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Studies of multiphase fluids utilizing the lattice Boltzmann method (LBM) are typically severely restricted by
the number of components or chemical species being modeled. This restriction is particularly pronounced for
multiphase systems exhibiting partial miscibility and significant interfacial mass exchange, which is a common
occurrence in realistic multiphase systems. Modeling such systems becomes increasingly complex as the number
of chemical species increases due to the increased role of molecular interactions and the types of thermodynamic
behavior that become possible. The recently introduced fugacity-based LBM [Soomro et al., Phys. Rev. E 107,
015304 (2023)] has provided a thermodynamically consistent modeling platform for multicomponent, partially
miscible LBM simulations. However, until now, this fugacity-based LB model had lacked a comprehensive
demonstration of its ability to accurately reproduce thermodynamic behavior beyond binary mixtures and to
remove any restrictions in a number of components for multiphase LBM. In this paper we closely explore these
fugacity-based LBM capabilities by showcasing comprehensive, thermodynamically consistent simulations of
multiphase mixtures of up to ten chemical components. The paper begins by validating the model against
the Young-Laplace equation for a droplet composed of three components. The model is then applied to study
mixtures with a range of component numbers from one to six, showing agreement with rigorous thermodynamic
predictions and demonstrating linear scaling of computational time with the number of components. We further
investigate ternary systems in detail by exploring a wide range of temperature, pressure, and overall composition
conditions to produce various characteristic ternary diagrams. In addition, the model is shown to be unrestricted
in the number of phases as demonstrated through simulations of a three-component three-phase equilibrium case.
The paper concludes by demonstrating simulations of a ten-component, realistic hydrocarbon mixture, achieving
excellent agreement with thermodynamics for both flat interface vapor-liquid equilibrium and curved interface
spinodal decomposition cases. This study represents a significant expansion of the scope and capabilities of
multiphase LBM simulations that encompass multiphase systems of keen interest in engineering.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) has proven to be
a powerful tool to simulate flow, particularly for multiphase
systems. One of the features that make the LBM such an
attractive tool is its ability to handle multiple phases with
different chemical components. However, with very few ex-
ceptions, multicomponent applications of multiphase LBM
have mostly been restricted to (1) binary-only (mostly) or
ternary-only systems and (2) immiscible phases. This severely
limits the scope of multiphase LBM because complex fluids
with multiple components, beyond just binary and ternary
systems, are ubiquitous in industrial and natural systems and
interfacial mass transfer, or partial miscibility is an important
consideration in these systems. In our recently published pa-
per [1], we develop an LBM formulation based on the fugacity
thermodynamic property, which is capable of overcoming
the chemical component restriction in LBM and enables
thermodynamically consistent, partially miscible simulations.
However, in that study we provided only a comprehensive
analysis of the thermodynamic behavior of binary systems.

*msoomro@alumni.psu.edu

In the current paper, we provide proof that our fugacity-based
formulation, along with some suggested modifications, can be
used to accurately simulate partially miscible fluids with any
number of components, under a wide range of conditions, and
in precise agreement with thermodynamic predictions. We
also present a comprehensive analysis of the thermodynamic
behavior expected of partially miscible ternary systems.

The flow of complex fluids consisting of multiple compo-
nents is of great importance in various applications, including
geological carbon dioxide sequestration, solute extraction
in liquid-liquid systems, and hydrocarbon recovery. Hydro-
carbons, in particular, are an important example of such
fluids since they can be composed of hundreds of distinct
chemical components [2]. However, modeling these systems
poses significant challenges as they are known to exhibit
complex phase behavior. Depending on temperature, pres-
sure, and composition conditions, they can exist as a single
phase or multiple phases, where the degree of miscibility
of these phases is a crucial consideration. Although immis-
cible flow models are commonly embraced because they
significantly simplify the resulting hydrodynamic and ther-
modynamic equations, they represent only an idealized subset
of all the partial-miscibility scenarios that exist in practice.
In reality, phases exhibit at least some degree of interfacial
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mass transfer and are partially miscible. Given the immense
importance of these complex fluids, there is a need for par-
tially miscible flow models that can handle a large number
of components. This is challenging due to the increase in
complexity of phase behavior with the addition of every single
component.

Any attempt to model such systems using the LBM needs
to couple multiphase LBM with a robust thermodynamic
model. One popular approach to incorporating multicompo-
nent thermodynamics is to use equations of state (EOSs) since
they enable the estimation of fugacity [3], a well-established
thermodynamic property that is a proxy to chemical potential
and can thus be considered as the potential driving the flux
of chemical species. As a result, fugacity can be deployed in
lieu of chemical potential to arrive at thermodynamic equilib-
rium conditions via the iso-fugacity criterion. Modern cubic
EOSs are examples of EOSs that have been refined over
the years to accurately replicate multicomponent and multi-
phase thermodynamics. The van der Waals (vdW) EOS was
the first cubic EOS, but it is known to be quantitatively in-
accurate for modeling phase behavior. More modern cubic
EOSs, such as the Soave-Redlich-Kwong (SRK) EOS [4]
and Peng-Robinson (PR) EOS [5], are better known for their
accuracy. The PR EOS is particularly prevalent in modeling
hydrocarbon systems. Additionally, a cubic EOS can be ex-
tended to multicomponent systems by utilizing vdW random
mixing rules [6].

The LBM can be extended to multiphase systems via a
number of approaches, such as the pseudopotential model
[7,8] and free energy model [9,10]. The pseudopotential
model introduces a force at the mesoscopic scale which
replicates intermolecular interactions, and through this force,
phase separation can be triggered [7,8]. This model allows
for the use of a variety of cubic EOSs for single-component
systems [11], although it is a well-known problem that pseu-
dopotential LBM remains unable to be fully consistent with
thermodynamics; i.e., at equilibrium, pseudopotential LBM
cannot reach a state where chemical potentials are uniform
within the system [12]. This problem can be mitigated, but
not fully removed, by introducing tuning parameters that can
be adjusted to approach the iso-chemical potential criterion
[13]. Alternatively, the free energy LBM introduces multi-
phase phenomena at the macroscopic level through a pressure
tensor based on a functional of the Helmholtz free energy
[14]. Although this model takes into account macroscopic
thermodynamics, early free energy formulations also violated
the iso-chemical potential criterion of equilibrium. This vio-
lation is attributed to discretization errors but can be resolved
through the implementation of a “well-balanced” free energy
formulation [15]. Free energy models also enable the use of
cubic EOSs [16–20]. However, it had largely been applied to
single-component systems and had not been fully generalized
to multicomponent systems [1]. Both pseudopotential and free
energy models have been extended beyond single-component
systems, with much of the earlier work focused on immis-
cible rather than partially miscible systems. And even for
these immiscible models, the emphasis had been on binary
[21–24] or ternary mixtures [25–28], and generalizing them
to mixtures of four or more components has proven to be
challenging [29]. There are models that can be generalized

