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Finite element method as an alternative to study the electronic structure of confined atoms
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The finite element method (FEM) based on a nonregular mesh is used to solve Hartree-Fock and Kohn-Sham
equations for three atoms (hydrogen, helium, and beryllium) confined by finite and infinite potentials, defined
in terms of piecewise functions or functions with a well-defined first derivative. This approach’s reliability is
shown when contrasted with Roothaan’s approach, which depends on a basis set. Therefore, its exponents must
be optimized for each confinement imposed over each atom, which is a monumental task. The comparison
between our numerical approach and Roothaan’s approach is made by using total and orbitals energies from the
Hartree-Fock method, where there are several comparison sources. Regarding the Kohn-Sham method, there are
few published data and consequently the results reported here can be used as a benchmark for future comparisons.
The way to solve Hartree-Fock or Kohn-Sham equations by the FEM is entirely appropriate to study confined
atoms with any form of confinement potential. This article represents a step toward developing a fully numerical
quantum chemistry code free of basis sets to obtain the electronic structure of many-electron atoms confined by
arbitrary confinement.
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I. INTRODUCTION

The electronic structure of atoms and molecules suffers
important changes when these systems are immersed in envi-
ronments different from the vacuum. For example, essential
differences are observed in the total energy when an atom
is under confinement [1–10]. Unfortunately, many compu-
tational codes have been designed to study the electronic
structure of atoms in the vacuum and consequently they can-
not be used when an atom is within an environment different
from the gas phase, in particular, when the confinement is
modeled by piecewise functions. In this sense, the MEXICA-C

code has been designed to study the electronic structure of
atoms submitted to several potentials, defined through piece-
wise functions, that mimic different environments [11–13].
However, this code is based on Roothaan’s approach where
Hartree-Fock [14] or Kohn-Sham orbitals [15] are represented
by a basis set, where functions depend on a set of exponents,
which must be adjusted to obtain the minimal energy for
each confinement imposed on an atom. The use of functions
defined over the whole domain of an atom or molecule is
inconvenient since the set of exponents is unique for a par-
ticular environment and consequently such a basis set must
be reoptimized each time that the system changes its envi-
ronment [16,17]. Thus, this approach is not recommendable
for atoms immersed in an environment different from the vac-
uum. Alternatively to Roothaan’s approach, there are methods
based on grids, which avoid the reoptimization of a basis
set, which have been used for confined atoms. However, the
current implementations are inefficient or limited to studying
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one- or two-electron atoms for finite potentials defined in
terms of piecewise functions.

The finite element method (FEM) is a powerful numerical
approach to solving differential equations. In particular, the
FEM has been used to solve the Schrödinger equation for
atoms, molecules, and crystals. In principle, this method
is versatile to solve differential equations with different
boundary conditions. This versatility must also be observed
when the Schrödinger equation is solved under different
boundary conditions [18–38]. We must mention that there
are reports only for two-electron confined atoms analyzed
with grid-based methods involving the exact exchange with
potentials defined by piecewise functions [32,39]. The main
reason for this lack of study is the difficulties presented in
implementing the exact exchange within the corresponding
algebraic approach.

Regarding the confinement models, defined by piecewise
functions, we can mention a relevant potential used to sim-
ulate different confinements to represent hard or soft walls.
For the first case, an atom is enclosed by a sphere with an
infinite potential over its surface and the corresponding wave
function or electron density cannot penetrate the potential. In
the second case, the sphere’s surface imposes a finite poten-
tial and the corresponding wave function or electron density
can penetrate the region where the potential is defined. Both
situations can be represented by

υ(r) =
{

− Z
r for r < Rc

Vc for r � Rc,
(1)

where Rc represents the radius of the sphere, Z is the atomic
number, and Vc can be infinite or finite. Atomic units (a.u.)
are used throughout this article. For impenetrable walls (infi-
nite potential) the wave function must be canceled at Rc; for
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penetrable walls (finite potential) the wave function and its
first logarithmic derivative must be continuous at Rc [40,41].
By looking through the literature on the FEM and its appli-
cations to the electronic structure of atoms and molecules
in the gas phase, we consider this method appropriate to
study atoms and molecules submitted to different poten-
tials that mimic confinements or environments distinct to the
vacuum.

Other model potentials, defined by functions with a well-
defined first derivative, are used to simulate confinement. For
example, the potential

Wn(r) = 1
2ωn+1r2n, (2)

with n = 1, can be used to represent several effects, as
Bielinska-Waz et al. mentioned when they introduced this
model potential to simulate confinement [42,43]. For this
case, the electronic structure can be obtained by adapt-
ing computational codes designed for nonconfined systems.
Similarly, models that simulate solvent effects or with Gaus-
sian potentials have been used over standard computational
codes to simulate atoms or molecules under extreme pressure
[7,44–46].

At this point, it is clear that several ways exist to sim-
ulate environments to confine atoms or molecules. In this
paper we implement the FEM to solve Hartree-Fock (HF)
and Kohn-Sham (KS) equations for atoms confined by dif-
ferent potentials, in particular potentials defined by piecewise
functions, to show the convenience of using this grid-based
method in studying these systems.

