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Structure search method for atomic clusters based on the dividing rectangles algorithm
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The Dividing Rectangles (DIRECT) algorithm is a deterministic optimization method to explore optimal
solutions by repeatedly dividing a given hyperrectangle search space into subhyperrectangles. Herein, we
propose a structure search method for atomic clusters based on the DIRECT algorithm in combination with
a gradient-based local optimizer to enable an efficient structure search in high-dimensional search spaces. We
use the Z-matrix representation for defining the hyperrectangle search space, in which the bond lengths, bond
angles, and dihedral angles specify a cluster structure. To evaluate its performance, we applied the proposed
method to the Lennard-Jones clusters and two kinds of real atomic clusters with many metastable structures,
i.e., phosphorus and sulfur clusters, and compared the results with those of conventional methods. The proposed
method exhibits a higher efficiency than random search and a comparable efficiency to basin hopping.
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I. INTRODUCTION

Material structures in stable and low-energy metastable
states govern physical and chemical properties. Consequently,
several conventional techniques have been developed for
material structure determination such as x-ray or neutron
crystallography, nuclear magnetic resonance spectroscopy,
and electron microscopy. However, experimental information
alone is typically insufficient to determine unknown mate-
rial structures. A theoretical structure search using empirical
potentials or first-principles calculations is a useful tool. It
not only provides candidate structures prior to experiments
but also can predict materials with unknown structures and
properties. Particularly, first-principles calculations without
any empirical parameters are powerful tools due to the devel-
opment of high-performance computing systems and highly
efficient codes.

Theoretical structure searches for atomic clusters and
crystalline systems explore global and local minima on the
potential energy surface (PES), which is defined in the config-
uration space. The configuration space has 3N − 6 dimensions
in an N-atom system, corresponding to the degree of freedom
(DOF) of the atomic coordinates 3N subtracted by the DOF of
translations and rotations of the whole system −6. Therefore,
structure searches for systems consisting of many atoms are
difficult due to the high-dimensional PES with numerous local
minima.

Simple methods for enumerating low-energy local minima
include grid search (GS) [1] and random search (RS) [2–4].
These uniformly explore a given search space without any
prior and posterior information about the potential energies
and their gradients. In contrast, sophisticated methods (e.g.,
basin hopping (BH) [5–7], BH parallel tempering (BHPT)
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[8], simulated annealing (SA) [9–11], minima hopping (MH)
[12,13], genetic algorithm (GA) [14–16], and particle swarm
optimization (PSO) [17,18]) exploit prior and posterior infor-
mation to enhance the search efficiency. These methods are all
heuristic and widely used for structure search.

Among the sophisticated methods, BH, BHPT, MH, and
SA are based on the Monte Carlo (MC) or the molecular
dynamics (MD) method. They typically use a single walker
to explore a given PES. GA and PSO are nature-inspired op-
timization methods, which imitate the evolution and behavior
of biological systems, respectively. They perform simulated
biological operations for a given population of structures at
every step. As these sophisticated methods use multiple pa-
rameters, their search performances are sensitive to the given
parameters. For example, BH, which combines MC with a lo-
cal optimizer, uses at least two parameters (i.e., the maximum
displacement of the walker on the PES and the temperature in
the Metropolis criterion). In the case of a small displacement
or low temperature, the walker cannot escape from a single
basin or funnel, whereas the use of a high temperature pre-
vents the walker from effectively exploiting information about
the potential energies. Thus, the parameters must be carefully
set for the target system in these methods.

To overcome this limitation, a parameter-free or parameter-
insensitive structure search method is desirable. In this paper,
we investigate a modification of the DIRECT algorithm [19],
which is an abbreviation for Dividing Rectangles. This al-
gorithm takes a deterministic approach that does not require
multiple runs. DIRECT uses a parameter to determine the
solution accuracy, but the algorithm works efficiently with-
out fine parameter tuning. The original DIRECT algorithm
does not exploit information about the gradients of the ob-
jective function. However, the potential energy gradients are
available without additional computational costs in common
first-principles calculation packages [20–24], implying that
DIRECT can be improved. Herein, we investigate a modifica-
tion that combines a gradient-based local optimizer to enhance
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FIG. 1. Example of exploring optimal solutions by DIRECT for a synthetic two-dimensional objective function in a square region (0 �
x1 � 1, 0 � x2 � 1). Black and white dots represent the sampled points and the local minima, respectively. (a) Computed function values at
four points, ( 1

2 ± 1
3 , 1

2 ) and ( 1
2 , 1

2 ± 1
3 ), in the first step. [(b1), (b2)] Of the two possible choices to divide the square into five subrectangles at

the first step, we choose the second one (b2) because the subrectangle with the lowest function value becomes the largest one. Sampling points
and divisions at the (c) second, (e) third, and (f) 10th steps.

the performance of the DIRECT algorithm. The combination
manner is inspired by the strategy of BH, in which a local opti-
mizer makes the search efficiency higher than the simple MC
[6]. Although several modifications of DIRECT using local
optimizers have been proposed in the past few decades, our
proposed method differs in terms of the combination manner.
To demonstrate its potential, the performance of the proposed
method is compared with those of two conventional methods
(RS and BH) when applied to the Lennard-Jones clusters and
two kinds of real atomic clusters, i.e., phosphorus and sulfur
clusters.

II. PROPOSED METHOD

The structure search for atomic clusters has three steps.
(i) For a chemical formula with a given total number of atoms,
all possible structural formulas corresponding to adjacency
relations of atoms are enumerated. Since a cyclic structure can
be represented as an acyclic structure by neglecting part of
adjacency relations, it is sufficient to enumerate only acyclic
formulas. See Ref. [25] for the conventional enumeration
method of structural formulas. (ii) For each structural formula,
the search space (the hyperrectangle domain) is defined us-
ing the Z-matrix representation. A single structural formula
has multiple Z-matrix representations. Consequently, a repre-
sentative must be selected from the Z matrices. In addition,
structural symmetry indicates that the search space can be
restricted to the irreducible one. The general definition of the
Z matrix and the specifications of search space in this paper
are described in Secs. II C and II D, respectively. (iii) The
proposed method is applied to a structure search, in which the
DIRECT algorithm is combined with a local optimizer. The

original DIRECT algorithm and our modification are detailed
in Secs. II A and II B, respectively.