for any number of components [29–31], but in the absence
of realistic multicomponent, multiphase thermodynamics and
thus cannot be extended to partially miscible systems. He
et al. [32] introduced a ternary LBM model that could handle
both immiscible and fully miscible fluids, and was able to
simulate cases like the coalescence of two miscible droplets
and the rise of gas bubbles in water to reach a water-air
interface. Nonetheless, all fluid phases in this model must
be either immiscible or fully miscible and never partially
miscible. Sawant et al. [33] proposed an LBM model to in-
corporate Stefan-Maxwell diffusion for ideal gas mixtures.
However, this model is applicable to only fully miscible
(single phase) systems. Baakeem et al. [34] introduced an
LBM model capable of modeling “pseudopure” substances,
composed of multiple components, by utilizing a single dis-
tribution function. However, this model relies on calculating
critical temperature and pressure for mixtures using mixing
rules at predefined compositions. As a result, it is not suitable
for dynamic partially miscible systems, which exhibit compo-
sition gradients within and across phases.

Some multicomponent studies have attempted to capture
partially miscible systems. One widely used model, developed
by Bao and Schaefer [35], extends the pseudopotential model
to multiple components and is shown to capture phase com-
positions in an air-water system. However, in their approach,
they apply an EOS to each component to obtain independent
pressure estimations for each component. This approach can
lead to significant thermodynamic inconsistencies because the
pressure of a real fluid is a property of the macroscopic phase
and not a component. When multiple components are present,
mixing rules should be accounted for and a single EOS used
to obtain the pressure of a phase. Gong et al. [36] proposed
a pseudopotential model that splits the mesoscopic force
between components. However, their force-splitting strategy
was designed empirically and cannot be derived from or
supported by physical considerations [37]. Peng et al. [37]
proposed another force-splitting approach for the pseudopo-
tential model and designed their force split based on the
equality of fugacities between phases. They accurately simu-
lated binary vapor-liquid systems, but their approach remains
limited to binary systems and requires a tuning parameter to
fully achieve equality of fugacities. Ridl and Wagner [38]
introduced a multicomponent free energy model for vdW
fluids. They were able to perform a comprehensive analysis of
binary phase behavior, including two-component two-phase
and two-component three-phase simulations. However, their
model remains restricted to the vdW EOS and did not provide
any direct path for generalization to other modern EOSs. They
also show that some of their multiphase simulations require
additional corrections when unable to achieve uniform chem-
ical potential throughout the domain. In our recent work [1]
we proposed a free energy LBM model for partially miscible
systems based on component fugacity, which can be used with
any multicomponent EOS, such as the SRK and PR EOSs
(vdW included). By incorporating the well-balanced LBM
formulation [15], our model fulfills the iso-chemical potential
criterion without any tuning or additional correction. Using
this fugacity-based formulation, a comprehensive analysis of
binary phase behavior is demonstrated and a sample three-
component system was simulated.
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Currently, there is a notable lack of partially miscible, or
even immiscible, LBM studies that utilize a large number of
components. From the LBM literature cited in this section, the
largest number of components utilized is five, which pertains
only to immiscible systems [30]. For partially miscible sys-
tems, the largest number of components is three, with a lack of
a comprehensive analysis [35,36,38]. In this paper we aim to
fill this gap by utilizing the fugacity-based LBM [1] and intro-
ducing an approximation for the interfacial tension parameters
when multiple components are present. With this approach we
analyze the phase behavior of partially miscible systems with
a large number of components, including realistic mixtures of
up to ten components and a detailed exploration of the rich
phase behavior displayed by ternary systems.

The remainder of this paper is structured as follows. Sec-
tion II provides a description of the methodology employed
in this study. Specifically, we present an overview of the
fugacity-based LBM, an approximation to the interfacial ten-
sion parameter, and an overview of the PR EOS and its
associated fugacity expression. A quantitative method to es-
tablish the values of the interfacial tension parameter for
each component present in the system is also presented. In
Sec. III we show the results obtained using the fugacity-based
LBM. First, we demonstrate the agreement of our model with

the Young-Laplace equation in Sec. III A. Next, we simulate
vapor-liquid equilibrium for mixtures containing one to six
components in Sec. III B. We then conduct a more comprehen-
sive analysis of ternary systems in Sec. III C, demonstrating
the ternary phase behavior across a range of temperature, pres-
sure, and overall compositions. In addition, we showcase a
case of three-component three-phase equilibrium in Sec. III D.
Finally, in Sec. III E we examine the vapor-liquid equilibrium
and spinodal decomposition simulations of a ten-component
hydrocarbon mixture. The main conclusions of the paper are
then discussed in Sec. IV.

II. METHODOLOGY

A. The fugacity-based LBM

In this study we deploy the fugacity-based LBM [1]. The
lattice Boltzmann equation (LBE) utilized in this study differs
from the standard LBE in two key aspects: (1) it is designed
for multiple components and (2) it employs the well-balanced
formulation, which features a different expression for the
equilibrium distribution function and the forcing term. The
resulting multicomponent, well-balanced LBE is given by
Eq. (1):

gα,i(r + eαδt, t + δt ) − gα,i(r, t ) = − 1

τ

[
gα,i(r, t ) − g(eq)

α,i (r, t )
] +

[
1 − 1

2τ

]
Fα,i(r, t )δt, (1a)
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]
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]
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[
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c4
s

]
+ ∇ρi · wα

[
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c2
s
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2

(
e2
α

c2
s

− D

)
u
]
, (1c)

where the subscript i refers to the ith component and the
subscript α refers to the direction along the discrete lattice
velocity. gα,i, g(eq)

α,i , and Fα,i are the distribution function, equi-
librium distribution function, and forcing term, respectively,
for direction α and component i. eα and wα are the lattice
velocity and weighing parameter, respectively, for direction
α. ρi and Fi are the density and body force, respectively,
for component i (note that ρi = mi/V , where mi is the mass
of component i in an element and V is the volume of that
element). r, u, t , τ , cs, and D are the position vector, macro-
scopic velocity vector, time, relaxation time, speed of sound,
and spacial dimension of the problem, respectively. ρc

i is a
numerical constant for component i, which is set to 0 [15].