II. METHODS

In the HF method [14], the wave function
�(x1, x2, . . . , xN ) of a system with N electrons is represented
by a Slater determinant

�(x1, x2, . . . , xN ) = |χi(x1)χ j (x2) · · · χk (xN )|, (3)

where each spin orbital has the expression χ (x) = φ(r)σ (ω),
with σ = α or β. The electronic configuration in a system
depends on the combination of orbitals with spin α or β.
The expected value of the energy for this wave function is
expressed as

EHF =
N∑

i=1

∫
dr φ∗

i r
(

−1

2
∇2

)
φi(r) +

∫
dr υ(r)ρ(r)

+ 1

2

N∑
i=1

N∑
i=1

(∫∫
dx dx′ χ

∗
i (x)χi(x)χ∗

j (x′)χ j (x′)

|r − r′|

−
∫∫

dx dx′ χ
∗
i (x)χ j (x)χ∗

j (x′)χi(x′)

|r − r′|

)
, (4)

with the electron density ρ(r) obtained from

ρ(r) =
N∑

i=1

φ∗
i (r)φi(r). (5)

For a closed-shell system, the total energy has the form

EHF = 2
N/2∑
i=1

∫
dr φ∗

i r
[
−1

2
∇2 + υ(r)

]
φi(r)

+ 1

2

∫∫
dr dr′ ρ(r)ρ(r′)

|r − r′| + E, (6)

with the exact exchange E as

E = −
N/2∑
i=1

N/2∑
j=1

∫∫
dr dr′ φ

∗
i (r)φ j (r)φ∗

j (r′)φi(r′)

|r − r′| . (7)

The orbitals {φi(r)} that minimize EHF must satisfy the HF
equations(

−1

2
∇2 + υ(r) +

∫
dr′ ρ(r′)

|r − r′| − εi

)
φi(r)

=
N/2∑
j=1

∫
dr′ φ

∗
j (r′)φi(r′)

|r − r′| φ j (r), (8)

where εi is a Lagrange multiplier representing an HF orbital
energy. To solve these equations, it is convenient to use the
potentials Vρ (r) and V ji

X (r) to obtain

[
−1

2
∇2 + υ(r) + Vρ (r) − εi

]
φi(r) =

N/2∑
j=1

V ji
X (r)φ j (r), (9)

with

Vρ (r) =
∫

dr′ ρ(r′)
|r − r′| , (10)

V ji
X (r) =

∫
dr′ ρ

ji
X (r′)

|r − r′| , (11)

and

ρ
ji
X (r) = φ∗

j (r)φi(r). (12)

In our implementation of the FEM, Vρ (r) and V ji
X (r) are

obtained from the corresponding Poisson equation

∇2Vρ (r) = −4πρ(r), ∇2V ji
X (r) = −4πρ

ji
X (r), (13)

which means we have to apply Poisson’s equation for each
pair of occupied orbitals.

In the FEM, a differential equation is converted to a vari-
ational problem. For this purpose, Eq. (8) is multiplied by a
function h(r) that satisfies the same boundary conditions as
the solution and the resulting equation is integrated over the
whole space. The next step of the FEM is discretizing the
domain where φ is defined. Over each element e the solution
is represented as

φe
i (r) =

K∑
μ=1

ci
μge

μ(r). (14)

Typically, {gμ} are polynomials and h(r) is contained in this
set of functions. In this article, Lagrange polynomials are used
in the FEM implementation [47]. With this procedure, the
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differential equation is converted to the algebraic problem

(Hcore + Vρ − εiS)ci =
N/2∑
j=1

V ji
X c j, (15)

where

Hcore,e
νμ = Te

νμ + Ve
N,νμ, (16)

Te
νμ =

∫
dr ge∗

ν (r)(− 1
2∇2)ge

μ(r), (17)

Ve
N,νμ =

∫
dr ge∗

ν (r)υ(r)ge
μ(r), (18)

Ve
ρ,νμ =

∫
dr ge∗

ν (r)Vρ (r)ge
μ(r), (19)

Se
νμ =

∫
dr ge∗

ν (r)ge
μ(r), (20)

V ji,e
X,νμ =

∫
dr ge∗

ν (r)V ji
X (r)ge

μ(r). (21)

Equation (15) cannot be treated as an eigenvalue problem
due to the exact exchange involved in the HF equations. An
alternative to solving Eq. (15) is the Rayleigh quotient [48].
For this iterative method, we use the following algorithm,
where x = ∑N/2

j=1 V ji
X c j and F = Hcore + Vρ :

for k = 1 to N do
ε (k) = c(k)t (Fc(k) − x(k) )/c(k)t Sc(k)

(T − ε (k)S)wk+1 = x(k)

c(k+1) = wk+1/‖wk+1‖
end for

To solve the self-consistent process, at the beginning of this
process we neglect Vρ and V ji

X to obtain the first set of Ci.
The matrix Vρ is built with the first set of vectors, and after a
few iterations, the matrix V ji

X is turned on. As we mentioned
above, the Poisson equation is solved for Vρ and V ji

X . For both
potentials, the algebraic equation has the form

Lv = f, (22)

with

L =
Ne∑

e=1

Le
μν, (23)

f =
Ne∑

e=1

f e
ν , (24)

f e
ν =

∫
dr ge∗

ν (r) f (r), (25)

Le
νμ =

∫
dr g′e

ν (r)g′e
μ(r). (26)

The form of the vector f depends on the corresponding poten-
tial. For the Hartree potential, v = Vρ and f (r) = −4πρ(r).
For the exchange potential, v = V ji

X and f (r) = −4πρ
ji
X (r),

with ρ
ji
X (r) defined in Eq. (12). Finally, the solution for each

orbital is reached when the total energy changes are lower than
10−10 a.u.