A. Original DIRECT algorithm

DIRECT [19] is a modification of the Lipschitzian ap-
proach [26–28]. This approach explores optimal solutions
of an objective function f (x) with the Lipschitz continuity,
which is mathematically expressed in d dimensions as

| f (x) − f (x′)| � K‖x − x′‖ for ∀x ∈ Rd ,∀x′ ∈ Rd (x �= x′),

(1)

where the absolute value of the slope of every two points is
less than a certain positive real number K, called the Lipschitz
constant. The Lipschitzian approach explores optimal solu-
tions by repeating the selective division of a given domain
using the Lipschitz continuity. One limitation is that K is
generally unknown or does not exist in practical problems.
In contrast, the Lipschitz constant does not have to be spec-
ified in DIRECT, allowing global optimization for black-box
objective functions.

Figure 1 illustrates how DIRECT works for a synthetic ob-
jective function in a normalized square domain. In the initial
state, only the function value at the center of the square ( 1

2 ,
1
2 ) is computed. The first step computes the function values
at four points [i.e., ( 1

2 ± 1
3 , 1

2 ) and ( 1
2 , 1

2 ± 1
3 )], which are ± 1

3
displaced points from the center of the domain along either
the horizontal or vertical side [Fig. 1(a)]. Next, the square
domain is divided into five subrectangles since each one has
a single point already computed at the center. Specifically, the
square is divided into thirds along the two sides. In principle,
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FIG. 2. Example of the bk− fk diagram at a step. If K is small
and close to zero (blue line), the most likely optimal hyperrectangle
is that with a low fk . If K is large and close to infinity (green line), the
most likely optimal hyperrectangle is that with a large bk . Potentially
optimal hyperrectangles correspond to all points on the lower-right
convex hull (red broken line).

the square division has two options [Figs. 1(b1) and 1(b2)].
For a given synthetic function, we choose the second one
[Fig. 1(b2)], where the square is tridivided in the order of
vertical and horizontal dimensions so that the subrectangle
with the lowest function value becomes the largest. DIRECT
alternates between computing the objective function values
and dividing the domain [Figs. 1(a)–1(e)]. Except for the first
step, the potentially optimal rectangles should be selected
for further division. Qualitatively, multiple rectangles with a
large size or a low function value at the center are selected
as the potentially optimal ones at each step, which is detailed
later. Thus, DIRECT explores the optimal solutions for the
global minima in function f (x) by iteratively performing the
three processes: (i) selection of potentially optimal rectangles
(selection process), (ii) computation of function values in the
selected rectangles (computation process), and (iii) division of
the selected rectangles (division process).

Here, the three processes in DIRECT are described for
the general case of a d-dimensional hyperrectangle domain.
In the selection process, a potentially optimal hyperrectan-
gle, which is a hyperrectangle with the lowest lower bound
of the function value at a Lipschitz constant K, is selected.
Considering the Lipschitz continuity, the lower bound in the
kth hyperrectangle Dk is estimated by the function value at the
center fk[= f (ck )] and the center-vertex distance bk as follows:

f (x) � f (ck ) − K‖x − ck‖ � fk − Kbk for ∀x ∈ Dk .

(2)

However, a single hyperrectangle with the smallest lower
bounds cannot be uniquely identified because the estimated
lower bound depends on the unknown constant K. Hence, a
common strategy is employed in which all hyperrectangles to
be the potentially optimal one for a positive Lipschitz constant
are selected. The bk- fk diagram can easily identify such hyper-
rectangles (Fig. 2). Each point in the diagram corresponds to
a hyperrectangle at a step, and the fk intercept of the straight

line through each point with slope K is the estimated lower
bound of the corresponding hyperrectangle for a Lipschitz
constant K. If K is small and close to zero, a hyperrectangle
with a low fk is likely to be optimal, while a hyperrectangle
with a large bk is likely to be optimal if K is large and close to
infinity. The potentially optimal hyperrectangles correspond
to all points on the lower-right convex hull in the diagram (red
broken line). This strategy makes it possible to balance local
and global searches. The original DIRECT requires a lower
limit on the Lipschitz constant K to determine the solution
accuracy. In contrast, the lower limit on the hyperrectangle
size is specified and hyperrectangles with a subthreshold size
are not divided in this paper.

In the computation process, the function values at the two
points x = c±i are computed along the longest side for each
potentially optimal hyperrectangle. The points c±i are given
by

c±i = c0 ± (
1
3

)
aiei i ∈ {i|ai = max(a1, a2, . . . , ad )}, (3)

where ai and ei are the length and basis vector along the
longest sides in the hyperrectangle, respectively, and c0 is the
center of the hyperrectangle.

In the division process, each potentially optimal hyperrect-
angle is divided into 2d ′ + 1 subhyperrectangles based on the
newly computed 2d ′ function values, where d ′ is the number
of the longest sides. Specifically, each original hyperrectangle
is divided into thirds along the longest sides in the ascending
order of min [ f (c−i ), f (c+i )]. Then the subhyperrectangle
with the lowest function value tends to be the largest.

B. Modification of the DIRECT algorithm

To explore the optimal solution (the local minimum point)
in a basin, conventional local optimizers based on gradient
methods are more efficient than DIRECT. A simple mod-
ification is to alternate between DIRECT for several steps
and a local optimization from the current solution using a
local optimizer [29,30]. Several DIRECT-based methods with
a local optimizer have been proposed [29–34]. These should
be more efficient because they avoid the overrefining problem
that occurs in the original DIRECT. For example, DIRMIN
performs local optimizations from the centers in all potentially
optimal hyperrectangles at every step. DIRMIN outperformed
the original DIRECT for several test functions in various
dimensions [31].

