − · · · , (25)

where the dispersion coefficient C9 (which is also usually
named as Z111 [19]) comes from the triple-dipole interaction
among three atoms:

C9 = 3

π

∫ ∞

0
αa(iω)αb(iω)αc(iω)dω. (26)

Accurate calculation of the dispersion coefficients provides
an alternative estimate of the accuracy of dynamic polariz-
abilities in the entire range of photon frequency. Extension of
the VPT method to imaginary-frequency dynamic polarizabil-
ity α(iω) and the subsequent dispersion coefficients is quite
straightforward by replacing ω in Eq. (20) by iω, where the
only price to pay is the inversion of complex matrices [D+]
and [D−].

C. One- and two-electron atoms

While the above derivation can be performed for general
N-electron systems, the computational procedure and matrix
elements can be greatly simplified for one- and two-electron
atoms. For these simple systems, analytical or accurate nu-
merical predictions of static and dynamic polarizabilities as
well as dispersion coefficients are available in the literature
for benchmark comparison.

For one-electron atoms, where all interelectronic radii dis-
appear, the matrix elements reduce to

Bj = 1

3
〈r j+1〉, (27)

Di j = 2 + i j

6
〈ri+ j−2〉, (28)

Wi j = ω

3
〈ri+ j〉. (29)

For two-electron atoms, i.e., N = 2, we finally have

Bj = 2

3

[〈
r j+1

1

〉 + 〈
(�r1 · �r2)r j−1

1

〉]
, (30)

Di j = 2 + i j

3

〈
ri+ j−2

1

〉
, (31)

Wi j = ω

3

[
2
〈
ri+ j

1

〉 + 〈
(�r1 · �r2)

(
ri−1

1 r j−1
2 + r j−1

1 ri−1
2

)〉]
. (32)

III. RESULTS AND DISCUSSION

A. H atom

The static dipole polarizability of the ground state of the
H atom is analytically available as α = 4.5 and therefore can
be utilized as a convergence test to the present method. It is
known that the radial expectation values of the ground state of
the H atom read [37]

〈rn〉 = (n + 2)!

2n+1
. (33)

The use of k = 1 in Eq. (6) gives α = 4.0, and for any val-
ues of k � 2 the VPT method surprisingly predicts the exact
dipole polarizability of α = 4.5.

The real-frequency dynamic polarizabilities α(ω), how-
ever, show slower convergence than that for the static
polarizability. We show in Fig. 1 the variation of α(ω) for
the ground state of the H atom with the basis-set dimensions
k = 2, 5, and 25, together with comparison with the accurate
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FIG. 1. Real-frequency dynamic polarizability α(ω) for the
ground state of the H atom. Solid lines represent the present VPT
approximations with k = 2, 5, and 25. Dots are the sum-over-states
calculations based on the GPS method [38].

sum-over-states calculations based on the generalized pseu-
dospectral (GPS) method [38]. The GPS method has been well
established in the literature to numerically solve the radial
Schrödinger equation in the discrete variable representation
[40–42]. In our previous work, we successfully applied the
GPS method to produce highly accurate dipole polarizability
and hyperpolarizability for one-electron systems [38,43,44].
The dynamic polarizabilities based on the GPS method also
show very good agreement with the recent work of Wang et al.
[39] using the Slater-type-orbital expansions. Therefore, for
one-electron atoms the GPS numerical calculations of dy-
namic polarizability using the sum-over-states formalism can
be considered as benchmark results for comparison.

The real-frequency dynamic polarizabilities manifest two
distinct features with gradual increase of the photon frequency
from zero [where α(0) = α] to the ground state ionization
energy (ωH(1s)

ionization = 0.5). At resonant frequencies the dynamic
polarizability makes a jump from positive to negative infinity
due to the appearance of a singularity in the denominator
of Eq. (15), i.e., ωr = Ej − E0. Therefore, the resonant fre-
quencies ideally indicate the transition energies between the
ground and the dipole-allowed excited states. The tune-out
photon frequencies, on the other hand, are defined at the posi-
tions where dynamic polarizability disappears, i.e., α(ωt )=0.
For external electric fields with these special frequencies, the
target atoms do not produce energy shifts (except for the
higher-order effects).

Besides the comparison displayed in Fig. 1, we also show
in Table I the VPT predictions of the first three resonant
and tune-out frequencies for k = 1 to 25. It is clearly seen
that for small values of k, although the dynamic polarizabil-
ity successfully reproduces the static polarizability at ω = 0,
both the number and position of the predicted resonant and
tune-out frequencies are far from the analytic values of ωri =
1/2 − 1/[2(i + 1)2] and accurate numerical calculations of
ωt i from Wang et al. [39]. The use of k = 2 only predicts a

TABLE I. The first three resonant photon frequencies (ωr1, ωr2,
ωr3) and tune-out photon frequencies (ωt1, ωt2, ωt3) for the dynamic
polarizability of the ground state of the H atom predicted by the VPT
method at different values of k. “A” represents the analytic values
of ωri = 1/2 − 1/[2(i + 1)2] and the accurate calculations of ωt i by
Wang et al. [39].