(a)

(b)

FIG. 1. Nonregular mesh built with three points: (a) two ele-
ments with linear polynomials and (b) one element with a quadratic
polynomial.

In this article, the implementation of the FEM is in its
weak formulation [49]. For each element, the radial part is
evaluated by using a Chebyshev quadrature over the interval
[−1, 1] with 200 quadrature points [50]. In our code, the grid
used over the radial coordinate has two options: (i) that from
Froese-Fischer et al. [48],

ri = e(−5+i/32)

Z
, (27)

and (ii) an exponential one from [35],

ri = (1 + R∞)iα/Pα − 1, (28)

where R∞ represents the practical infinity and P the number
of grid points.

The mesh from Froese-Fischer et al. contains information
on the nuclear charge Z to obtain a dense grid close to the
nucleus. The exponential grid is identical for every atom once
the value of α is selected. This grid was tested in a previous
work [35] which concluded that α = 2 provides excellent
results for free atoms. Our code uses α = 2 as the default.
Nevertheless, for a confinement imposed by soft walls, α = 3
presents the best results. In this article, the number of nodes in
the mesh is fixed. Thus, the polynomial is adapted to the nodes
defined within the mesh. For example, in Fig. 1 a nonregular
mesh is defined by three points r = 0, 0.2, 0.7 a.u. In Fig. 1(a)
there are linear polynomials. With three nodes, there are two
elements of these polynomials. In Fig. 1(b) the three nodes
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define quadratic polynomials with only one element. Thus,
when we increase the order of a polynomial, the number of
nodes does not change. It is worth noting that for the expo-
nential mesh, the number of points is always the same (337
points in our case) independently of the nuclear charge.

Within the KS approach [15], the total energy for a closed-
shell system is obtained from

EKS = 2
N/2∑
i=1

∫
dr φ∗

i r
[
−1

2
∇2 + υ(r)

]
φi(r)

+ 1

2

∫∫
dr dr′ ρ(r)ρ(r′)

|r − r′| + Exc[ρ]. (29)

This expression is similar to Eq. (6). The E energy is the main
difference between the HF and KS methods since this term
is contained only in the HF method to consider the nonclas-
sical two-electron interactions. Regarding the KS approach,
the exact Exc functional contains all nonclassical two-electron
interactions. In principle, the KS method is exact and the
HF method is an approximation. Unfortunately, the exact-
exchange correlation functional is unknown; therefore, it is
necessary to design approximations of this functional. Some
approximations contain E , although it is not mandatory. From
a practical point of view, the implementation of both methods
is essentially the same. However, if E is not present in the
Exc approximation, the KS potential is a local multiplicative
potential, which is computationally easier to solve. Thus, if
Vxc is a multiplicative potential, then the KS equations to solve
are expressed as[ − 1

2∇2 + υ(r) + Vρ (r) + Vxc(r) − εi
]
φi(r) = 0. (30)

If E is considered to build Exc, as in hybrid exchange-
correlation functionals, then the solution of the KS equa-
tion will be similar to Eq. (9). Our fully numerical quantum
chemistry (FUNQC) code contains the option to use multiplica-
tive or nonmultiplicative potentials, or the mix of both to deal
with hybrid exchange-correlation functionals.

Finally, we want to mention an important element for the
solution of the HF or KS equations for atoms confined by a
finite potential defined by piecewise functions. In this article,
the electron-electron interaction 1/|r′ − r| is neglected within
the region r � Rc, since this expression is valid when the
electrons are in the vacuum, which is not the case for this
region. We are using the proposal by Gorecki and Byers-
Brown [51] and followed in other reports [12,52]. Thus, the
electron-electron interaction will be overestimated if a screen-
ing effect is not considered by the action of the potential [53].
In this article, we impose this restriction on the solution of the
corresponding Poisson equation.

III. RESULTS

A. Confined hydrogen atom

The confined hydrogen atom is a system that must be an-
alyzed when new numerical techniques are proposed to solve
the corresponding Schrödinger equation since this system ad-
mits exact solutions for different confinements [17]. The total
energy for the hydrogen atom confined by hard and soft walls
is reported in Table I, where the soft walls are represented

TABLE I. Total energy for the hydrogen atom confined by (a)
hard walls (Vc = ∞) and (b) soft walls (Vc = 0.0) and several con-
finement radii Rc. All quantities are in atomic units.

This work

Rc Exacta Third order Fourth order Sixth order

(a)
0.1 468.99303866 468.99303860 468.99303866 468.99303866
0.1 468.99303860 468.99303935 468.99303858
0.5 14.74797003 14.74797003 14.74797003 14.74797003
0.5 14.74797003 14.74797005 14.74796999
1.0 2.37399087 2.37399087 2.37399087 2.37399087
1.0 2.37399087 2.37399088 2.37399085
3.0 −0.42396729 −0.42396729 −0.42396729 −0.42396729
3.0 −0.42396729 −0.42396729 −0.42396729
5.0 −0.49641701 −0.49641701 −0.49641701 −0.49641701
5.0 −0.49641701 −0.49641701 −0.49641701
20.0 −0.50000000 −0.50000000 −0.50000000 −0.50000000
20.0 −0.50000000 −0.50000000 −0.50000000