The proposed method, which is like DIRMIN, is a mod-
ification to overcome the curse of dimensionality. Unlike
DIRMIN, which only considers potentially optimal hyper-
rectangles, this modification performs local optimizations at
the centers in all hyperrectangles at every step. Second, the
local minimum values after local optimizations are referenced
for subdivision in DIRECT unlike DIRMIN, which uses the
unoptimized values. This method is equivalent to the original
DIRECT on the transformed step function F(x) (Fig. 3). In
the transformed step function, the function values are constant
at the local minimum value within each basin in the original
function f (x). This combination manner is inspired by the
strategy of BH. BH also explores the local minima on the
transformed step function F(x) rather than the original func-
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FIG. 3. Conceptual diagram of the function transformation from
the original function f (x) to the step function F(x). In the trans-
formed step function F(x), the function values are constant at the
local minimum value within each basin in the original function f (x).

tion f (x), making the search efficiency higher than the simple
MC. We call the proposed method tDIRECT.

C. General definition of the Z-matrix representation

The hyperrectangle search space must be defined to apply
the DIRECT algorithm to structure searches. Although an
atomic cluster structure can be described in various manners,
in this paper, we employ the Z-matrix representation using
internal coordinates (i.e., bond lengths, bond angles, and di-
hedral angles) [35,36]. The internal coordinates specify the
relative positions of the constituent atoms. Consequently, the
search space satisfying the adjacency relations of atoms corre-
sponding to a given structural formula can easily be defined by
the internal coordinates, whereas using absolute coordinates
such as Cartesian coordinates to specify adjacency relations
is difficult. The distance matrix also explicitly indicates the
relative positions of atoms. A distance matrix is often used
for structure searches of molecules (e.g., distance geometry
method) [37,38]. Because the number of interatomic distances
in an N-atom system is N(N − 1)/2, the dimension of a search
space using the distance matrix is beyond that of configuration
space, 3N − 6, at N > 4. This disadvantage becomes more
serious as the number of atoms in the system increases. In
contrast, the number of internal coordinates in a Z matrix is
equal to the dimension of the configuration space, 3N − 6, sat-
isfying the translational and rotational invariances without any
constraints. Herein, the Z-matrix representation is employed
for atomic clusters.

As a simple example, we illustrate a Z matrix for a methane
molecule with a regular tetrahedral coordination of H atoms
around the central C atom. The Z matrix is expressed as

Row 1: C
Row 2: H 1 r2

Row 3: H 1 r3 2 ϕ3

Row 4: H 1 r4 2 ϕ4 3 θ4

Row 5: H 1 r5 2 ϕ5 3 θ5

where rn = 1.09 Å (n = 2, . . . , 5), ϕn = 109.5◦
(n = 3, . . . , 5), and θn = 120.0◦ (n = 4, . . . , 5), according
to the literature [39]. The species and position of the nth
atom in the nth row of the Z matrix are defined by describing
the internal coordinates. The first row specifies only the
atomic species C in the first column and not other internal

coordinates. In the second row, the bond length between
the first and second atoms r2 is necessary to determine the
relative position. In the third row, the bond angle between
bonds 1–3 and 1–2, ϕ3, is required as well as the 1–3 bond
length r3. In the fourth row, the dihedral angle between the
planes 4–1–2 and 1–2–3, θ4, the bond length r4, and the bond
angle ϕ4 are essential, and similarly after the fifth row. In
general, an N-atom cluster has 3N − 6 internal coordinates
in total [i.e., bond lengths rn (rn > 0, n = 2, . . . , N ), bond
angles ϕn (0◦ � ϕn � 180◦, n = 3, . . . , N), and dihedral
angles θn (0◦ � θn < 360◦, n = 4, . . . , N)], corresponding
to the hyperrectangle domain for the atomic cluster structure.
Thus, the Z matrix specifies each atomic position in a cluster
as the relative positions to already specified atoms.

D. Specification of the search space for atomic cluster structures

The Z matrix has multiple equivalent representations for
a given structural formula. The representation depends on
which atom is assigned to each row of the Z matrix and which
adjacent atoms define the bond length, the bond angle, and the
dihedral angle. As an example, consider a methane molecule.
A different Z-matrix representation can be expressed as

Row 1: H
Row 2: C 1 r2

Row 3: H 2 r3 1 ϕ3

Row 4: H 2 r4 1 ϕ4 3 θ4

Row 5: H 2 r5 4 ϕ5 3 θ5

In this representation, the first and second rows specify the hy-
drogen and carbon atoms, respectively. In addition, the bond
angle in the fifth row is defined as 5–2–4 instead of 5–2–1.
Below, we explain the scheme to select a representative Z
matrix in this paper.

First, the atomic indices corresponding to the row number
of the Z matrix are determined. For atomic indexing, the struc-
tural formula is considered as a graph, which is represented by
two sets of nodes and edges. The graph is acyclic, and every
two adjacent nodes in the structural formula are connected by
a single edge, even if the chemical-bonding state contains a
multiple bond. That is, the graph is an undirected tree. The
priority of node i, πi, (i = 1, . . . , N ) is determined using
criteria (a) and (b). These are the two criteria in canonical
numbering for molecular graphs proposed by Jochum and
Gasteiger [40].

Criterion (a): Eccentricity of node i, εi. In graph theory,
the eccentricity of a node is defined as the maximum distance
to the other nodes. The distance is defined as the number of
edges in the shortest path connecting two nodes. If εi < ε j ,
then πi > π j , meaning that the node closer to the center of an
atomic cluster has a higher priority.