The body force, Fi, in Eq. (1c) can be written in terms
of the chemical potential of component i, denoted by μi.
This is commonly referred to as the “potential form” of the
body force. The chemical potential can be decomposed into
contributions from the bulk fluid, denoted by subscript B, and
the interface, denoted by subscript I . The potential form of the
body force is given by Eq. (2):

Fi = −ρ̃i∇μB,i − ρ̃i∇μI,i, (2)

where ρ̃i is the molar density of component i, which can be
computed as ρ̃i = ni/V , where ni is the amount, in moles,

of component i in an element and V is the volume of that
element. The gradient of the bulk chemical potential for
component i can be obtained through the gradient of the
fugacity of component i, which is a readily available property
for any EOS [1,39]. The interface chemical potential can be
obtained through the free energy of inhomogeneous systems
[38,40]. By making these substitutions, we can obtain the
final expression for the component force, which is given by
Eq. (3),

Fi = −ρ̃iRT ∇ ln fi + ρ̃i

N∑
j=1

∇(κi j ∇2ρ̃ j ). (3)

Here fi is the fugacity of component i, R is the universal
gas constant, T is the temperature, and N is the number of
components in the mixture. κi j is a parameter that arises from
the molecular interactions between component i and j and
controls the interfacial tension. κi j represents the same ener-
getic interactions as ai j , the attraction term for a component
pair i- j in a cubic EOS. Thus, the same mixing rules used for
ai j can be applied to κi j [40]:

κi j = √
κiκ j, (4)
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where κi is the interfacial tension parameter for a pure com-
ponent i. Using Eq. (4), the body force can be expressed as

Fi = −ρ̃iRT ∇ ln fi + ρ̃i

N∑
j=1

∇(
√

κiκ j ∇2ρ̃ j ). (5)

For a more detailed explanation of the fugacity-based LBM
methodology and its implementation, readers are referred to
Ref. [1].

B. Interfacial tension parameter

In the free energy LBM, the desired interfacial tension in
a system is often achieved by adjusting the value of κi. In
single-component systems, only one parameter needs to be
tuned to achieve the desired interfacial tension. However, for
multicomponent systems, there are N parameters that need to
be tuned. Different combinations of κi can produce the same
value of interfacial tension, which can lead to a potentially
overspecified system. A case can be made that since κi con-
trols the interfacial tension in a pure system, it should be
calibrated based on a pure system. For instance, if we intend to
simulate a multicomponent system of N components at a spe-
cific temperature T , the value of κi for each component should
be tuned in a pure component system to reach the actual pure
component interfacial tension for that component at T . These
values of κi can then be utilized in the multicomponent system
at T . This can provide a unique, albeit cumbersome, approach
to specify κi. Unfortunately, this approach can also fail in
certain cases where T is greater than the critical temperature
of some of the components, as those pure components will
exist as a single phase.

To avoid the issue of over-specification and reduce the
parameters to tune, an approximation for κi can be used.
Since, κi and ai (attraction parameter for component i in cubic
EOSs) are both a function of the same molecular interactions,
it is reasonable to assume that κi ∝ ai. This proportionality
is already implied in Eq. (4). By taking the κi of one of the
components in the mixture as a reference, we can obtain κi for
the remaining components as shown in Eq. (6):

κi = κ ref
i

ai

aref
i

. (6)

Cubic EOSs all have similar expressions for the attraction
term:

ai = �a
R2T 2

c,i

pc,i
, (7)

where Tc,i and pc,i are the critical temperature and critical
pressure of component i, respectively. �a is a constant that
varies between EOSs. Using Eqs. (6) and (7), we can arrive
with and an expression for κi, given a reference value, as
shown in Eq. (8):

κi = κ ref
i

(
Tc,i

T ref
c,i

)2
pref

c,i

pc,i
. (8)

C. EOS selection

In this study we will be utilizing hydrocarbon mixtures
as our test system. The PR EOS is widely recognized for
its ability to accurately model hydrocarbon behavior. Thus,
we have chosen to employ it for our analyses. However, it
should be noted that the fugacity-based LBM is agnostic to
EOS selection and can be deployed with any preferred EOS
for the system of interest. For an N-component mixture, the
PR EOS is given by Eq. (9):

p = RT

ṽ − bm
− (aα)m

ṽ2 + 2bmṽ − b2
m

, (9)

where ṽ is the molar volume (ṽ = 1/ρ̃). The mixing rules for
the parameters a, α, and b are provided by Eqs. (10) and (11)
[6],

(aα)m =
N∑

i=1

N∑
j=1

xix j

√
(aα)i(aα) j (1 − δi j ), (10)

bm =
N∑

i=1

xibi. (11)

Here xi is the mole fraction, or composition, of compo-
nent i, and δi j is the binary interaction parameter between
component i and j. Moreover, the parameters ai, bi, and

αi are defined as follows: ai = 0.457235529
R2T 2

c,i

pc,i
, bi =

0.077796074 RTc,i

pc,i
, and

αi =
⎧⎨
⎩

[
1 + (

0.374640 + 1.54226ωi − 0.26992ω2
i

)(
1 − T 0.5

r,i

)]2
if ωi � 0.49[

1 + (
0.379642 + 1.48503ωi − 0.164423ω2

i + 0.016666ω3
i

)(
1 − T 0.5

r,i

)]2
if ωi > 0.49

,

where ωi is the acentric factor for component i and Tr,i = T
Tc,i

. Using Eq. (9), the fugacity expression for the PR EOS can be
derived from the definition of fugacity. The PR fugacity is shown in Eq. (12):

ln

[
fi

xi p

]
= bi

bm

[
pṽ

RT
− 1

]
− ln

[
(ṽ − bm)p

RT

]
+ (aα)m

2
√

2bmRT

⎡
⎣ bi

bm
− 2

(aα)m

Nc∑
j=1

x j (aα)i j

⎤
⎦ ln

[
ṽ + (1 + √

2)bm

ṽ(1 − √
2)bm

]
. (12)

For the derivation of Eq. (12), readers can refer to Appendix C of Ref. [1]. In this study, we will frequently utilize the term
“overall composition.” The overall composition of component i is defined as the ratio of the number of moles of component i in
the entire system to the total number of moles of all components in the system. This quantity will be denoted by zi.
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TABLE I. Properties of relevant components used in the LBM simulations.