k ωr1 ωt1 ωr2 ωt2 ωr3 ωt3

1 0.5000
2 0.4000
3 0.3811
4 0.3765 0.4646
5 0.3754 0.4434 0.4786
6 0.3751 0.4353 0.4611
7 0.3751 0.4319 0.4527
8 0.3750 0.4305 0.4485 0.4930
9 0.3750 0.4299 0.4464 0.4813 0.4994
10 0.3750 0.4297 0.4454 0.4743 0.4888
12 0.3750 0.4296 0.4446 0.4674 0.4774
14 0.3750 0.4295 0.4445 0.4648 0.4723 0.4945
16 0.3750 0.4295 0.4445 0.4639 0.4702 0.4865
18 0.3750 0.4295 0.4444 0.4636 0.4693 0.4822
20 0.3750 0.4295 0.4444 0.4635 0.4689 0.4799
22 0.3750 0.4295 0.4444 0.4634 0.4688 0.4786
25 0.3750 0.4295 0.4444 0.4634 0.4688 0.4778

A 0.3750 0.4295a 0.4444 0.4634a 0.4688 0.4775a

aWang et al. [39]

single resonant frequency at ωr1 = 0.400 and k = 5 the first
tune-out frequency at ωt1 = 0.4434. The convergence for both
ωr and ωt improves significantly as the basis-set dimension
k increases, with the lower-frequency quantities converging
faster than higher-frequency quantities. Recalling from Eq. (4)
that the k-dimensional basis set {ζ j}( j=1−k) should ideally
cover the entire subspace spanned by {� j}( j �=0) and remem-
bering the fact that the number of p-wave states in the H
atom is infinitely large, it is not surprising that one generally
needs to increase k so as to approach the exact dynamical
polarizabilities in the entire range of photon frequencies. If,
however, we are only interested in the low-frequency dynamic
polarizabilities below the first resonant frequency, the use
of small values of k in the VPT method is fully capable of
producing accurate predictions. Taking Fig. 1 as an example,
the calculations with k = 5 are already in good agreement
with the referenced values for ω < 0.42.

The imaginary-frequency dynamic polarizabilities α(iω)
calculated by applying the VPT method are displayed in
Fig. 2. It is surprisingly found that the use of only k = 2
is capable of producing very good agreement with the
benchmark GPS sum-over-states calculations. The results
using larger values of k are indistinguishable from those with
k = 2 in the present figure scale. All VPT approximations
with k � 2 are slightly smaller than the referenced values at
high frequencies. However, such underestimation does not
lead to significant discrepancies due to the fast decrease of
α(iω) with increasing ω.

By integrating Eqs. (24) and (26), we are able to estimate
the two- and three-atom dispersion coefficients among the H
atoms. Our calculated results at different values of k are shown
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FIG. 2. Imaginary-frequency dynamic polarizability α(iω) for
the ground state of the H atom. Solid lines represent the present
VPT approximations with k = 1 and 2. Dots are the sum-over-states
calculations based on the GPS method [38]. The inset shows the
relative errors of dispersion coefficients C6 and C9 as a function of
k on a logarithmic scale.

in Table II and compared with the most accurate predictions
of Yan et al. [18] available in the literature. It is anticipated
from the good agreement in Fig. 2 that the quantities C6 and
C9 obtained by the VPT approximation with k = 2 are quite
satisfactory, considering the simplicity of the present method.
The convergence of calculations can be easily improved by
gradually increasing k, as shown in the inset of Fig. 2, with
the three-atom coefficient converging even faster than the two-

TABLE II. The static dipole polarizability α, two-atom disper-
sion coefficient C6, and three-atom dispersion coefficient C9 for the
ground state of the H atom predicted by the VPT method at different
values of k. “A” represents the accurate calculations of C6 and C9 by
Yan et al. [18].

k α C6 C9

1 4.0 6.0 18.0
2 4.5 6.482142857142859 21.59024234693878
3 4.5 6.498443983402488 21.64308331252906
4 4.5 6.499002577446928 21.64255727701200
5 4.5 6.499025354924765 21.64247042614076
6 4.5 6.499026596235598 21.64246486944496
7 4.5 6.499026692979891 21.64246453554672
8 4.5 6.499026703545927 21.64246451279089
9 4.5 6.499026705061502 21.64246451087294
10 4.5 6.499026705330400 21.64246451066844
12 4.5 6.499026705400507 21.64246451063702
14 4.5 6.499026705405283 21.64246451063603
16 4.5 6.499026705405762 21.64246451063598
18 4.5 6.499026705405827 21.64246451063597
20 4.5 6.499026705405837 21.64246451063597

A 4.5 6.499026705405839a 21.64246451063597a

aYan et al. [18]

atom coefficient. This is probably because the integrand of the
dispersion coefficient C9 is composed of three dynamic polar-
izabilities and therefore depends less on the high-frequency
component compared to C6. By employing k = 20, we finally
arrive at the dispersion coefficients of C6 and C9 with an
accuracy close to the double-precision limit.