Criterion (b): Degree of node i, ki. In graph theory, the
degree of a node is defined as the number of connected edges.
If ki > k j , then πi > π j , meaning that the node with more
adjacent atoms has a higher priority.

The priority is initially determined by criterion (a). Crite-
rion (b) is used only when multiple nodes have equal priorities
in criterion (a). The atoms assigned to the individual nodes are
arranged in descending order of πi in the Z matrix. Table I
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TABLE I. Atomic indexing for the structural formula shown in
Fig. 4. The structural formula consists of nine X atoms. Eccentricity,
degree, priority, and index of each node are also shown.

Xa Xb Xc Xd Xe Xf Xg Xh Xi

(a) Eccentricity εi 6 5 4 3 4 5 6 5 6
(b) Degree ki 1 2 2 2 3 2 1 2 1
Priority πi 1 2 3 5 4 2 1 2 1
Index 9 6 3 1 2 4 7 5 8

demonstrates determining the atomic indices based on the
criteria for an acyclic structural formula composed of nine
atoms, as shown in Fig. 4. When atoms have the same priority,
the atom adjacent to a smaller-indexed atom is indexed. If
equivalent atoms are adjacent to the same atom, they are
indexed arbitrarily. For example, among Xb, Xf , and Xh with
the same priority in Table I, Xb is assigned a larger index than
Xf and Xh due to the adjacency to Xc with a larger index,
while Xf and Xh are indexed arbitrarily.

Second, the induced subtree defining the bond angle ϕn

(n = 3, . . . , N ) and dihedral angle θn (n = 4, . . . , N ) is se-
lected for every atom. Note those defining the bond lengths are
uniquely determined in the case of acyclic structural formulas.
Induced subtrees for bond and dihedral angles are selected
as the smallest sum of atomic indices in the possible trees.
Using the acyclic structural formula in Fig. 4 as an example,
there are two possible induced subtrees defining the dihe-
dral angle specifying the position of Xi (atomic index: 8)
[i.e., Xi-Xh-Xe-Xd (atomic indices: 8-5-2-1) or Xi-Xh-Xe-Xf

(atomic indices: 8-5-2-4)]. In this case, we select the first tree
according to the above rule.

Once a procedure is constructed to select a representative
of the Z matrix in the above scheme, the hyperrectan-
gle search space can be specified, i.e., rn,LB � rn � rn,UB

(n = 2, . . . , N ), 0◦ � ϕn � 180◦ (n = 3, . . . , N ), and 0◦ �
θn < 360◦ (n = 4, . . . , N ). Here, rn,LB and rn,UB are the lower
and upper bounds for the bond length rn, respectively. These
can be restricted to a short range by referring to the bond radii
reported in the literature. Because in this paper we set rn,LB

and rn,UB to the same length, every bond length is fixed to a
constant value. For example, the constant value is set to the
average bond length of 100 cluster structures obtained by the
preliminary RS. As a result, the search space dimension is
reduced by N − 1 from 3N − 6 to 2N − 5. The reduced search
space by the constant bond lengths is reasonable because the
proposed method incorporates a local optimizer to optimize
the bond lengths.

In the (2N − 5)-dimensional hyperrectangle search space
for bond and dihedral angles, any point corresponds to an
atomic cluster structure. Because each point in this domain
may not necessarily correspond to different structures, there

FIG. 4. Acyclic structural formula with nine X atoms. These
atoms are tentatively labeled alphabetically.

FIG. 5. Two Z-matrix representations for identical cluster struc-
tures, in which the internal coordinates of the two bijective subtrees,
4–7 and 5–8, are exchanged. Number for each atom is the atomic
index corresponding to the row number in the Z matrix.

may be multiple equivalent points. Using the structural for-
mula in Fig. 4 as an example, any structure has two different
representations in the Z matrix, as shown in Fig. 5. The two
representations coincide with each other by the permutation
of the individual internal coordinates of two bijective sub-
trees 4–7 and 5–8. To exclude duplicate points, the search
space is restricted to the irreducible parts of the domain (ir-
reducible search space). Specifically, constraints are imposed
on the bond or dihedral angles in every pair of representative
atoms in such bijective subtrees [e.g., θ7 < θ8 in Fig. 5(a)].
In tDIRECT, local optimizations for the points outside the
irreducible search space are not performed. Additionally, the
hyperrectangles that do not overlap with the irreducible search
space are not further divided.

In addition, mirror symmetry reduces the search space. The
search space is defined by the dihedral angle in the fourth
atom as a range of 0◦ � θ � 180◦, which restricts the position
of the fourth atom to one side of the plane formed by the
first, second, and third atoms. The two structures in Fig. 6 are
equivalent when all the other coordinates are equal except for
the dihedral angle (360◦−θ ) on the fourth atom. Note that the
difference between the right- and left-handed systems in this
paper are ignored.

FIG. 6. Structures (a) and (b) are equivalent when the dihedral
angles specifying the fourth atom are θ and 360◦−θ , respectively,
and all other coordinates are equal. Note that the difference between
the right- and left-handed systems is ignored in this paper.
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FIG. 7. (a) Structural formula labeled with the atomic indices
of LJ38 cluster for constructing the Z matrix. Structural formula
of each LJN cluster (N � 36) corresponds to the induced sub-
tree consisting of all nodes with a label in the range of 1 and
N. (b) The LJ38 structure corresponding to the center of the
search space, defined as rn = 2−1/6 (n = 2, . . . , 38), 0◦ � ϕn �
180◦ (n = 3, . . . , 38), 0◦ � θ4 < 180◦, and θn,0 � θn < θn,0 + 360◦

(θn,0 = 0◦, −90◦, −180◦, or −270◦ for n = 5, . . . , 38) in Z-matrix
representation, in which all atoms are located on the simple-cubic
lattice.