(b)
0.85 −0.04036230 −0.04036230 −0.04036230 −0.04036230
0.85 −0.04036230 −0.04036230 −0.04036230
1.0 −0.12500000 −0.12499999 −0.12500000 −0.12500000
1.0 −0.12500000 −0.12500000 −0.12500000
1.5 −0.33816742 −0.33816739 −0.33816741 −0.33816742
1.5 −0.33816742 −0.33816742 −0.33816742
2.0 −0.43121889 −0.43121885 −0.43121887 −0.43121889
2.0 −0.43121889 −0.43121889 −0.43121889

aResults obtained from the methodology of Ref. [17].

by a potential defined by a piecewise function. In this table,
the results obtained from our code are contrasted with the
corresponding exact values. For this comparison, two meshes
were used: The results obtained by the grid from Froese-
Fischer et al. are reported in the first row and those obtained
by the exponential grid are reported in the second row. The
impact of the order of the polynomial used in the FEM is also
considered in Table I. From these results we observe a good
performance of the FEM to describe this atom under several
confinements. For strong confinements, Rc < 1.0, and hard
walls, the mesh from Froese-Fischer et al. exhibits better re-
sults than those obtained from the exponential grid. However,
for other confinements, both meshes give the same results.
Another important result obtained from this comparison is
that the third-order polynomial used in the FEM is enough to
obtain results converged to (or slightly different from) those
results obtained with a sixth-order polynomial. Thus, for the
hydrogen atom confined by hard or soft walls, the FEM with
a polynomial of third order is enough and any of the two
meshes considered in this article give the same results. It is
worth noting that the results obtained for each confinement
require only a few seconds in a laptop with an Intel CORE-i5
processor.

B. Confined helium atom

The helium atom is the second atom to be considered as
a reference since the electron-electron interaction is present.
The confined helium atom, in the electron configuration 1s2
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TABLE II. (a) Hartree-Fock and (b) Kohn-Sham (LDA) total energies for the helium atom (1S) confined by hard walls (Vc = ∞) for several
confinement radii Rc. All quantities are in atomic units.

Rc Other works Third order Fourth order Sixth order Eighth order

(a)
0.1 906.616438a 906.61639647 906.61639659 906.61639660 906.61639653
0.1 906.616349b 906.61639657 906.61639659 906.61639660 906.61639655
0.5 22.790961a 22.79095326 22.79095328 22.79095328 22.79095328
0.5 22.790953b 22.79095328 22.79095328 22.79095328 22.79095328
0.5 22.79095c

0.5 22.79095d

1.0 1.061206a 1.06120262 1.06120262 1.06120262 1.06120262
1.0 1.061203b 1.06120262 1.06120262 1.06120262 1.06120262
1.0 1.06120c

1.0 1.06122d

1.0 1.06120264e

2.0 −2.562578a −2.56258068 −2.56258068 −2.56258068 −2.56258068
2.0 −2.562581b −2.56258068 −2.56258068 −2.56258068 −2.56258068
2.0 −2.56258c

2.0 −2.56253d

2.0 −2.56258073e

3.0 −2.831047a −2.83104947 −2.83104947 −2.83104947 −2.83104947
3.0 −2.831050b −2.83104947 −2.83104947 −2.83104947 −2.83104947
3.0 −2.83105c

3.0 −2.83083d

3.0 −2.83104934e

4.0 −2.858586a −2.85858879 −2.85858880 −2.85858880 −2.85858880
4.0 −2.858589b −2.85858879 −2.85858880 −2.85858880 −2.85858880
4.0 −2.85859c

4.0 −2.85852d

4.0 −2.85858894e

10.0 −2.861677a −2.86167998 −2.86167999 −2.86168000 −2.86168000
10.0 −2.861680b −2.86167997 −2.86167999 −2.86167999 −2.86167999
10.0 −2.86168c

(b)
0.1 909.07874930 909.07874461 909.07874415 909.07874379
1.0 1.35361c 1.35361776 1.35361707 1.35361701 1.35361698
1.5 −1.64897738 −1.64897780 −1.64897784 −1.64897785
1.6 −1.87830808 −1.87830846 −1.87830849 −1.87830850
2.0 −2.38363c,f −2.38362974 −2.38362999 −2.38363001 −2.38363002
3.0 −2.68210c,f −2.68209830 −2.68209837 −2.68209838 −2.68209838
4.0 −2.71813c,f −2.71812803 −2.71812805 −2.71812805 −2.71812805
10.0 −2.72 364c,f −2.72363973 −2.72363976 −2.72363976 −2.72363976
∞ −2.72363952 −2.72363979 −2.72363979 −2.72363979

aFinite element method by Young et al. [32].
bRoothaan’s approach by Young et al. [32].
cFinite difference method by Martínez-Flores et al. [39].
dRoothaan’s approach by Ludeña [1].
eVariational approach by de Morais and Custodio [54].
fRoothaan’s approach by Aquino et al. [55].

(1S), is analyzed for hard or soft walls represented by piece-
wise functions.

1. Hard walls

The HF total energy of the helium atom confined by hard
walls is reported in Table II. For confinement imposed by hard
walls, a fourth-order polynomial gives stable results about
the sixth-order polynomial. The impact of the grid on the
results is minor. In fact, from a fourth-order polynomial, the

grid from Froese-Fischer et al. and exponential grids give the
same results. Thus, the two meshes tested in this article and
a fourth-order polynomial can be used without problems to
study the helium atom confined by hard walls.