B. He atom

The He atom is one of the simplest many-electron systems
that include electron correlation. To investigate the applica-
bility and convergence of the VPT method for the He atom,
we consider two types of wave function for the initial ground
state, namely the configuration-interaction function based on
Slater-type orbitals (STOCI) [48] and the explicitly correlated
Hylleraas configuration-interaction function (HyCI) [49–52].
Both of these two types of wave function can be uniformly
expressed as

�0(�r1, �r2) = Â
kmax∑
k=0

lmax∑
la,b=0

∑
i, j

Cai,b j r
k
12φai (r1)φb j (r2)

×Y LM
la,lb (r̂1, r̂2)SS,MS (σ1, σ2), (34)

where Â is the antisymmetric operator, Y LM
la,lb

(r̂1, r̂2) and
SS,MS (σ1, σ2) are the two-electron coupled orbital angular mo-
mentum and spin wave functions, respectively. φ(r) is the
radial part of the one-electron STO

φa(r) = rna−1e−ξar, (35)

in which ξ is a nonlinear parameter to be determined in
the variational calculation. For kmax = 0, i.e., no r12 coor-
dinate is included in the basis set, Eq. (34) reduces to the
conventional STOCI basis set. kmax � 1 corresponds to the
explicitly correlated HyCI basis set. Here we generally set
kmax = 1, which gives a good balance between the complete-
ness of the basis set and computational efficiency. The naming
schemes for both the STOCI and HyCI basis sets are unified
as (n1, n2, . . . )kmax, which means that we first use several
groups of STOs to construct a near complete one-electron
basis set, with each group of STOs having the largest prin-
cipal quantum number ni and all possible values of orbital
angular momentum li (< ni). The one-electron basis sets are
then coupled to construct the two-electron basis set in the
configuration-interaction manner.

The STOCI calculations of the He atom ground state en-
ergy, static dipole polarizability, and two- and three-atom
dispersion coefficients are summarized in the top section of
Table III. Here we choose (6,4,2)0, (7,5,3)0, and (8,6,4)0 basis
sets, which couple to the total numbers of 158, 278, and 449
terms in the expansion of the ground state wave function.
With gradual enlargement of the basis set, the relative er-
ror of energy δE0 decreases from 7.6 × 10−5 to 3.0 × 10−5.
For a quantitative comparison of the quality of the initial
wave function, we also include perhaps the most accurate CI
calculation by Bromley and Mitroy [45,53] who employed
8586 terms of basis functions built upon the Laguerre-type
orbitals and predicted the ground state energy with a relative
error 4.0 × 10−6. For the dipole polarizability and dispersion
coefficients, we gradually increase the dimension k to make
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TABLE III. The bound energy E0, static dipole polarizability α, two-atom dispersion coefficient C6, and three-atom dispersion coefficient
C9 for the ground state of the He atom predicted by the VPT method with k = 15 for different types of basis set. “LTOCI” represents the CI
calculation of energy by Bromley and Mitroy [45] based on the Laguerre-type orbitals. “Hylleraas” refers to the benchmark predictions of α,
C6, and C9 by Yan et al. [18] based on the Hylleraas wave function.

Basis Nbasis E0 δE0 α δα C6 δC6 C9 δC9

(6,4,2)0 158 −2.903503872 7.6[−5] 1.379179304 0.290% 1.458137817 0.194% 1.472877100 0.452%
(7,5,3)0 278 −2.903589433 4.6[−5] 1.379412517 0.273% 1.458378795 0.178% 1.473319819 0.422%
(8,6,4)0 449 −2.903635883 3.0[−5] 1.379454574 0.270% 1.458423728 0.175% 1.473397143 0.416%
LTOCI 8586 −2.903712786a 4.0[−6]
(4,4)1 140 −2.903724371692 1.8[−9] 1.379488819 0.268% 1.458436737 0.174% 1.473418832 0.415%
(5,5)1 250 −2.903724376813 7.6[−11] 1.379493578 0.267% 1.458439337 0.174% 1.473424076 0.415%
(6,6)1 406 −2.903724377019 5.2[−12] 1.379493856 0.267% 1.458439474 0.174% 1.473424353 0.415%
Hylleraas −2.903724377034b 1.383192174c 1.460977837c 1.479558606c

aBromley and Mitroy [45].
bDrake et al. [46].
cYan et al. [18]; see also Pachucki and Sapirstein [47] for more accurate dipole polarizability.

sure that convergence under the VPT approximation is fully
achieved. As demonstrated in Table IV, the use of k = 15
is responsible for all these quantities converging to the ninth
digit after the decimal point. Actually, the use of k as small
as 3 is good enough to produce results with three-digits accu-
racy.

From Table III we find that although the ground state
energy (and wave function) has achieved a high accuracy and
the VPT method has been fully converged, the calculations of
α, C6, and C9 still differ to a comparably large extent from
the accurate predictions of Yan et al. [18] using the sum-over-
states method based on the Hylleraas basis functions [49]. To
remove possible inaccuracy from the initial ground state wave
function, we further performed the VPT calculations based on
the (4,4)1, (5,5)1, and (6,6)1 HyCI basis sets. The accuracy of
the ground state energies has been improved by several orders
of magnitude using the HyCI basis sets; the predictions of α,
C6, and C9, however, do not improve significantly.

The discrepancy between the present VPT calculations and
the referenced results should be attributed to the incomplete-
ness of the basis set {ζ j}( j=1−k), even in the limit of k → ∞.