III. RESULTS AND DISCUSSION

A. Application to Lennard-Jones clusters

First, we applied tDIRECT to the global optimization prob-
lems for Lennard-Jones clusters LJN (n = 8, 10, . . . , 38).
Both the potential well depth and the equilibrium distance
were set to unity in the LJ potential. In these applications,
cluster structures were explored only in a single search space
constructed from the structural formula shown in Fig. 7(a).
The structural formula of the LJN cluster corresponds to
the induced subtree consisting of all nodes with a label
in the range of 1 and N. Although the structural formula
appears to be a complicated two-dimensional graph, it is
constructed based on a simple-cubic structure, as shown in
Fig. 7(b). The center of the search space, corresponding to
the initial structure in tDIRECT, becomes the simple-cubic
cluster by appropriately setting the ranges of dihedral angles
with periodicity. Specifically, four types of ranges of dihe-
dral angles θn,0 � θn < θn,0 + 360◦ (θn,0 = 0◦, −90◦, −180◦,
or −270◦) were appropriately chosen for n = 5, . . . , N .
The bond lengths rn (n = 2, . . . , N ) were fixed at theoret-
ically optimal values lfix as 2−1/6, and the bond angles ϕn

(n = 3, . . . , N ) and the dihedral angle θ4 were defined by
0◦ � ϕn, θ4 � 180◦. The maximum coordination number of
the structures corresponding to the center of the search space
is six, which is different from those of the stable LJN clusters
forming an icosahedral- or face-centered-cubic-based struc-
ture [5]. The employed search spaces, therefore, never work
in favor of tDIRECT in the structure search for LJ clusters.

Local optimizations were performed only if the shortest
atomic distance was >0.5 lfix (called the initial condition) to
avoid local optimizations for unrealistic initial structures. The
conjugate gradient algorithm [41] was used for local optimiza-
tions implemented in LAMMPS [42]. The convergence criterion
was that all the force components on any atom are <1 × 10−4

in force units. A local optimization not converging within the
maximum number of total energy evaluations (=100 N ) was
terminated as an error.

The threshold for the hyperrectangle size was set to 30◦
in the search space defined by the bond and dihedral angles.
Thus, hyperrectangles with a subthreshold size were not di-
vided into subhyperrectangles. We set a high energy, 1000 in
energy units, at the center value in a hyperrectangle when the
initial structure did not satisfy the initial condition.

For comparison, we also applied RS and BH to the LJ
clusters. In RS, local optimizations were performed for the
randomly generated structures satisfying the initial condition.
In BH, we performed 10 runs, in which each run started
at a local minimum obtained by a local optimization from
a randomly generated initial structure satisfying the initial
condition. BH repeated the following three processes for the
initial structure: (i) randomly displace each atom in an atomic
cluster, (ii) perform a local optimization, and (iii) accept or
reject the transition to the new structure with the atomic
displacements. In process (i), each atom was randomly dis-
placed in Cartesian coordinates. The displacement width was
determined as lfixαη (0 � η � 1: uniform random number)
in a random direction, where the scaling factor α was 0.7
or 1.0. In process (iii), we accepted or rejected the structural
transition according to the Metropolis criterion, in which the
temperature parameter was set as 0.05 per atom in energy
units.

Figure 8 shows (a) the number of geometry optimizations
and (b) the number of total energy evaluations until finding
the stable structure for each LJN cluster (N = 8, 10, . . . , 38).
The RS profiles are shown as the expected values estimated
after finding the stable structure multiple times in a single long
run. The BH profiles are shown by the boxplots of 100 runs,
in which labels BH_1 and BH_07 correspond to the different
scaling factors α for atomic displacements 1.0 and 0.7, respec-
tively. For N � 16, the differences in the number of geometry
optimizations or total energy evaluations are small between
the three methods of tDIRECT, RS, and BH, probably because
the PESs of the relatively small LJ clusters have not so many
local minima [43]. For N � 18, the three methods have a
clear difference in performance. tDIRECT is more efficient
than RS and slightly less efficient than BH on average. How-
ever, the performance of BH depends on the scaling factor
α and largely fluctuates even under the same scaling factor
due to the probabilistic nature. By contrast, tDIRECT exhibits
consistent performance due to the deterministic nature, which
is the superiority of tDIRECT over BH. Note that tDIRECT
shows excellent performance for the LJ38 cluster. It is well
known that LJ38 has a PES with an archetypal double funnel
[44], which makes it difficult to find the global minimum by
conventional global optimization methods. Table II shows the
comparison of the performances for the LJ38 cluster between
tDIRECT with the benchmarks from Ref. [45]. tDIRECT is
more efficient than BH and GA, whose computational cost for
finding the stable structure is half and quarter in comparison
with the BH and GA, respectively. The performances of BH
and GA were reported to be improved with the symmetriza-
tion schemes, which reduce the computational costs by more
than an order of magnitude. Although tDIRECT is less ef-
ficient than the symmetrized BH and GA, the performance
of tDIRECT should be notable in terms of deterministic ap-
proach with a single insensitive parameter, which may be due
to the well-balanced strategy for global and local searches.
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FIG. 8. (a) The number of geometry optimizations and (b) the
number of total energy evaluations in tDIRECT (red circle) until
finding the stable structure for each LJN cluster (N = 8, 10, . . . , 38).
The performances of random search (RS) and basin hopping (BH)
are shown for comparison. The RS profiles (green diamond) are
shown as the expected values estimated after finding the stable struc-
ture multiple times in a single long run. The BH profiles are shown as
boxplots of a hundred runs. The pink (right) and blue (left) boxplots
at each number of atoms correspond to the results of BH with scaling
factors α = 1.0 and 0.7 (BH_1 and BH_07), respectively.