There are several reports for the confinement imposed by
impenetrable walls, in particular, there is a report where the
FEM is applied. Before comparing results obtained by the
same technique, it is important to say that there are several dif-
ferences between the implementation of the FEM in Ref. [32]
and our implementation. The evaluation of the electrostatic
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potential is the main difference between that work and ours.
In Ref. [32] the electrostatic potential was obtained from its
integral representation, like the approach used in Ref. [35].
In our implementation, this property was obtained from the
solution of Poisson’s equation. The grid and the order of the
polynomial used in Ref. [32] are different from those used
in our implementation; for that reason, we do not expect
the same results by the two implementations. However, our
results are better than those obtained by the FEM implemented
in Ref. [32], which is corroborated in Table II. It is worth
noting that our implementation is completely general and the
implementation of the FEM in Ref. [32] is ad hoc for this atom
and it cannot be used for another atom, let us say beryllium.

Recently, Martínez-Flores et al. reported a grid-based
method to study the helium atom for several confinements
[39]. Such a method is based on the finite difference method
(FDM) with a nonregular mesh, and this is a good effort to
solve the HF equations without a global basis set. Regard-
ing the confinement imposed by hard walls, the FDM gives
results similar to those reported by other methodologies and
our results are the same as those obtained by this technique,
although we must mention that the FDM implemented in
Ref. [39] was ad hoc to deal with the helium atom and it
cannot be applied to another atom in the HF context.

Using Roothaan’s approach, there are several reports to
solve the HF equations for the helium confined by hard walls.
As we have mentioned in the Introduction, this method is
based on a basis set that must be optimized for each con-
finement. In particular, for hard walls, such a basis set must
be optimized for each Rc. From Table II we observe that our
implementation of the FEM gives better results than some
reported by Roothaan’s approach. This is a good conclusion
because we are probing whether the FEM is a good alternative
to studying confined atoms with a small computational effort
and reliable results.

In this article, we deal just with the exchange-only local
density approximation (LDA) within the context of the KS
approach. We decided to show results related to this exchange-
only functional since few data are reported in the literature
with this approach. However, the FUNQC code is built so
that any exchange-correlation functional can be implemented
without any problem.

The total energy obtained by the LDA for the helium con-
fined by hard walls is reported in Table II. For this case, we
are using the exponential grid. In the same table we report
some results obtained by the finite difference approximation
by Martínez-Flores et al. [39] and Roothaan’s approach by
Aquino et al. [55]. From these results we observe that the
FUNQC results agree with previous reports, although in our
case we have reported more figures. It is clear that for extreme
confinement radii (small Rc) within the KS approach, a poly-
nomial of high order is necessary, which is more pronounced
than for the HF approach.

2. Soft walls

The solution of the HF equations for this confinement
is a challenge for any computational method. Thus, this is
a good problem where the FEM will be applied for atoms
with more than one electron since the implementation of

the FEM from Ref. [32] was designed only for hard walls.
In our study, we observe numerical problems with the grid
from Froese-Fischer et al.; for that reason we do not use this
mesh for this confinement. However, for the exponential grid
we do not find problems. Regarding Roothaan’s approach,
Rodriguez-Bautista et al. proposed a basis set defined in two
regions, which is a real problem in the evaluation of two-
electron integrals [12], in addition to the problem of the basis
set optimization. Thus, the continuity of KS or HF orbitals
and their logarithmic derivative is an additional problem with
Roothaan’s approach. Even with these problems, Rodriguez-
Bautista et al. implemented in the MEXICA-C code the study
of confined many-electron atoms under these circumstances
[12].

The HF total energy for helium confined by the finite
potential Vc = 0.0 a.u. is reported in Table III. The HF re-
sults obtained by our FEM implementation give same results
as those obtained by Rodriguez-Bautista et al. [12]. Duarte-
Alcaráz et al. [52] used the same methodology developed
by Rodriguez-Bautista et al., although with different basis
set. From Table III we observe that our results are slightly
better than those reported by Duarte-Alcaráz et al. [52]. Marin
and Cruz used the direct variational method [41] to tackle
this problem and their results show large discrepancies from
previous results and ours. Regarding the grid-based methods,
Martínez-Flores et al. [39] applied the FDM to this problem
and we observe some differences from our results. We observe
from Table III an important discrepancy between the results
obtained in this article and those obtained by the FDM for
Rc = 0.6 and 2.0 a.u., since for these confinement radii the
FDM predicts lower results than those reported by us and by
Roothaan’s approach. In our opinion, the FDM overestimates
the total energy for these Rc values. We admit that this type
of confinement does impose numerical problems for small
confinement radii. Thus, the FEM is a good alternative for this
kind of problem.

The KS (LDA) results are also in Table III. Here the FEM
results are reported for the helium atom for this confinement.
We observe that the order of the polynomial is crucial for
this confinement for small confinement radii. In fact, this
observation is valid also for the solution of the HF equations.
This is an important conclusion of this article: Polynomials of
high order are necessary for the description of atoms confined
by soft walls for the HF and KS approaches.