TABLE IV. Convergence of the static dipole polarizability α,
two-atom dispersion coefficient C6, and three-atom dispersion coef-
ficient C9 for the ground state of the He atom predicted by the VPT
method at different values of k. The ground state wave function is
represented by the (8,6,4)0 STOCI basis set.

k α C6 C9

1 1.132492802 1.278290133 1.085740781
2 1.379323401 1.451094986 1.467019982
3 1.379384550 1.458232609 1.473550014
4 1.379439574 1.458408733 1.473360361
5 1.379449487 1.458416604 1.473379557
6 1.379454047 1.458421945 1.473394278
7 1.379454519 1.458423516 1.473397045
8 1.379454534 1.458423699 1.473397087
10 1.379454546 1.458423714 1.473397108
12 1.379454557 1.458423720 1.473397123
14 1.379454572 1.458423728 1.473397143
15 1.379454574 1.458423728 1.473397143

This can be understood from Eq. (11), where a smaller basis
set only predicts a lower bound of the exact polarizability.
As a matter of fact, the simple form of Eq. (5) for the
functions ξ j employed in the present work is limited to the
one-electron excitation component, which means that these
functions are ideally complete (k → ∞) only for one-electron
atoms, while in many-electron atoms the multielectron excita-
tions are necessary for a complete description of the subspace
orthogonalized to the ground state. An alternative choice for
the two-electron atom is

ξm = (z1 + z2)ri−1
1 r j−1

2 �0 (i, j � 1), (36)

where the multiple index m enumerates all possible combina-
tions of (i, j). If the ground state wave function is expressed in
terms of an explicitly correlated basis set such as the Hylleraas
or HyCI type, the more accurate and efficient function can be
[12]

ξm = (z1 + z2)ri−1
1 r j−1

2 rk−1
12 �0, (i, j, k � 1), (37)

where the index m enumerates all possible combinations of
(i, j, k). The use of either Eq. (36) or (37) would, however,
significantly increase the complexities in the expression of
vector [B] and matrices [D] and [W] by radial expectation
quantities. On the other hand, the extension of Eqs. (36)
and (37) to general many-electron systems seems to be less
competitive than the sophisticated sum-over-states method
and obviously destroys the simplicity of the VPT method.
Considering that the VPT method is not very sensitive to
the ground state wave function and it produces fairly good
estimates of the static and dynamic polarizabilities (e.g., δα <

0.3% for the He atom) and the two- and three-atom dispersion
coefficients (δC6 < 0.2%, δC9 < 0.5%), we restrict all our
calculations in the present work based on Eq. (5), and would
like to leave the application of Eqs. (36) and (37) as a future
work.

Figure 3 displays the real-frequency dynamic polarizabil-
ities α(ω) for the ground state of the He atom calculated
by the VPT method at different values of k. A brief sum-
mary of referenced values is given by Bishop and Pipin
[54] and Kar [29]. The (8,6,4)0 STOCI basis set is used in
the expansion of the ground state wave function. As in the
H atom, the use of k = 1 does not produce any resonant
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FIG. 3. Real-frequency dynamic polarizability α(ω) for the
ground state of the He atom. Solid lines represent the present VPT
approximations with k = 2, 5, and 15. Dots are the sum-over-states
calculations by Bishop and Pipin [54] and Kar [29].

photon frequencies below the ground state ionization energy
(ωHe

ionization = 0.903724). The use of k = 2 predicts the first res-
onant frequency at ωr1 = 0.917, and both k = 5 and 15 give
ωr1 = 0.799, which is slightly larger than the exact value of
ωr1 = E1(1Po) − E0(1Se) = 0.780. The incorrect behavior of
the dynamic polarizabilities above the first resonant frequency
as well as the missing of higher-lying resonant frequencies are
attributed to the one-electron excitation approximation inher-
ent in the restrictive basis function of Eq. (5). Nevertheless, we
conclude that the VPT method is capable of producing reliable
estimates of the real-frequency dynamic polarizabilities below
the first resonant frequency.

It is interesting to make a rough comparison of the com-
putation time between the present VPT method and the usual
sum-over-states method. For the dipole polarizability, if the
dimension of the P-wave excited states is of the same order of
magnitude as that of the ground S-wave state and the computa-
tion time for calculating each dipole transition matrix element
is approximately equal to the time for each radial mean value,
the speed-up factor of the VPT method compared to the sum-
over-states method would roughly be the ratio between the
dimension of the P-wave states and the total number of radial
mean values calculated. Taking the He atom as an example,
when the (8,6,4)0 STOCI basis set is used for constructing the
singlet P-wave states (NP

basis = 646) and k = 4 is employed in
the VPT method to converge the polarizability to the fourth
digit (α = 1.3794), the speed-up factor would probably be
NP

basis/(k2 + 2k) ≈ 27, which means that the VPT method is
more than 20 times faster than the sum-over-states method.

C. He-like ions

There exists a rigorous Z-scaling law for the dipole polar-
izabilities of one-electron atoms [38,58]. For the H-like ion
with nuclear charge Z , it is

Z4αH(Z ) = αH(Z = 1). (38)

The use of a similar law for dynamic polarizabilities yields
the Z-scaling laws for the two- and three-atom dispersion
coefficients (here we only focus on the homonuclear diatomic
and triatomic systems)

Z6CH
6 (Z ) = CH

6 (Z = 1), Z10CH
9 (Z ) = CH

9 (Z = 1). (39)

Such Z-scaling laws, however, do not apply to many-electron
atoms due to the existence of electron correlation.