B. Application to phosphorus and sulfur clusters

1. Model systems and computational conditions

We applied tDIRECT to practical structure search prob-
lems for phosphorus clusters PN and sulfur clusters SN (N =
8, 10, and 12). For comparison, we also applied RS and BH to
these clusters. For the application of BH, the scaling factor
α was set to 0.4, 0.5, 0.7, or 1.0, and the temperature pa-
rameter was set as 0.1 eV/atom. In these applications, cluster
structures were searched only in the single search space con-
structed from a linear structural formula. Figure 9 shows the
atomic indices for the linear structural formula XN . Because
any linear structural formula can be described with two differ-
ent Z-matrix representations due to the two bijective subtrees
(Fig. 9, subtrees 1 and 2), we constrained the dihedral angles
specifying the atoms at the ends of the individual subtrees,
i.e., θN−1 � θN . As a result, the irreducible search space is
defined by 0◦ � ϕn � 180◦ (n = 3, . . . , N ), 0◦ � θ4 < 180◦,

TABLE II. Comparison of the performances for the LJ38 cluster
between tDIRECT and the benchmarks from [45]. The benchmarks
are BH, GA, BH with the core orbits symmetrization schemes (BH-
CO), GA with CO schemes (GA-CO), and BH with the continuous
symmetry measure schemes (BH-CSM), corresponding to the statis-
tics of 100 random starting points.

Method Geometry optimization Total energy evaluations

tDIRECT 441 114738
BH [45] 1271 185493
GA [45] 2885 404825
BH-CO [45] 142 20655
GA-CO [45] 105 25365
BH-CSM [45] 34 4369

0◦ � θn < 360◦ (n = 5, . . . , N ), and θN−1 � θN . The bond
lengths rn (n = 2, . . . , N ) were fixed at constant values lfix

of 2.35, 2.37, and 2.39 Å in the phosphorus clusters P8, P10,
and P12, respectively, while lfix was set to 2.36 Å for all sulfur
clusters. These values were obtained by averaging the inter-
atomic distances under 1.5 lmin of 100 optimized structures in
the preliminary RS runs, where lmin is the shortest interatomic
distance of each cluster structure.

The total energies and atomic forces of structures for
each atomic cluster were calculated based on density func-
tional theory (DFT) implemented in Gaussian 16 [20]. We
employed the PBE0 exchange-correlation term [46] and the
LanL2DZ basis functions [47–49], assuming a singlet elec-
tronic state. The rational function optimization algorithm
[50–53] was used for local optimizations. Local optimization
has two convergence criteria: (i) the root mean square of
the first derivative of the total energy is <3 × 10−4 Eh/a0

(1.543 × 10−2 eV/Å), and its maximum is <4.5 × 10−4

Eh/a0 (2.314 × 10−2 eV/Å); and (ii) the root-mean-square
deviation (RMSD) of the atomic displacement is <1.2 × 10−3

a0 (6.350 × 10−4 Å), and its maximum is <1.8 × 10−3 a0

(9.526 × 10−4 Å). Note Eh (27.2116 eV) is Hartree energy
and a0 (0.5292 Å) is the Bohr radius.

In the DFT calculations, local optimizations that satisfied
either of the following error criteria were aborted: (i) The

FIG. 9. Atomic indices for the linear structural formula of XN in
the cases of (a) even N and (b) odd N. Any structural formula in both
cases can be described with two different Z-matrix representations
due to the two bijective subtrees 1 and 2. We imposed a constraint on
the dihedral angles, θN−1 � θN .
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FIG. 10. Stable structures of (a) P8, (b) P10, (c) P12, (d) S8,
(e) S10, and (f) S12 obtained by the proposed methods using density
functional theory (DFT) calculations with the PBE0 exchange-
correlation term and the LanL2DZ basis functions. (g) Reported
stable structure of P10 obtained at the SCF/SVP (split valence plus
polarization) level in Ref. [57]. Parentheses indicate the point group
of each cluster structure.

output structure is separated into multiple clusters, or (ii) the
number of total energy evaluations in a local optimization
is >50 N times. The criterion of cluster separation was that
the interdistances of subclusters were >1.5 lmin. If a local
optimization yielded an error in the self-consistent field (SCF)
convergence or a structure with imaginary vibration modes,
the local optimization was repeated after randomly displacing
every atom in the final structure, as the RMSD of the atomic
displacement was <0.1 Å. If the same SCF error occurred
more than once, the local optimization was terminated as an
error.

In structure search for these practical problems, low-energy
local minima are important as well as the global minimum
from the thermodynamic point of view. The low-energy
metastable structures may exist at a rate proportional to the
Boltzmann constant at finite temperatures, and one of them
may become more stable at high temperatures than the global

TABLE III. Methods of the total energy calculations for the
structure search of the phosphorus clusters PN and sulfur clusters SN

(N = 8, 10, 12) in the literature.

Literature Calculation method Clusters

Ref. [55] MD-DF (LSDA) P8

Ref. [56] MD-DF (LSDA) P10

Ref. [57] SCF/SVP P8, P10, P12

Ref. [58] B3LYP/6–311G∗ P8, P10, P12

Ref. [59] MD-DF (LSDA) S8, S10, S12

Ref. [60] MP4/6-31G∗//HF/3-21G∗ S8

MP3/6-31G∗//HF/3-21G∗ S10, S12

Ref. [61] B3LYP/6-31G∗ S8, S10, S12

FIG. 11. [(a), (b)] The number of geometry optimizations and
[(c), (d)] the number of total energy evaluations in tDIRECT (red
circle) until finding the stable structure of the PN clusters and the SN

clusters (N = 8, 10, 12). The performances of random search (RS)
and basin hopping (BH) are shown for comparison. The RS profiles
(green diamond) are shown as the expected values estimated after
finding the stable structure multiple times in a single long run. The
BH profiles are shown by the boxplots of 10 runs. The four boxplots
from right to left at each number of atoms are BH_1 (pink), BH_07
(blue), BH_05 (yellow), and BH_04 (light blue), corresponding to
the results of BH with scaling factors α = 1.0, 0.7, 0.5, and 0.4,
respectively.

minimum due to the larger contribution of rotational and/or
vibrational free energies. The Gehrke’s criterion [54] was em-
ployed after each structure search to determine the structural
coincidence between structures A and B. The two structures
were considered identical when the following condition was
satisfied: ∑

(lA,i − lB,i )
2∑ (

l2
A,i + l2

B,i

) < 10−4, (4)

where lA,i and lB,i are the interatomic distances of structures
A and B sorted in ascending order, respectively. Note that the
optimized structure must maintain a cluster form. That is, the
structure must correspond to a connected graph. We assumed
that two atoms were adjacent if the sorted interatomic distance
lX,i satisfied the following condition:

lX, j � lX, j−1 + 0.5 Å for all j = 1, 2, . . . , i, (5)

where lX,0 is the shortest interatomic distance lmin of structure
X.