From the comparison of the HF and LDA results from
Table III, it is interesting that the LDA predicts a total energy
lower than the HF results for small confinement radii. It is well
known that the exchange-only LDA underestimates the total
energy with respect to the HF results for atoms and molecules
when these systems do not exhibit spatial restrictions. For
this case we observe that ELDA < EHF for Rc � 1.0 a.u. This
result suggests that systems under high pressure could be
described erroneously by the exchange-only LDA functional
since for some regions this approximation overestimates or
underestimates the total energy with respect to HF results.

3. Orbital energy

The behavior of the orbital energy ε1s for the helium atom
confined by hard walls and soft walls is presented in Fig. 2.
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TABLE III. (a) Hartree-Fock and (b) Kohn-Sham (LDA) total energies for the helium atom (1S) confined by soft walls (Vc = 0.0) for
several confinement radii Rc. All quantities are in atomic units.

Rc Other works Third order Fourth order Sixth order Eighth order

(a)
0.5 −0.64040a −0.64084457 −0.64084309 −0.64084218 −0.64084176
0.5 −0.6408b

0.5 −0.2412c

0.6 −1.19434a −1.19418681 −1.19418486 −1.19418363 −1.19418308
0.6 −1.19418c

1.0 −2.34740a −2.34764887 −2.34764756 −2.34764679 −2.34764645
1.0 −2.3476b

1.0 −2.0522c

1.0 −2.34751d

2.0 −2.82554a −2.82542162 −2.82542169 −2.82542162 −2.82542159
2.0 −2.8254b

2.0 −2.6184c

2.0 −2.82537d

3.0 −2.85882a −2.85881502 −2.85881522 −2.85881522 −2.85881522
3.0 −2.8588a

3.0 −2.7579c

4.0 −2.86146a −2.86145786 −2.86145833 −2.86145834 −2.86145834
4.0 −2.8615a

4.0 −2.8054c

10.0 −2.86168a −2.86167973 −2.86167999 −2.86168000 −2.86168000
10.0 −2.86168c

∞ −2.86167999 e −2.86167985 −2.86167999 −2.86167999 −2.86167999

(b)
0.5 −0.24447 a −0.89080572 −0.89080452 −0.89080378 −0.89080345
0.6 −1.43234a −1.43302970 −1.43302804 −1.43302701 −1.43302656
1.0 −2.40088a −2.40106346 −2.40106216 −2.40106141 −2.40106107
2.0 −2.70977a −2.70971914 −2.70971912 −2.70971902 −2.70971897
3.0 −2.72290a −2.72289773 −2.72289790 −2.72289789 −2.72289789
4.0 −2.72360a −2.72359632 −2.72359688 −2.72359688 −2.72359688
10.0 −2.72364a −2.72363935 −2.72363979 −2.72363979 −2.72363979
∞ −2.72363952 −2.72363979 −2.72363979 −2.72363979

aFinite difference method by Martínez-Flores et al. [39].
bRoothaan’s approach by Rodriguez-Bautista et al. [12].
cVariational method by Marin and Cruz [41].
dRoothaan’s approach by Duarte-Alcaráz et al. [52].
ePseudospectral method to solve Hartree-Fock equations by Cinal [56].

The plot shows the HF (dotted line) and KS (LDA) (solid line)
results.

As in other reports, the confinement imposed by hard walls
increases rapidly the orbital energy as shown in Fig. 2(a).
We observe that for all Rc considered in this work, the
orbital energy obtained by the HF method is always less
than that obtained by the KS (LDA) method. For exam-
ple, for Rc = 0.1 a.u. the hard-wall confinement produces
εHF

1s = 462.329 249 07 a.u. and εLDA
1s = 469.978 954 94 a.u.

For large values of Rc the relationship εHF
1s < εLDA

1s is also
valid. Thus, for this confinement the orbital energy εLDA

1s
reaches zero for a larger confinement radius with regard
to εHF

1s .
The behavior of ε1s when the helium atom is submitted

to the confinement imposed by soft walls is quite different
from that observed for hard walls. In particular, for KS (LDA)
results we observe a region where the orbital energy is lower
than that obtained for the free atom. Thus, there is a confine-

ment region where this exchange functional binds an electron
with a higher strength to that imposed by the nucleus. We
must take into account that this exchange functional is an
approximation to the HF method since its analytical expres-
sion is obtained from the exact exchange evaluated with plane
waves for the electron gas model. Therefore, we conclude
that the results obtained from the KS (LDA) method are
incorrect when the helium atom is confined by soft walls.
Another anomaly presented by the KS (LDA) functional is
that εLDA

1s < εHF
1s for small confinement radii. Such behavior

is evidenced in Fig. 2(b) for Rc � 0.6 a.u., where εLDA
1s =

−0.369 156 29 a.u. and εHF
1s = −0.366 535 78 a.u. This result

is consistent with the behavior delivered by the total energy, as
it was discussed previously. Duarte-Alcaráz et al. [52] found
similar results comparing the Perdew-Burke-Ernzerhof (PBE)
exchange functional with the HF one. Because the local part of
the PBE exchange is related directly to the LDA, we conclude
that the electron gas model is responsible of the anomalous
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FIG. 2. Orbital energy ε1s for the helium atom confined by
(a) hard walls and (b) soft walls. The solid line shows the Kohn-Sham
(LDA) results and the dotted line the Hartree-Fock results..

behavior of the total and orbital energy for the helium confined
by soft walls.