Taking advantage of the simplicity and fast convergence
(with respect to the dimension k) of the VPT method, we
investigate the variation of dipole polarizability and the two-
and three-atom dispersion coefficients for the He isoelectronic
sequence. The (8,6,4)0 STOCI basis set is employed for all
He-like ions from Z = 2 to 20, and the calculated results
are summarized in Table V. For ions with 2 � Z � 10, Zhu
et al. [56] have performed the most accurate predictions of α

and C6 so far using the sum-over-states method based on the
Hylleraas basis functions. Patil [57] estimated the three-atom
dispersion coefficient C9 for the He atom and Li+ and Be2+

ions based on asymptotic two-electron wave functions. Their
results are included in Table V for reference. It is not surpris-
ing that, with gradually increasing nuclear charge, the present
calculations of ground state energy, dipole polarizability, and
two-atom dispersion coefficient agree better with the refer-
enced results. This is attributed to both a better description of
the ground state wave function using the same basis set and a
more complete description of the excited subspace, as the nu-
clear charge is increased. It is then a rather natural conjecture
that as Z → ∞, where the electron correlation disappears,
some Z-scaling laws similar to Eqs. (38) and (39) should be
applicable to the many-electron isoelectronic sequence.

The asymptotic behavior of dipole polarizabilities for iso-
electronic sequences have been investigated by Koch and
Andrae [21,22] in the framework of restricted Hartree-Fock
theory. A more rigorous derivation of the approximate dipole
polarizabilities for two-electron atoms was performed by Dal-
garno and Stewart [59] and Drake and Cohen [60] using the
1/Z expansion technique. It was shown that for He-like ions
with large values of Z , the leading term of the exact Z ex-
pression reads α = 9/(Z − 0.359375)4, where the coefficient
0.359375 in the denominator represents an average screening
effect on one electron from the other in the two-electron atom
[60]. The quantity 9 in the numerator can be understood as
follows. The Hamiltonian of two-electron atoms can be trans-
formed into a Z-scaled form [52],

H

Z2
= −1

2
∇2

ρ1
− 1

2
∇2

ρ2
− 1

ρ1
− 1

ρ2
+ 1

Z

1

ρ12
, (40)

where

ρi = Zri (i = 1, 2, 12). (41)

At the limit of Z → ∞, the two-electron atom reduces to
two noninteracting H atoms and, therefore, the system total
polarizability is equal to the direct summation of those for two
H atoms.

Following the asymptotic formula of Drake and Cohen [60]
and using Eq. (39), we arrive at the approximate Z-scaling
laws for the quantities α, C6, and C9 in the forms

lim
Z→∞

(Z − 0.359375)4αHe(Z ) = 2αH(Z = 1) = 9, (42)
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TABLE V. The ground state energy E0, static dipole polarizability α, two-atom dispersion coefficient C6, and three-atom dispersion
coefficient C9 for the He-like ions predicted by the VPT method with k = 15. All ground state wave functions are represented by the (8,6,4)0
STOCI basis set. Numbers in square brackets represent powers of ten.

Z E0 α C6 C9

2 −2.903636 1.379455 1.458424 1.473397
−2.903724a 1.383192b 1.460978b 1.443c

3 −7.279795 1.922553[−1] 7.821339[−2] 1.106324[−2]
−7.279913a 1.924532[−1]b 7.826431[−2]b 1.056[−2]c

4 −1.365543[1] 5.224078[−2] 1.120653[−2] 4.314976[−4]
−1.365557[1]a 5.226876[−2]b 1.121033[−2]b 3.99[−4]c

5 −2.203083[1] 1.963781[−2] 2.598519[−3] 3.764680[−5]
−2.203097[1]a 1.964429[−2]b 2.599064[−3]b

6 −3.240609[1] 8.961937[−3] 8.041013[−4] 5.319571[−6]
−3.240625[1]a 8.963931[−3]b 8.042154[−4]b

7 −4.478129[1] 4.654770[−3] 3.017559[−4] 1.037269[−6]
−4.478145[1]a 4.655522[−3]b 3.017872[−4]b

8 −5.915643[1] 2.652184[−3] 1.300197[−4] 2.547274[−7]
−5.915660[1]a 2.652507[−3]b 1.300299[−4]b

9 −7.553155[1] 1.620042[−3] 6.215765[−5] 7.440098[−8]
−7.553171[1]a 1.620196[−3]b 6.216146[−5]b

10 −9.390664[1] 1.044710[−3] 3.222333[−5] 2.487704[−8]
−9.390681[1]a 1.044791[−3]b 3.222493[−5]b

12 −1.366568[2] 4.910669[−4] 1.040106[−5] 3.775374[−9]
−1.366569[2]a

14 −1.874069[2] 2.603092[−4] 4.018668[−6] 7.733737[−10]
−1.874071[2]a

16 −2.461569[2] 1.505462[−4] 1.768916[−6] 1.969024[−10]
−2.461571[2]a

18 −3.129070[2] 9.301118[−5] 8.595623[−7] 5.911935[−11]
−3.129072[2]a

20 −3.876571[2] 6.052045[−5] 4.513812[−7] 2.020212[−11]
−3.876572[2]a

aDrake [55].
bZhu et al. [56].
cPatil [57].

lim
Z→∞

(Z − 0.359375)6CHe
6 (Z ) = 4CH

6 (Z = 1) = 26, (43)

lim
Z→∞

(Z − 0.359375)10CHe
9 (Z ) = 8CH

9 (Z = 1) = 173.14.

(44)

We display in Fig. 4 the variation of α, C6, and C9 for the
ground state of He-like ions as a function of nuclear charge, on
a log-log scale. The good agreement among different theoreti-
cal calculations and with the approximate Z-scaling laws indi-
cates that the present development of the VPT method is suit-
able for extracting the asymptotic behaviors of both the polar-
izabilities and dispersion coefficients for highly charged ions.