2. Obtained stable and metastable structures of the phosphorus
and sulfur clusters

Figure 10 shows the stable structures of the phosphorus
and sulfur clusters obtained in this paper, while Table III
summarizes the calculation methods in the previous reports
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FIG. 12. Performances of tDIRECT (red cross) in the structure search for (a) P8, (b) P10, (c) P12, (d) S8, (e) S10, and (f) S12, in which
the number of obtained stable and low-energy metastable structures are shown as a function of the number of total energy evaluations.
Performances of random search (RS) and basin hopping (BH) are shown for comparison. The RS profiles (green lines) are shown as the
expected values estimated from the results of Nsmp local optimizations. BH profiles are the average values of 10 runs with error bars (±σ ).
BH_1 (pink circle), BH_07 (blue diamond), BH_05 (yellow square), and BH_04 (light blue triangle) correspond to the BH profiles with scaling
factors α = 1.0, 0.7, 0.5, and 0.4, respectively.

on structure searches of these clusters [55–61]. The obtained
stable structures were consistent with those found in the lit-
erature, except for that of P10 in Ref. [57]. The inconsistent
structure in the literature [Fig. 10(g)] was obtained at the
SCF/SVP (split valence plus polarization) level, which was
a metastable structure at the PBE0/LanL2DZ level in this
paper with a relative energy of 0.064 eV/atom vs the stable
structures. The stable structures of S8, S10, and S12 were
consistent also with the reported structures characterized by
x-ray structural analyses [62].

The literature contained 14 low-energy metastable struc-
tures for the phosphorus and sulfur clusters (<0.1 eV/atom vs
the stable structure). Of these, 12 were obtained in this paper.
One of the two unobtained structures had a relative energy
>0.1 eV/atom at the PBE0/LanL2DZ level, while the other
was not identified due to the unclear description in the liter-
ature. On the contrary, the proposed method obtained many
unreported low-energy structures (see Fig. 12).

3. Performance of tDIRECT

Figure 11 shows the numbers of geometry optimizations
and total energy evaluations until finding the stable structure
of the phosphorus clusters PN and sulfur clusters SN (N = 8,
10, 12). The RS profiles are shown as the expected values
estimated after finding the stable structure multiple times in
a single long run. The BH profiles are shown by the box-

plots of 10 runs, in which labels BH_1, BH_07, BH_05, and
BH_04 correspond to the different scaling factors α for atomic
displacements, 1.0, 0.7, 0.5, and 0.4, respectively. Overall,
tDIRECT is more efficient than RS and slightly less efficient
than BH. Since the numbers of local minima of these clusters
(see Table IV) are larger than that of the LJ cluster with the
same size [43], these profiles exhibit a similar tendency to
those of relatively large LJ clusters (N � 18).

Figure 12 shows the performances of tDIRECT for enu-
merating the low-energy structures of the phosphorus clusters
PN and sulfur clusters SN . The number of obtained stable and

TABLE IV. Initial setting and results of RS for the phosphorus
and sulfur clusters. Nsmp, Nmin, and Nmin(low) are the number of initial
structures, the number of obtained stable and metastable structures,
and the number of those with a lower energy (<0.1 eV/atom vs the
stable structure), respectively.

Clusters Dimension (2N-5) Nsmp Nmin Nmin(low)

P8 11 5000 136 11
P10 15 25 000 1370 13
P12 19 100 000 12 917 20
S8 11 5000 103 6
S10 15 25 000 1069 23
S12 19 100 000 8666 97
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FIG. 13. Frequency histograms of convergence to the stable and metastable structures with a total energy in each range (width of 0.025
eV/atom). (a) P8, (b) P10, (c) P12, (d) S8, (e) S10, and (f) S12 clusters, and the upper and lower histograms in each figure correspond to the ones
at the ends of the structure searches in tDIRECT and random search (RS), respectively.

low-energy metastable structures is shown as a function of
the number of total energy evaluations corresponding to the
computational cost. For comparison, the performances of the
two conventional methods RS and BH are also shown. The RS
profiles are shown as the expected values estimated from the
results of Nsmp local optimizations. Specifically, the expected
number of stable and low-energy metastable structures 〈Nmin〉
in nsmp local optimizations is estimated as

〈Nmin〉 =
∑

i

[
1 −

(
1 − Nmin,i

Nsmp

)nsmp
]
, (6)

where Nmin,i is the number of initial structures converging to
the ith structure in Nsmp local optimizations, which is propor-
tional to the basin size around the ith structure. The expected
number of total energy evaluations per local optimization was
set as the average value in Nsmp local optimizations. Table IV
summarizes the initial setting and the results of RS for each
cluster. The BH profiles are shown as the average of 10 runs
with an error bar of ±σ (σ : standard deviation).

tDIRECT displayed a relatively higher efficiency than RS.
The tDIRECT profiles for the phosphorus clusters showed an
excellent performance compared with the RS profiles. How-
ever, the tDIRECT and RS profiles were similar for the sulfur
clusters. The difference in the relative efficiency of tDIRECT
to RS by cluster type may be due to the search space. The
fraction of the low-energy region in the search space dif-
fered between the phosphorus and sulfur clusters. Figure 13
shows the frequency histograms of convergence to the stable
and metastable structures with a total energy in each range