Component Critical pressure (bar) Critical temperature (K) Acentric factor Molar mass (g/mol)

Carbon dioxide (CO2) 73.843 304.39 0.2667 44.010
Methane (C1) 45.947 190.74 0.0104 16.043
Ethane (C2) 48.711 305.51 0.0979 30.070
Propane (C3) 42.472 370.03 0.1522 44.097
iso-Butane (iC4) 36.397 408.03 0.1852 58.123
n-Butane (C4) 37.963 425.34 0.1995 58.123
iso-Pentane (iC5) 33.812 460.61 0.2280 72.150
n-Pentane (C5) 33.688 469.89 0.2514 72.150
n-Hexane (C6) 30.123 507.56 0.2994 86.177
C7+ 21.043 617.78 0.4898 142.285

III. RESULTS

In this section we test our formulation for several differ-
ent cases. First, we conduct capillary pressure measurements
in a 2D suspended droplet case for different droplet radii
and κ ref

i values to assess their agreement with the Young-
Laplace equation. Next, we investigate vapor-liquid equilib-
rium (VLE) cases for flat interface simulations comprising of
one to six components. Subsequently, we delve deeper into
ternary systems, employing data from numerous VLE cases
to construct ternary diagrams, and present a three-component
three-phase simulation. Finally, we demonstrate the effec-
tiveness of our formulation with a realistic ten-component
hydrocarbon mixture by showcasing flat interface VLE cases
and 2D cases of spinodal decomposition. All simulations were
carried out in a periodic computational domain, employing a
D2Q9 lattice and using the PR EOS. Mixtures will be com-
posed of several components, and component properties and
abbreviations are provided in Table I unless otherwise stated
(as will be the case in Sec. III D). The component C7+ in
Table I represents a (nonunique) grouping of all components
with a chain length of 7 and above, which is to be used in
Sec. III E.

A. Young-Laplace equation validation

In this case we aim to test whether our model, with the κi ∝
ai approximation, results in capillary pressure predictions in
compliance with the Young-Laplace equation. We will simu-
late a 2D static droplet inside a vapor phase. For this, we use a
system of C1, C2, and C3 at a temperature of 250 K, initialized
at a pressure of 50 bar. The size of the computational domain
is 200 × 200 (nx × ny) and the relaxation time τ = 1.0. The
binary interaction parameters between all component pairs are
0. The relevant conversions between lattice units and physical
units are established by fixing the universal gas constant and
the attraction parameter, covolume, and molar mass for C1
to the following values in lattice units: R = 1, aC1 = 2/49,
bC1 = 2/21, and MC1 = 1. To initialize the density of each
component, we use Eq. (13),

ρi(x, y, t = 0) = ρi,L + ρi,V

2
− ρi,L − ρi,V

2

× tanh

{
2[

√
(x − xc)2 + (y − yc)2 − R]

W

}
,

(13)

where W is the initial interface width set to 4, xc and yc are the
x and y coordinates of the center of the droplet set to xc = nx/2
and yc = ny/2, and R is the radius of the droplet at initial
conditions. ρi,V and ρi,L are the densities of component i in the
vapor phase and liquid phase, respectively. These densities are
set to the equilibrium densities at T = 250 K and p = 50 bar
obtained through a flash calculation (with an overall compo-
sition: zC1 = 0.5, zC2 = 0.25, and zC3 = 0.25). We initialize
the droplet using different values of R (20, 30, 40, and 50 in
lattice units) and repeat the process for three distinct values of
κ ref

i (0.02, 0.04, and 0.06 in lattice units), where C1 is selected
as the reference component. It is worth noting that in addition
to ρi,V and ρi,L , a flash calculation also prescribes a phase
saturation that fixes the value of R. Therefore, adjusting the
value of R in our simulations effectively changes the value
of zi, but this has no effect on the equilibrium values of ρi,L

and ρi,V . However, the density profile will deviate from the
one prescribed by Eq. (13) for two reasons, First, we initialize
the densities according to a flash calculation, which assumes a
flat interface without capillary pressure. However, in the LBM
simulations, there is a curved interface. Second, the “tanh”

FIG. 1. Capillary pressure from each simulation vs the inverse of
droplet radius for that simulation. The dots represent the data points
obtained from the simulation, and the solid lines represent the linear
fitting curves.
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TABLE II. Description of the case simulations.

Case Components used Temperature (K) Pressure (bar)

1 C1 177.24 30.02
2 C1, C2 215.00 32.00
3 C1, C2, C3 250.00 35.00
4 C1, C2, C3, C4 300.00 40.00
5 C1, C2, C3, C4, C5 350.00 45.00
6 C1, C2, C3, C4, C5, C6 400.00 50.00

profile is only any approximation to the density profile across
the interface.

Each simulation is run for 1 000 000 time steps to achieve
equilibrium. The Young-Laplace equation for a 2D droplet,
given by Eq. (14), relates the capillary pressure, 	p, to
the radius of the droplet, R, and the interfacial tension,

σ :

	p = σ

R
. (14)

As per Eq. (14), the capillary pressure is proportional to
1/R. To test this, we measure the capillary pressure values
obtained from each simulation and plot them against their
corresponding 1/R values. This is repeated for every κ ref

i
value. The results are presented in Fig. 1.

It can be seen from Fig. 1, that the 	p values obtained
from the LBM simulations are directly proportional to 1/R,
for each value of κ ref

i . This demonstrates that the simulations
are in agreement with the Young-Laplace equation.

B. Multicomponent vapor-liquid equilibrium

To demonstrate the generalizability of our approach, we
simulate vapor-liquid equilibrium (VLE) for two phases sep-
arated by a flat interface and with up to six components. Six

FIG. 2. Equilibrium density and composition profiles obtained from LBM simulations for case 6, described in Table II. (a) The density vs
dimensionless length (x/nx). (b) Composition of C1, C2, and C3 vs dimensionless length. (c) Composition of C4, C5, and C6 vs dimensionless
length.
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TABLE III. Density and composition in the vapor and liquid phase obtained from LBM simulations for cases 1–6 (described in Table II).