D. Plasma-screened atoms

In this section, we focus on application of the VPT method
in the fast calculation of dynamic polarizabilities and disper-
sion coefficients for atoms embedded in plasma environments.
For a large range of distribution of plasmas in the temperature-
density diagram (see, e.g., Fig. 1 in Ref. [61]), the weakly
coupled classical plasmas with e < 1 can be well modeled
by the Debye-Hückel model [62], where e is the electron-

electron Coulomb coupling parameter. For one-electron atoms
embedded in weakly coupled classical plasmas, the effective
Hamiltonian is given by

H = −1

2
∇2 − Z

e−λr

r
, (45)

where the potential parameter λ = 1/D represents the stati-
cally averaged screening strength from the plasma electrons.

D =
√

kBTe
4πe2ne

is the well-defined Debye length in which ne

and Te are, respectively, the plasma electron density and tem-
perature [63]. Following the same model, the Hamiltonian of
plasma-screened two-electron atoms is

H = −1

2
∇2

1 − 1

2
∇2

2 − Z
e−λr1

r1
− Z

e−λr2

r2
+ e−λr12

r12
. (46)

Here we use the simplified model that the surrounding
plasma electrons produce the same screening effect (i.e.,
same screening parameter λ) on both the electron-nucleus and
electron-electron interactions.

In past decades, a large amount of research has been
focused on the investigation of atomic structure and spec-
tral properties affected by different plasma environments
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FIG. 4. Static polarizability α and two- and three-atom disper-
sion coefficients C6 and C9 for the ground state of He isoelectronic
sequence with 2 � Z � 20. Solid and hollow symbols represent,
respectively, the present VPT and previous calculations of Zhu et al.
[56] and Patil [57]. Solid lines are the approximate Z-scaling laws of
Eqs. (42)–(44).

(see Refs. [33–36] for recent reviews). The calculation of
dynamic polarizabilities and dispersion coefficients has also
attracted considerable interest in the literature [35]. To the best
of our knowledge, Kar and Ho [26] first performed accurate
predictions of the dispersion coefficients C6 for H–H, H–He,
and He–He interactions under the screening of Debye-Hückel
plasmas. Slater-type orbitals and exponentially correlated ba-
sis sets were employed for the H and He atoms, respectively,
and dispersion coefficients were calculated employing the

sum-over-states formalism. Generally speaking, in these so-
phisticated calculations one needs to optimize both the initial
and final states for each screening parameter, and calculate
oscillator strengths covering all discrete bound and continuum
final states. The present VPT method, which only needs one
to optimize the ground state wave function and calculate ra-
dial expectation values, provides an alternative, simple, and
efficient tool for estimating these quantities.

For the plasma-screened H atom, we employ the numer-
ical GPS method to obtain the ground state wave function
for screening parameters that are smaller than the critical
value of λH(1s)

c (λH(1s)
c = 1.190612421 . . . is defined as the

screening parameter beyond which the ground state of the H
atom merges into the continuum [64,65]). The present VPT
calculations of α, C6, and C9 are displayed in Table VI with
all results converging to the last reported digit by gradually
increasing k. The dipole polarizabilities are in full agreement
with our previous sum-over-states calculations [38] over the
entire range of λ. The present H-H C6 coefficients reproduce
perfectly the prediction of Kar and Ho [26] for λ < 0.7,
and the H–H–H C9 coefficients in Debye plasmas are only
reported by us.

Figure 5(a) depicts an overview of the variation of α, C6,
and C9 as a function of screening parameters. All quanti-
ties show fast increase as λ approaches λc. Such behavior
apparently indicates that the system wave function becomes
increasingly diffuse when the plasma screening strength is
increased. The asymptotic behavior of an atomic system near
its critical bound region is of special importance, from both
the fundamental and practical aspects, to provide insights to
threshold laws and quantum phase transitions [65–68]. As
we can see from Fig. 5(b), the three quantities in the critical
region follow negative power laws as

αH(λ) ∝ (λc − λ)−4, (47)

TABLE VI. Static dipole polarizability α, two-atom dispersion coefficient C6, and three-atom dispersion coefficient C9 for the ground state
of the H atom at different values of λ. Numbers in square brackets represent powers of ten.

λ α C6 C9

0 4.500000000000 6.499026705406 2.164246451064[1]
0.1 4.699777471480 6.912658665498 2.402663529021[1]
0.2 5.276368793394 8.150277486768 3.175222942955[1]
0.3 6.315035521549 1.052505598588[1] 4.895190131737[1]
0.4 8.075794695589 1.492800054106[1] 8.847436269678[1]
0.5 1.114765595284[1] 2.358193377878[1] 1.920176199460[2]
0.6 1.693124176675[1] 4.262824112802[1] 5.240270096428[2]
0.7 2.922556619973[1] 9.239978397486[1] 1.946689821914[3]
0.8 6.061406659843[1] 2.607535300661[2] 1.130710421976[4]
0.9 1.676953145335[2] 1.121290952566[3] 1.336063259043[5]
1.0 7.834765746428[2] 1.050409540798[4] 5.821620802412[6]
1.1 1.354489629424[4] 7.001970015724[5] 6.698805761060[9]
1.12 3.590778714219[4] 2.978988850247[6] 7.55500122387[10]
1.13 6.541410695626[4] 7.272925360853[6] 3.36009835909[11]
1.14 1.330958873464[5] 2.096046127390[7] 1.97030869672[12]
1.15 3.176138469271[5] 7.673455935299[7]
1.16 9.735291757571[5] 4.089676843279[8]
1.17 4.686915192955[6] 4.290958447924[9]
1.18 6.601807271684[7] 2.25324461266[11]