4. Electron density and cusp condition

It is recognized that the Kato cusp condition measures
the quality of the electron density delivered by a numerical
method [57]. The electron density evaluated at the nucleus,
ρ(0), and the Kato cusp condition of the helium confined by
hard and soft walls are reported in Table IV. For this table
an eighth-order polynomial was used to solve the HF and
KS equations. Comparing our results with those obtained by
Roothaan’s approach from Young et al. [32] for hard-wall
confinement, it is clear that there are discrepancies mainly
for small confinement radii. However, for moderate and large
confinement radii the results coincide for the precision re-
ported by Young et al. [32]. Additionally, from this table we
observe that for hard walls the electron density grows rapidly
for small confinement radii and always ρ(0)HF > ρ(0)LDA.
However, such an observation is not valid for soft-wall con-
finement since for small confinement radii (Rc � 0.6 a.u.)
ρ(0)HF < ρ(0)LDA. Recall that precisely in this region ELDA <

EHF. Thus, an overestimation of the total energy is associated
with localization of the electron density around the nucleus.

TABLE IV. Hartree-Fock and Kohn-Sham (LDA) electron den-
sities evaluated at the nucleus (first row) and for the Kato cusp
condition (second row) for the helium atom’s confined (a) hard walls
(Vc = ∞) and (b) soft walls (Vc = 0.0) for several confinement radii.
An eighth-order polynomial was used for the FEM. The electron
density and confinement potential are in atomic units.

Rc Other works HF KS (LDA)

(a)
0.1 3551.5382a 3551.54389339 3542.83735847
0.1 1.00000002 1.00000002
0.5 46.6137a 46.61363410 46.12752171
0.5 1.00000001 1.00000000
1.0 10.8554a 10.85533586 10.67503534
1.0 1.00000000 1.00000000
2.0 4.4896a 4.48958974 4.39104893
2.0 1.00000000 1.00000000
3.0 3.7362a 3.73622547 3.63544703
3.0 1.00000000 1.00000000
4.0 3.6157a 3.61570815 3.50224511
4.0 1.00000000 1.00000000
10.0 3.5959a 3.59591828 3.47352682
10.0 1.00000000 1.00000000

(b)
0.5 5.16263206 5.71446360
0.5 1.00000001 1.00000002
0.6 5.57794063 5.63475717
0.6 1.00000002 1.00000002
1.0 4.68752643 4.35311665
1.0 1.00000001 1.00000003
2.0 3.73704044 3.54024561
2.0 1.00000001 1.00000001
3.0 3.61251572 3.47845431
3.0 1.00000002 1.00000001
4.0 3.59763316 3.47389051
4.0 1.00000001 1.00000002
10.0 3.59591826 3.47352643
10.0 1.00000001 1.00000002
∞ 3.59591826b 3.59591826 3.47352643
∞ 0.99999999 0.99999999

aRoothaan’s approach to solve HF equations by Young et al. [32].
bPseudospectral method to solve Hartree-Fock equations by Cinal
[56].

Evidently, the FUNQC code gives electron densities that satisfy
the Kato cusp condition, as observed from Table IV.

Unfortunately, there are no reports of ρ(0) and its Kato
cusp condition for the helium confined by soft walls. From
Table IV it is evident that its behavior is different from that
observed by a confinement imposed by hard walls since it
does not present large values for small confinement radii. In
our opinion, these values represent a benchmark for these
properties and they must be contrasted with new numerical
methodologies proposed in the future.

C. Beryllium atom

This atom is quite interesting since it reacts appreciably
when this is confined. For this atom, only Roothaan’s ap-
proach has been used to describe its electronic structure for
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TABLE V. (a) Hartree-Fock and (b) Kohn-Sham (LDA) total energies for the beryllium atom (1S) confined by (i) hard (Vc = ∞) and (ii)
soft walls (Vc = 0.0) for several confinement radii Rc. All quantities are in atomic units.

Rc Other works Third order Fourth order Sixth order Eighth order

(a)
(i)

1.00 +9.7327a 9.73244879 9.73244882 9.73244882 9.73244882
1.00 +9.73244913b

1.50 −6.9477a −6.94774905 −6.94774903 −6.94774903 −6.94774903
1.50 −6.94774833b

1.60 −8.3128c −8.31285087 −8.31285086 −8.31285086 −8.31285086
2.00 −11.5079a −11.50791883 −11.50791883 −11.50791883 −11.50791883
2.00 −11.5078c

2.00 −11.50791716b

2.50 −13.1583a −13.15833966 −13.15833967 −13.15833967 −13.15833967
2.50 −13.1583c

2.50 −13.15833850b

3.00 −13.8631a −13.86308324 −13.86308326 −13.86308326 −13.86308326
3.00 −13.8631c

3.00 −13.86308240b

4.00 −14.3685a −14.36869053 −14.36869057 −14.36869057 −14.36869057
4.00 −14.3678c

4.00 −14.36869002b

10.00 −14.5729c −14.57287714 −14.57287728 −14.57287728 −14.57287728
10.00 −14.57287734b

(ii)
1.5 −13.64448d −13.64448888 −13.64448897 −13.64448855 −13.64448838
1.75 −13.84892d −13.84896533 −13.84896511 −13.84896433 −13.84896397
2.0 −14.0440c −14.04398788 −14.04398942 −14.04398867 −14.04398834
2.0 −14.04390d