Case Phase ρ (kg/m3) xC1 xC2 xC3 xC4 xC5 xC6

1 Vapor 55.43 1.0000 — — — — —
Liquid 284.87 1.0000 — — — — —

2 Vapor 44.53 0.8538 0.1462 — — — —
Liquid 434.50 0.4366 0.5634 — — — —

3 Vapor 44.34 0.7527 0.1897 0.0577 — — —
Liquid 480.09 0.2599 0.3578 0.3822 — — —

4 Vapor 53.05 0.5639 0.2599 0.1225 0.0536 — —
Liquid 475.87 0.1567 0.2462 0.2877 0.3094 — —

5 Vapor 67.53 0.4050 0.2625 0.1700 0.1024 0.0601 —
Liquid 448.13 0.1121 0.1725 0.2123 0.2420 0.2611 —

6 Vapor 90.08 0.2831 0.2240 0.1786 0.1368 0.1024 0.0752
Liquid 401.37 0.0923 0.1295 0.1584 0.1855 0.2081 0.2261

cases are carried out, and the components used, the temper-
ature, and initial pressure in these simulations are shown in
Table II. All mixtures used in the six cases are equimolar in
terms of the total moles in the system, i.e., all components
have the same zi.

For all simulations, the relevant conversions between lat-
tice units and physical units are established by fixing the
universal gas constant and the attraction parameter, covolume,
and molar mass for C1 to the following values in lattice units:
R = 1, aC1 = 2/49, bC1 = 2/21, and MC1 = 1. The binary
interaction parameters between all component pairs are 0. The
relaxation time τ = 1.0, and the interfacial tension parameter
for the reference component, chosen to be C1, is κ ref

i = 0.02.
The size of the computational domain is 400 × 2 (nx × ny),
and the density of each component along the x direction is
initialized as shown in Eq. (15) (the domain will be symmetric
in the y direction),

ρi(x, t = 0) = ρi,V + ρi,L − ρi,V

2

[
tanh

(
2
(
x − SV

2 nx
)

W

)

− tanh

(
2
(
x − (

1 − SV
2

)
nx

)
W

)]
. (15)

Here SV is the saturation (volume fraction) of the vapor
phase. W is set to be 4, and ρi,V , ρi,L , and SV are calculated
by performing a flash calculation for the given mixture at the
relevant p, T , and zi. Each simulation is run for 1 000 000
time steps to achieve equilibrium. The results of the equilib-
rium density and composition profiles for one of the cases,
case 6, are presented in Fig. 2. The equilibrium density and
composition in the vapor and liquid phases for each cases is
summarized in Table III.

To ensure that the results presented in Table III are consis-
tent with thermodynamics and do not violate the iso-fugacity
criterion (or equivalently the iso-chemical potential criterion),
they are compared to the theoretical predictions obtained from
a flash calculation. The flash calculations are performed at
the initial temperature and overall compositions for each of
the cases. However, in the LBM simulation, the pressure
deviates from its initial value as Eq. (15) represents only
an approximation to the equilibrium profile. The theoretical
flash calculations were therefore performed using the updated

pressure values obtained from the LBM simulations. The
relative errors between the LBM simulation results and the
theoretical predictions are summarized in Table IV.

Table IV shows the maximum error to be 0.264909%,
which indicates excellent agreement with thermodynamic pre-
dictions. It should be noted that these (small) maximum errors
are typically associated with the compositions of the chemi-
cal components present in the smallest relative quantities for
which computational round-off errors are prone to be more
significant. This study offers the opportunity to quantitatively
test how the computational time in a partially miscible LBM
simulation scales with the number of components used. We
plotted the CPU time for each simulation case against the
number of components used, and the results are presented in
Fig. 3.

Figure 3 demonstrates that the computational time required
for an LBM simulation scales linearly with the number of
components present in the system. This is a notable difference
from conventional thermodynamic flash calculations, where
computational times increase exponentially with the number
of components in the system [41].

FIG. 3. CPU time vs number of components. The dots represent
the data from simulations, and the solid line is the line of best fit.
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TABLE IV. Relative error (%) between LBM simulation results and the theoretical predictions for each of the density and composition
values given in Table III.

Case Phase ρ error (%) xC1 error (%) xC2 error (%) xC3 error (%) xC4 error (%) xC5 error (%) xC6 error (%)

1 Vapor 0.000002 0.000000 — — — — —
Liquid 0.000001 0.000000 — — — — —

2 Vapor 0.000021 0.000015 0.000089 — — — —
Liquid 0.000035 0.000065 0.000050 — — — —

3 Vapor 0.022743 0.033667 0.173693 0.133215 — — —
Liquid 0.020379 0.013962 0.170605 0.150722 — — —

4 Vapor 0.069883 0.130091 0.263293 0.122784 0.194704 — —
Liquid 0.036333 0.086755 0.264003 0.093838 0.254691 — —

5 Vapor 0.093856 0.210405 0.189726 0.231818 0.062673 0.179850 —
Liquid 0.043724 0.142220 0.208580 0.215747 0.012199 0.264909 —

6 Vapor 0.094781 0.232504 0.074052 0.186282 0.159989 0.040750 0.137930
Liquid 0.046245 0.148373 0.113146 0.192296 0.132857 0.018878 0.231750

FIG. 4. Theoretical pressure-temperature envelopes for a system of (a) C1-C2, (b) C2-C3, and (c) C1-C3 generated using the PR EOS at
different overall compositions. The solid black lines represent the vapor-liquid equilibrium curves of pure species with the curve of the more
volatile specie on the left and the less volatile specie on the right of each plot.
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FIG. 5. Pure component vapor liquid equilibrium curves for C1,
C2, and C3 along with the critical loci for the C1-C2, C2-C3, and C1-
C3 component pairs from Fig. 4. Four cases of interest to be tested
using LBM are identified in this diagram.

C. Ternary vapor-liquid equilibrium

Section III B presented multicomponent simulations at a
single condition for each mixture. However, in this section we
present a more detailed investigation of ternary systems at
a broad range of conditions and provide a comprehensive
analysis of their phase behavior. To the best of our knowledge,
such a thorough analysis of ternary phase behavior is currently
absent in the literature. We perform a series of simulations of
VLE with a flat interface to obtain the compositions of the
vapor and liquid phases at different pressure, temperature, and
overall composition conditions. The results are used to gener-
ate different characteristic ternary diagrams and their accuracy
is tested by comparing them with the results predicted by a
flash calculation.

We analyze a system of C1, C2, and C3. The binary in-
teraction parameter between each component pair is 0. The
theoretical binary phase behavior of the C1-C2 pair, C2-C3
pair, and C1-C3 pair on the pressure-temperature plane gener-
ated using the PR EOS is shown in Fig. 4.

In Fig. 4, for each of the pressure-temperature graphs, the
region bounded by the pure component vapor-liquid equi-
librium curves and the critical locus for that component
pair represents all the possible pressure-temperature condi-
tions where two phases can coexist for that component pair.
Superimposing the possible two-phase regions for all three
component pairs, we get Fig. 5.