035305-9



WEN HAO XIA et al. PHYSICAL REVIEW E 108, 035305 (2023)

FIG. 5. Static polarizability α and two- and three-atom disper-
sion coefficients C6 and C9 for the ground state of the H atom as
a function of (a) λ and (b) λc − λ. In panel (a) the vertical line
indicates the critical screening parameter λH

c . The asymptotic laws
of Eqs. (47)–(49) are included in panel (b) to guide the eye

CH
6 (λ) ∝ (λc − λ)−6, (48)

CH
9 (λ) ∝ (λc − λ)−10. (49)

Equation (47) can be conveniently understood from the
asymptotic laws of energy and radial expectation values based
on the VPT method, e.g., the Kirkwood (k = 1) and Bucking-
ham (k = 2) approximations [65,66]. Equations (48) and (49)
can be derived by analogy to Eq. (39). An interesting compar-
ison can be made between the critical laws of Eqs. (47)–(49)
and the approximate Z-scaling laws in Eqs. (42)–(44), where
the increase of screening parameter (nuclear charge) system-
atically extends (contracts) the wave functions into a larger
(smaller) region, which results in negative (positive) power
laws in corresponding asymptotic region.

FIG. 6. Static polarizability α and two- and three-atom disper-
sion coefficients C6 and C9 for the ground state of the He atom as a
function of screening parameter λ. Solid dots are the referenced cal-
culations from Kar and Ho [26,27]. Open circles represent the dipole
polarizabilities from Martínez-Flores and Cabrera-Trujillo [30]. The
vertical line indicates the critical screening parameter λHe

c .

The present VPT calculations of α, C6, and C9 for the
ground state of the He atom are shown in Table VII and
depicted in Fig. 6 for a wide range of screening parameters.
The similar trends between Figs. 6 and 5(a) demonstrate
similar expansion behavior of atoms in the plasma screening
environment. Although without rigorous proof, we found in
our previous work [69] very strong evidence that the critical
screening parameters for two-electron atoms are the same as
those for one-electron ions with the same nuclear charge, i.e.,
λHe

c = λHe+
c = 2λH

c = 2.381224842 . . . . For screening param-
eters that are larger than 2.0, we use the (9,7,5)0 STOCI
basis set (680 terms) for better convergence. The estimated
ground state energies are always slightly higher than the
explicitly-correlated-basis calculations of Kar and Ho [70]
(except at λ = 2 where our result converges better), and the
dipole polarizabilities and He-He C6 coefficients are systemat-
ically smaller than the accurate values from the same authors
[26,27]. The comparison with Lin et al. [28] shown in Ta-
ble VII is more interesting, where those authors employed the
sum-over-states method based on extensively large B-spine
CI basis sets (∼4000 and 3500 terms for the S- and P-wave
states). The present VPT calculations, with significantly less
computational effort, show better agreement with the refer-
enced results [27]. The most recent work of Martínez-Flores
and Cabrera-Trujillo [30] estimated the dipole polarizabilities
for λ � 2 using the restricted Hartree-Fock approach. Their
results are larger and smaller, respectively, than the present
predictions for screening parameters smaller and larger than
1.2. The three-atom dispersion coefficient C9 for the He atom
under Debye plasmas is reported.

Finally, we would like to explore the applicability of the
VPT method for real-frequency dynamic polarizabilities of
the plasma-screened He atom. Some benchmark results in the
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TABLE VII. Ground state energy E0, static dipole polarizability
α, two-atom dispersion coefficient C6, and three-atom dispersion
coefficient C9 for the ground state of the He atom at different values
of λ. All the present results are obtained employing the (8,6,4)0
STOCI basis set, except for λ � 2 where the (9,7,5)0 basis set is
used. Numbers in square brackets represent powers of ten.