(width of 0.025 eV/atom). The upper and lower histograms
correspond to the ones at the ends of the structure searches
in tDIRECT and RS, respectively. In the RS histograms, the
phosphorus clusters were distributed on the higher-energy
side relative to those of the sulfur clusters, suggesting that
the volume fractions of basins around local minima with a
low energy were relatively small in the phosphorus clusters. In
such a case, tDIRECT worked efficiently because it sampled
the initial structures for local optimizations from potentially
optimal hyperrectangles, i.e., possibly low-energy regions.
The histograms of tDIRECT were located on the lower-energy
side compared with those of RS for the phosphorus clus-
ters, resulting in the higher efficiency of tDIRECT vs RS. In
contrast, the RS histograms for the sulfur clusters were on
the lower-energy side, and the differences in the histograms
between tDIRECT and RS were relatively small. In fact, the
sums of the absolute differences in the frequency histograms
between the tDIRECT and RS were 61, 70, and 82% for P8,
P10, and P12, respectively. In contrast, these sums were 41, 39,
and 48% for S8, S10, and S12, respectively. Because the differ-
ence in sampling the initial structures for local optimizations
was relatively small for the sulfur clusters, tDIRECT and RS
had comparable efficiencies. Thus, preferential sampling of
the initial structures for local optimizations from low-energy
regions in tDIRECT worked effectively for search spaces with
small low-energy regions.

Comparing the two conventional methods, BH outper-
formed RS on average, but there was a dependence on the
parameter setting (Fig. 12). Among the four profiles with the
different scaling factors α (profiles BH_1, BH_07, BH_05,
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FIG. 14. Frequency histograms of convergence to the stable and
metastable structures with a total energy in each range (width of
0.025 eV/atom) for the S8 cluster. Upper and lower histograms cor-
respond to the one at the early steps of ∼2000 energy evaluations in
tDIRECT and the one at the end of the structure search in random
search (RS), respectively.

and BH_04), the search efficiency was remarkably low at α =
0.4 (BH_04) because the walker exploring the PES had diffi-
culty escaping the current basin due to the small displacement.
Among the other profiles with α = 1.0, 0.7, and 0.5 (BH_1,
BH_07, and BH_05), the differences in the search efficiency
for the phosphorus clusters were relatively large compared
with those for the sulfur clusters. The efficiencies for P8,
P10, and P12 were in the order of BH_07 > BH_1 > BH_05,
BH_07 > BH_05 > BH_1, and BH_05 > BH_07 > BH_1,
respectively, where the appropriate scaling factor α depended
on the number of atoms in the phosphorus cluster. Thus, an
efficient structure search by BH required careful parameter
tuning. Although it seems useful to adaptively change the
scaling factor α instead of employing a fixed value, additional
parameters such as the initial value or the changing rate of α

are necessary.
tDIRECT and BH showed comparable efficiencies for

each cluster, but there were a few exceptions. tDIRECT
had a lower efficiency than that of BH for the S8 and P12

clusters, particularly in the early steps. Since the DIRECT
algorithm selected the hyperrectangles to divide according to
the already-computed function values, tDIRECT tended to
be less efficient when information about the potential ener-
gies was scarce, which occurred in the early steps. Scarce
information also led to stagnation in the tDIRECT profiles
due to excessively exploring basins around insignificant lo-
cal minima. This behavior was clearly seen in the structure
search for the S8 cluster by tDIRECT. Figure 14 shows similar
frequency histograms for the S8 cluster in Fig. 13(d). The
upper histogram corresponds to the one for the early steps
with ∼2000 total energy evaluations in tDIRECT, while the
lower shows the end of the structure search in RS. The fraction
of the obtained stable and metastable structures in the range
of 0.125–0.15 eV/atom reached ∼40% in the early steps,

which was beyond the definition of low-energy metastable
structures. In contrast, BH only used the total energy differ-
ence between the current and the displaced points for PES
exploration. When the parameters (T and α) were set carefully,
BH had a higher search efficiency than tDIRECT and RS,
especially in the early steps.

Nonetheless, tDIRECT has advantages to BH from two
viewpoints. First, tDIRECT obtains stable and low-energy
metastable structures deterministically, unlike the probabilis-
tic BH. Second, tDIRECT is a simple method, as it uses a
single insensitive parameter (angle threshold), whereas BH
requires a minimum of two parameters (T and α). Considering
these advantages, tDIRECT should be a useful method for
structure searches.

IV. CONCLUSIONS

We proposed a DIRECT-based structure search method for
atomic clusters combined with a local optimizer. tDIRECT
performs local optimizations from the centers of all hyper-
rectangles during the DIRECT process, and the search space
is divided according to the local minimum values after local
optimizations. This is equivalent to the original DIRECT on
a transformed step function, where the function values are
constant at the local minimum value within each basin in
the original function. The search space for atomic cluster
structures is constructed using the Z-matrix representation,
in which the atomic positions are specified by bond lengths,
bond angles, and dihedral angles. To improve the search effi-
ciency, the search space is restricted by using constant bond
lengths and imposing constraints on the bond or dihedral
angles.

We applied the proposed method to the Lennard-Jones
clusters and two kinds of atomic clusters PN and SN , com-
paring the results with those of the conventional methods RS
and BH. For the global optimization problems, tDIRECT is
more efficient than RS and comparable to or slightly less
efficient than BH on average. For the problems of enumerat-
ing the low-energy structures, tDIRECT has a comparable or
higher efficiency than that of RS and comparable efficiency
to BH with a few exceptions. Although it tends to exhibit
a relatively lower efficiency to BH in the enumeration of
low-energy structures at the early steps as well as in the global
optimization, tDIRECT has advantages as a deterministic and
parameter-insensitive structure search method.
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