Four pressure-temperature cases of interest are identified in
Fig. 5, which will be tested using the LBM, and the resulting
phase compositions will be plotted on a ternary diagram. In
case 1 (p = 45 bar and T = 330 K), we should see two phases
for the C2-C3 side of the triangle as well as the C1-C3 side.
In case 2 (p = 48.71 bar and T = 305.51 K), two phases exist
for the pure C2 corner of the triangle and C1-C3 side. In
case 3 (p = 50 bar and T = 250 K), two phases exist for the
C1-C2 side and C1-C3 side. In case 4 (p = 80 bar and T =
275 K), two phases exist for only the C1-C3 side. These four

cases are tested in LBM at different overall compositions to
generate the ternary diagrams of interest. For all simulations,
the relevant conversions between lattice units and physical
units are established by fixing the universal gas constant and
the attraction parameter, covolume, and molar mass for C1
to the following values in lattice units: R = 1, aC1 = 2/49,
bC1 = 2/21, and MC1 = 1. The relaxation time τ = 1.0, and
the interfacial tension parameter for the reference component,
chosen to be C1, is κ ref

i = 0.02. The size of the computa-
tional domain is 400 × 2 (nx × ny), and the density of each
component along the x direction is initialized using Eq. (15),
with W set to be 4, and ρi,V , ρi,L, and SV obtained by
performing a flash calculation for the given mixture at the
desired pressure, temperature, and overall composition. To
achieve equilibrium, the simulations are run for 1 000 000
time steps. The vapor and liquid phase compositions obtained
at different overall compositions, for each of the four pressure-
temperature cases are plotted on the ternary diagrams shown
in Fig. 6. The theoretical phase envelopes and tie lines for the
respective overall composition of each of the simulations are
also shown.

It can be seen that the LBM correctly predicts the phase be-
havior of ternary systems at a multitude of different pressure,
temperature, and composition conditions. This clearly show-
cases the capability of the fugacity-based LBM in capturing
partially miscible phases. The proposed LBM model accu-
rately captures the full thermodynamic behavior of ternary
systems, which in the past had been mostly constrained to
immiscible applications.

D. Three-component three-phase case

Until now, our results have focused on two-phase systems.
In this section we extend our simulations to the case of
three-phase equilibrium, with flat interfaces between phases.
To achieve this, we employ a mixture of C1, C4, and CO2,
with the properties of these components given in Table V.
The properties listed in Table V differ slightly from those
in Table I. This is because we utilized an open-source code
for the three-phase flash calculations, which were used to
validate our LBM model in this section. This code employs
the fixed component properties given in Table V. Therefore,
we adjusted the LBM component properties from those in
Table I to align with those presented in Table V for accurate
benchmarking purposes. The open-source code can be found
as supplementary material to Ref. [42]).

The binary interaction parameters for the CO2-C1 and
CO2-C4 pairs are 0.12 and 0.15, respectively, while the
remaining binary interaction parameters are all zero. The
simulation is conducted at a temperature of 225 K, an ini-
tial pressure of 9 bar, and an overall composition of zC1 =
0.0194, zC4 = 0.2643, and zCO2 = 0.7163. Under these condi-
tions, this mixture will form three phases: vapor, liquid1, and
liquid2 (in order of increasing density). The relevant conver-
sions between lattice units and physical units are established
by fixing the universal gas constant and the attraction parame-
ter, covolume, and molar mass for C1 to the following values
in lattice units: R = 1, aC1 = 0.011550, bC1 = 0.107781, and
MC1 = 1. The relaxation time τ = 1.0, and the interfacial
tension parameter for the reference component, chosen to be
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FIG. 6. Ternary diagram for (a) case 1, (b) case 2, (c) case 3, and (d) case 4. The solid black lines connect the theoretical compositions
from the vapor phase and liquid phase obtained through flash calculations using the PR EOS, and they form the theoretical phase envelope.
The solid black dots represent the overall composition at which each LBM simulation is carried out, with the dashed black lines representing
the theoretical tie lines at those overall compositions. The red dots represent the compositions of the vapor and liquid phase obtained from the
LBM simulations at equilibrium. The green dot represents the critical point (where applicable).

TABLE V. Properties of relevant components used in the LBM simulations in Sec. III D.

Component Critical pressure (bar) Critical temperature (K) Acentric factor Molar mass (g/mol)

Carbon dioxide (CO2) 73.75 304.20 0.2250 44.010
Methane (C1) 45.99 190.60 0.0080 16.043
n-Butane (C4) 37.99 425.20 0.1930 58.123
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FIG. 7. Equilibrium density and composition profile obtained from the LBM simulation. (a) Density vs dimensionless length (x/nx).
(b) Composition of C1, C4, and CO2 vs dimensionless length. The three distinct phases (vapor, liquid1, and liquid2) are marked on (a).

C1, is κ ref
i = 0.02. The size of the computational domain is

1000 × 2 (nx × ny), and the density of each component along
the x direction is initialized as shown in Eq. (16) (the domain
will be symmetric in the y direction),

ρi(x, y, t = 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi,L1+ρi,V

2 − ρi,L1−ρi,V

2 tanh
[ 2(x−S1)

W

]
if 0 < x � nx

4

ρi,V +ρi,L1

2 − ρi,V −ρi,L1

2 tanh
[ 2(x−S2)

W

]
if nx

4 < x � nx
2

ρi,L1+ρi,L2

2 − ρi,L1−ρi,L2

2 tanh
[ 2(x−S3)

W

]
if nx

2 < x � 3
4 nx

ρi,L2+ρi,L1

2 − ρi,L2−ρi,L1

2 tanh
[ 2(x−S1)

W

]
if 3

4 nx < x � nx

, (16)

where S1, S2, S3, and S4 are nx/8, 3nx/8, 5nx/8, and 7nx/8,
respectively. This is because, at the given initial temperature,
pressure, and overall composition, the saturation (volume
fraction) of the vapor phase, liquid1 phase, and liquid2
phase is 0.25, 0.5, and 0.25, respectively. The interface
width is W = 8. ρi,V , ρi,L1, and ρi,L2 are the densities of
component i in the vapor phase, liquid1 phase, and liquid2
phase, respectively, obtained through a flash calculation at
the initial temperature, pressure, and overall composition.
The simulation is run for 10 000 000 time steps to achieve
equilibrium. The results of the equilibrium density and
composition profiles are presented in Fig. 7.