λ E0 α C6 C9

0 −2.90364 1.37946 1.45842 1.47340
−2.90372a 1.38319b 1.46098c

−2.90358c 1.37785c

−2.86168d 1.48708d

0.05 −2.75646 1.38560 1.46738 1.48890
−2.75655a 1.38936b 1.46996b

1.38393c

0.1 −2.61476 1.40313 1.49309 1.53374
−2.61485a 1.40697b 1.49574b

−2.61471c 1.40126c

−2.57304d 1.51062d

0.15 −2.47832 1.43129 1.53471 1.60743
0.2 −2.34692 1.46976 1.59219 1.71151

−2.34701a 1.47383b 1.59506b

−2.34686c 1.46681c

−2.30584d 1.57700d

0.25 −2.22038 1.51868 1.66624 1.84952
−2.22047a 1.52294b 1.66930b

0.3 −2.09854 1.57857 1.75824 2.02703
−2.05844d 1.68564d

0.4 −1.86836 1.73487 2.00499 2.53572
−1.86845a 1.73995b 2.00889b

−1.82950d 1.84458d

0.5 −1.65531 1.94951 2.35853 3.34448
−1.65540a 1.95541b 2.36332b

1.92805c

−1.61790d 2.05526d

0.6 −1.45847 2.24021 2.86250 4.65253
−1.42268d 2.34670d

0.8 −1.11024 3.17528 4.65708 1.0665[1]
−1.07809d 3.26472d

1 −8.1813[−1] 5.00574 8.80735 3.1584[1]
−8.18214[−1]a 5.02458b 8.83150b

−7.8997[−1]d 5.04652d

1.2 −5.7748[−1] 8.97588 2.0047[1] 1.2806[2]
−5.5357[−1]d 8.85748d

1.4 −3.8420[−1] 1.8940[1] 5.7979[1] 7.7749[2]
−3.6471[−1]d 1.82898[1]d

1.6 −2.3455[−1] 4.9752[1] 2.3264[2] 8.1673[3]
−2.1959[−1]d 4.70670[1]d

1.8 −1.2492[−1] 1.7954[2] 1.5102[3] 1.9114[5]
−1.1456[−1]d 1.67900[2]d

1.9 −8.3996[−2] 4.0748[2] 5.0414[3] 1.4487[6]
−7.591[−2]d 3.82292[2]d

2 −5.1743[−2] 1.1117[3] 2.2163[4] 1.7364[7]
−5.169[−2]a

−4.587[−2]d 1.05711[3]d

2.1 −2.7673[−2] 4.0129[3] 1.4899[5] 4.2151[8]
2.2 −1.1335[−2] 2.4157[4] 2.1680[6] 3.697[10]
2.3 −2.2735[−3] 5.4763[5] 2.3422[8] 9.094[13]

aKar and Ho [70].
bKar and Ho [26,27].
cLin et al. [28].
dMartínez-Flores and Cabrera-Trujillo [30].

FIG. 7. Real-frequency dynamic polarizability α(ω) for the
ground state of the He atom at screening parameters λ = 0.1–1.1
(from bottom to top). Solid dots are the referenced values from
Kar [29]. Stars indicate the ionization thresholds where the dynamic
polarizability ideally goes to infinity.

parameter range of λ � 0.3 and ω � 0.6 are available in the
literature for comparison [29]. Our calculations are shown in
Fig. 7 for 0.1 � λ � 1.1 and all possible values of ω. It is
known that the first 1Po excited state only exists for λ � 0.21,
beyond which all 1Po-wave bound states are absorbed into
the continuum [48]. Therefore, at λ = 0.1 and 0.2 there exist,
respectively, a resonant frequency ωr1 at 0.762 and 0.715 [29].
For plasma screening parameters larger than 0.3, the dynamic
polarizability increases monotonically from the static quan-
tity and approaches infinity at corresponding λ-dependent
ionization threshold ωHe

ionization(λ) = EHe+
0 (λ) − EHe

0 (λ). How-
ever, since the VPT approximation provides a rigorous lower
bound to the exact polarizability, as one can see from com-
parison with the referenced values shown in Fig. 7, the VPT
method is less accurate than the sophisticated sum-over-states
method especially near the ionization threshold. For photon
frequencies that are smaller than the ionization threshold, the
VPT method is expected to be able to produce a good estimate
of the behavior of dynamic polarizability.

IV. CONCLUSION

In the present work, we extend the VPT method de-
veloped originally for static polarizability to the real- and
imaginary-frequency dynamic polarizabilities and the two-
and three-atom dispersion coefficients. The present extended
VPT method provides the great advantage that only the system
ground state wave function and radial expectation values are
needed, and at the same time it keeps the feature that it pro-
vides rigorous lower bounds to the exact quantities. We tested
this method on several one- and two-electron atoms and ions.
The converged results for the H atom exactly reproduce the
accurate sum-over-states calculations, while for the He atom
the VPT method gives a slightly lower estimate of the static

035305-11



WEN HAO XIA et al. PHYSICAL REVIEW E 108, 035305 (2023)

polarizability and dispersion coefficients. We propose that
such an underestimate can be further improved by employing
more complete basis sets in the orthogonalized subspace. The
VPT calculations for the He isoelectronic sequence reveal in-
teresting approximate Z-scaling laws for both polarizabilities
and dispersion coefficients.

The recent interest in the spectral properties of atoms
embedded in plasma environments requires an increasingly
large amount of computational effort to solve the model
atoms across a wide range of plasma screening parameters.
On the strength of the simplicity and efficiency of the VPT
method, we investigated the polarizabilities and dispersion
coefficients for the H and He atoms surrounded by weakly
coupled plasmas within the Debye-Hückel model. The re-
sults for the H atom show asymptotic power laws near the
critical bound region which are similar to the inverse of
Z-scaling laws in H-like ions. The calculations of static polar-
izabilities and dispersion coefficients for the plasma-screened
He atom show good agreement with the referenced results
over a wide range of plasma parameters. The real-frequency
dynamic polarizabilities obtained are reasonably accurate

for photon frequencies below the resonant and ionization
thresholds. Extension of the present work to more complex
systems, especially the three-electron atoms, is promising.
Due to the fact that the three-electron atoms can be more
reasonably treated as hydrogen-like atoms, application of the
present VPT method with one-electron excitation approxi-
mation to three-electron atoms is probably as good as, or
even better than, the situation in two-electron atoms. The
introduction of alternative or multielectron excitation basis
sets in the orthogonalized subspace is worth trying in the
future.

The data that support the findings of this study are available
within the article.
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