To test whether the results presented in Figure 7 are con-
sistent with thermodynamic predictions, we compare them
with the results of a three-phase flash calculation performed
using the temperature, pressure, and overall composition from
the LBM equilibrium profiles. It should be noted that the
LBM temperature and overall composition will remain con-
stant at their initial values, whereas the pressure will slightly
change, as discussed in Sec. III B. The resulting relative errors
between the values obtained from the LBM simulation and
theoretical values from the flash calculation are summarized
in Table VI.

The low values of relative errors reported in Table VI in-
dicate excellent agreement between the results obtained from
the LBM simulation and theoretical predictions, demonstrat-
ing that our methodology is not limited to two-phase systems
but is generalizable to any number of phases.

E. Ten-component hydrocarbon mixture

In this section we demonstrate the ability of our model
to handle a large number of components by simulating
hydrocarbons, which are widely recognized for their high
component counts that can extend into the hundreds [2].

TABLE VI. Relative error (%) between LBM simulation results
and the theoretical predictions. These errors are reported for the
density and composition for each phase.

Phase ρ error (%) xC1 error (%) xC4 error (%) xCO2 error (%)

Vapor 0.002536 0.247283 0.056008 0.064564
Liquid1 0.015068 0.273085 0.063098 0.050260
Liquid2 0.000392 0.235150 0.008564 0.002343
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TABLE VII. Overall composition of the ten-component mixture
and the binary interaction parameter of each of the components with
CO2.

Component Overall composition δi j with CO2

Carbon dioxide (CO2) 0.0031 0.000
Methane (C1) 0.6192 0.105
Ethane (C2) 0.1408 0.130
Propane (C3) 0.0835 0.125
iso-Butane (iC4) 0.0097 0.120
n-Butane (C4) 0.0341 0.115
iso-Pentane (iC5) 0.0084 0.115
n-Pentane (C5) 0.0148 0.115
n-Hexane (C6) 0.0179 0.115
C7+ 0.0685 0.115

For this purpose we select the ten-component hydrocarbon
mixture taken from Ref. [43], which is a well-established
benchmark gas condensate mixture. The mixture consists of
all the components listed in Table I, and its overall com-
position is presented in Table VII. The binary interaction
parameters (δi j) between all component pairs are zero, except
for the pairs that involve CO2. The values of δi j for each
component with CO2 are also provided in Table VII.

We start off by simulating a flat interface VLE case. The
mixture is initialized at a temperature of 325 K and pressure
of 150 bar. The relevant conversions between lattice units
and physical units are established by fixing the universal gas
constant and the attraction parameter, covolume, and molar
mass for C1 to the following values in lattice units: R = 1,
aC1 = 2/49, bC1 = 2/21, and MC1 = 1. The relaxation time
τ = 1.0, and the interfacial tension parameter for the refer-
ence component, chosen to be C1, is κ ref

i = 0.02. The size
of the computational domain is 400 × 2 (nx × ny), and the
density of each component is initialized as shown in Eq. (15).
ρi,V , ρi,L , and SV in Eq. (15) are calculated by performing a
flash calculation for the mixture at the initial p, T , and zi. W is
set to be 4. The simulation is run for 1 000 000 time steps, and
the results of the equilibrium density and composition profiles
are presented in Fig. 8.

Next, we compare the LBM results with the results of a
flash calculation performed at the same conditions. The result-
ing relative errors between the values obtained from the LBM
simulation and theoretical values from the flash calculation
are summarized in Table VIII.

As can be seen by the low error values reported in Ta-
ble VIII, the LBM correctly predicts the equilibrium for a
ten-component mixture.

Next, we use the ten-component mixture to simulate the
case of spinodal decomposition. Thus far, the results in this
paper have been shown for cases where the system is initial-
ized close to equilibrium. In this case the mixture is initialized
far from equilibrium, to test whether it still converges to
the correct equilibrium values. The mixture initialized uni-
formly, and a small, random perturbation is introduced to
the system. The test is conducted for two cases. In case 1 a
liquid-dominated system is formed with the liquid forming a
continuous phase and the vapor forming bubbles. In case 2

TABLE VIII. Relative error (%) in the density and composition
values obtained from the LBM simulation when compared with the
theoretical predictions.

Property Vapor phase error (%) Liquid phase error (%)

ρ 0.135158 0.094202
xCO2 0.064404 0.057355
xC1 0.089375 0.005375
xC2 0.223043 0.174558
xC3 0.364711 0.222567
xiC4 0.436977 0.235278
xC4 0.414238 0.191214
xiC5 0.414815 0.149893
xC5 0.392730 0.114561
xC6 0.314924 0.009726
xC7+ 0.340858 0.511047

a vapor-dominated system is formed with the vapor forming a
continuous phase and the liquid forming droplets. The differ-
ent conditions are achieved by initializing case 2 at a higher
temperature than case 1, with case 1 at 325 K and case 2 at
400 K. The initial pressure for both cases is 150 bar, and the
overall composition is provided in Table VII. Additionally,
in both cases the relevant conversions between lattice units
and physical units are established by fixing the universal gas
constant and the attraction parameter, covolume, and molar
mass for C1 to the following values in lattice units: R = 1,
aC1 = 2/49, bC1 = 2/21, and MC1 = 1. The relaxation time
τ = 1.0, and the interfacial tension parameter for the refer-
ence component, chosen to be C1, is κ ref

i = 0.02. The size of
the computational domain is 200 × 200 (nx × ny). Following
a uniform initialization with a small, random perturbation,
each case is run for 500 000 time steps. The evolution of the
system for case 1 and case 2 is illustrated in Figs. 9 and 10,
respectively.

Figures 9 and 10 show the ten-component system spon-
taneously decomposing into two phases. Next, we verify the
consistency of these results with thermodynamic predictions.
In this section, we cannot rely on comparing the results to
flash calculations as flash calculations assume a flat interface.
Instead, we evaluate the consistency of our results by testing
whether they adhere to the iso-fugacity criterion, which is
valid for both flat and curved interfaces and serves as the
basis of the flash calculation. We recorded the fugacity of
each component in the liquid and vapor phases for each case.
The fugacity measurements for the liquid phase were obtained
at point A, and for the vapor phase, they were obtained at
point B, marked on Fig. 9(f) for case 1 and Fig. 10(f) for
case 2. The fugacity of each component in the vapor phase
( f V

i ) and the liquid phase ( f L
i ) are shown in Table IX for

case 1 and Table X for case 2. The ratio of the fugacity
of each component in the liquid phase to its fugacity in the
vapor phase is also summarized in the respective table. In
Tables IX and X, the fugacity ratios are very close to unity,
indicating excellent agreement between the LBM results and
thermodynamic predictions. Again, maximum deviations are
associated with calculations for chemical components whose
compositions are the smallest relative to others, for which the
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FIG. 8. Equilibrium density and composition profiles obtained from LBM simulations for the ten-component mixture with a flat interface.
(a) Density vs dimensionless length (x/nx). (b) Composition of CO2 vs dimensionless length. (c) Composition of C1, C2, and C3 vs
dimensionless length. (d) Composition of iC4, C4, and iC5 vs dimensionless length. (e) Composition of C5, C6, and C7+ vs dimensionless
length.
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FIG. 9. Spinodal decomposition of a ten-component system for case 1 (liquid-dominated system). The figure shows the density profiles
with dimensionless lengths: x∗ = x/nx and y∗ = y/ny. These are at times (in lattice units): (a) 30 000, (b) 40 000, (c) 60 000, (d) 80 000, (e)
200 000, and (f) 500 000. The points marked A and B, in (f), represent the points in the liquid and vapor region, respectively, where component
fugacities are measured.
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FIG. 10. Spinodal decomposition of a ten-component system for case 2 (vapor-dominated system). The figure shows the density profiles
with dimensionless lengths: x∗ = x/nx and y∗ = y/ny. These are at times (in lattice units): (a) 60 000, (b) 70 000, (c) 80 000, (d) 100 000, (e)
200 000, and (f) 500 000. The points marked A and B, in (f), represent the points in the liquid and vapor region, respectively, where component
fugacities are measured.
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TABLE IX. Fugacity of each component in the liquid phase, the
fugacity of each component in the vapor phase and their ratio for
case 1.

Component f L
i (bar) f V

i (bar) f L
i / f V

i

CO2 0.337479 0.337240 1.000707
C1 108.194561 108.180227 1.000133
C2 8.455564 8.450527 1.000596
C3 2.201804 2.199853 1.000887
iC4 0.138429 0.138273 1.001131
C4 0.393377 0.392999 1.000961
iC5 0.051556 0.051503 1.001025
C5 0.076134 0.076066 1.000895
C6 0.041749 0.041727 1.000523
C7+ 0.007155 0.007176 0.997187

influence of computational round-off errors are bound to be
more significant.

IV. DISCUSSION AND CONCLUSION

This paper presents a thorough analysis of partially mis-
cible mixtures with multiple components. Previous studies
using the LBM are limited in the number of components
used, particularly for partially miscible systems. In this work
we employ the recently published fugacity-based LBM and
introduce a minor approximation to remove the component
restrictions on LBM models. Our model provides results in
excellent agreement with thermodynamic predictions, regard-
less of the number of components used.

We begin by demonstrating the compliance of our model
with the Young-Laplace equation. This is achieved by simu-
lating a droplet composed of three components and showing
the proportionality of the capillary pressure with the in-
verse droplet radius at various conditions. Next, we present
a flat interface VLE case for mixtures with a range of
component numbers from one to six. Our results agree
with thermodynamic predictions. We also demonstrate that
the computational time of LBM simulations scales lin-
early with the number of components. Further, we perform
a deeper analysis of the phase behavior of ternary sys-
tems, exploring a wide range of temperature, pressure, and

TABLE X. Fugacity of each component in the liquid phase, the
fugacity of each component in the vapor phase, and their ratio for
case 2.

Component f L
i (bar) f V

i (bar) f L
i / f V

i

CO2 0.434208 0.432687 1.003514
C1 104.847165 104.816434 1.000293
C2 13.950388 13.959195 0.999369
C3 5.419398 5.426715 0.998652
iC4 0.454399 0.455480 0.997627
C4 1.438833 1.441916 0.997862
iC5 0.252597 0.253289 0.997270
C5 0.408427 0.409779 0.996701
C6 0.323627 0.325112 0.995431
C7+ 0.221562 0.224617 0.986397

overall composition conditions to produce various charac-
teristic ternary diagrams. Our model is also demonstrated
to be unrestricted in the number of phases, as we simu-
late a three-component three-phase equilibrium case. Finally,
we conclude our paper by presenting simulations of a ten-
component hydrocarbon mixture obtained from literature. We
perform flat interface VLE and spinodal decomposition cases
for this mixture and demonstrate excellent agreement with
thermodynamics.

This paper has highlighted, examined, and demonstrated
a key contribution to state-of-the-art LB simulation: multi-
phase LB can be straightforwardly and confidently extended
to any number of chemical components while maintaining
full agreement with multicomponent, multiphase thermody-
namic principles using the proposed approach. To the best
of the authors’ knowledge, the largest number of components
ever utilized in LBM simulations for a partially miscible sys-
tem has been three [35,36,38] without strict compliance with
multicomponent thermodynamics. The maximum number of
chemical components has gone beyond three, and reached up
to five components, for immiscible systems only [30]. In con-
trast, our simulations include up to ten-component partially
miscible systems, all of which achieve precise thermodynamic
consistency without any corrections or tuning. Even for three-
component partially miscible systems, previous studies in the
literature have been limited in scope in terms of the thermo-
dynamic domain being explored. Previous studies explored a
single condition or case, restricted cases to vdW fluids only
(vdW cubic EOS is known for lack of quantitative agree-
ment with experimental data), and/or presented approaches
which lacked consistency with thermodynamics [35,36,38]. In
this work we have presented a more comprehensive study of
ternary systems over a wide range of temperature, pressure,
and overall composition using the PR EOS, known for its
reliability for hydrocarbon systems. Our simulations generate
several characteristic ternary diagrams for this system, all of
which are fully consistent with thermodynamic predictions.
This expansion of the scope of LBM simulations in terms
of the number of components and the range of conditions
studied represents a significant step towards a more compre-
hensive modeling and understanding of complex mixture flow
behavior, which is important given the multitude of fields that
investigate multicomponent multiphase systems. For instance,
studies have explored phase morphology in multicomponent
systems [44], the rheological behavior of soft matter systems
[45,46], relative permeability measurements of gas conden-
sates in porous media [47], and reactive transport modeling of
dissolution and precipitation during geological CO2 seques-
tration [48]. Our model can allow for advancements in these
fields by allowing for a thermodynamically rigorous multi-
component multiphase model, unrestricted by the number of
components.
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