2.5 −14.2994c −14.29993060 −14.29993078 −14.29993030 −14.29993007
2.5 −14.29958d

3.0 −14.4312c −14.43123375 −14.43123410 −14.43123380 −14.43123368
3.0 −14.43080d

6.0 −14.56995d −14.56998441 −14.56998645 −14.56998647 −14.56998646
8.0 −14.57281d −14.57281024 −14.57281173 −14.57281176 −14.57281177
10.0 −14.5730c −14.57300824 −14.57300988 −14.57300990 −14.57300990
10.0 −14.57301d

∞ −14.57302317e −14.57302214 −14.57302317 −14.57302317 −14.57302317
∞ −14.57302317f

(b)
(i)

1.0 10.1829200379 10.1829136032 10.1829131602 10.1829130108
1.5 −6.5619751045 −6.5619795088 −6.5619797912 −6.5619798746
1.6 −7.9335653187 −7.9335694242 −7.9335696846 −7.9335697604
2.0 −11.1443787074 −11.1443818411 −11.1443820337 −11.1443820881
2.5 −12.8022667362 −12.8022690156 −12.8022691524 −12.8022691916
3.0 −13.5092846638 −13.5092863473 −13.5092864471 −13.5092864775
4.0 −14.0158557802 −14.0158567164 −14.0158567715 −14.0158567918
10.0 −14.2230512950 −14.2230514803 −14.2230514817 −14.2230514824

(ii)
1.5 −13.2508055128 −13.2501707729 −13.2497807363 −13.2413719559
1.75 −13.5947773763 −13.5947785351 −13.5947778424 −13.5947774931
2.0 −13.8245673076 −13.8245690980 −13.8245683972 −13.8245680661
2.5 −14.0416955746 −14.0416959902 −14.0416955219 −14.0416953121
3.0 −14.1403194831 −14.1403200188 −14.1403197059 −14.1403193401
6.0 −14.2225251199 −14.2225273774 −14.2225273743 −14.2225273694
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TABLE V. (Continued.)

Rc Other works Third order Fourth order Sixth order Eighth order

8.0 −14.2232567395 −14.2232584874 −14.2232585092 −14.2232585163
10.0 −14.2232874275 −14.2232894729 −14.2232894904 −14.2232894906
∞ −14.2232895018 −14.2232908248 −14.2232908295 −14.2232908295

aRoothaan’s approach to solve HF equations by Ludeña [1].
bVariational approach by de Morais and Custodio [54].
cRoothaan’s approach to solve HF equations by Rodriguez-Bautista et al. [12].
dRoothaan’s approach to solve HF equations by Duarte-Alcaraz et al. [52].
ePseudospectral method to solve HF equations by Cinal [56].
fFEM to solve HF and KS equations by Lehtola [35].

hard or soft confinement. Thus, this confined atom is analyzed
here by a free-basis set method, in particular, by the FEM.
The total energy of the beryllium atom with the configuration
1s22s2 (1S) obtained by our FEM implementation is reported
in Table V and this is contrasted with some results obtained
by Roothaan’s approach [1,12,52]. It is important to insist that
Roothaan’s approach requires exponents in the basis set. The
optimization of such exponents is a very expensive computa-
tional task.

Analyzing the Hartree-Fock results, in Table V we observe
that for the confinement imposed by hard walls there is a rapid
convergence of the total energy obtained by the FEM with
regard to the order of the polynomial, where the fourth order
gives good estimations of the total energy for this confined
atom. It is remarkable that the FEM results are better than
those reported for Roothaan’s method used with two different
basis sets. Thus, the results reported in this article can be used
as a benchmark for the confined beryllium atom. Regarding
the beryllium atom confined by soft walls, the convergence
observed for the total energy with regard to the order of the
polynomial is not the same for this confinement with respect
to the confinement by hard walls. For this reason, a high-order
polynomial is necessary to deal with this atom for the confine-
ment imposed by soft walls, which is a conclusion obtained
also for the helium atom under these circumstances. Com-
paring the FEM results with those obtained by Roothaan’s
approach, we found some confinements where the FEM is
superior. However, we must remark that the response from the
FEM takes a few seconds, whereas for Roothaan’s approach
the basis set optimization takes a great deal of time and con-
sequently this approach is computationally expensive. Thus,
the FEM is a good alternative to study atoms under several
confinements.

The KS (LDA) results reported in Table V are different.
From this table it is clear that for this approach it is necessary
to use high-order polynomials. However, even for high-order
polynomial the computational effort is low. In our opinion,
these results can be useful as a benchmark for new numeri-
cal proposals to solve KS equations with spatial restrictions.
Finally, ρ(0) and the Kato cusp condition for the beryllium
atom confined by hard and soft walls are reported in Table VI.
For this atom there are no anomalies presented for the helium
atom and always ρHF(0) > ρLDA(0). For hard walls, ρ(0)
is increased when Rc takes small values. However, for the

TABLE VI. Hartree-Fock and Kohn-Sham (LDA) electron den-
sities evaluated at the nucleus, ρ(0), and for the Kato cusp condition
for the beryllium atom confined by (a) hard walls (Vc = ∞) and
(b) soft walls (Vc = 0.0) for several confinement radii. An eighth-
order polynomial was used for the FEM. The electron density and
confinement potential are in atomic units.

Rc Other works HF LDA

(a)
1.0 81.82131846 80.78778607
1.0 1.00000000 1.00000000
1.5 51.36534495 50.54630657
1.5 1.00000000 1.00000000
1.6 48.71973322 47.91792879
1.6 1.00000000 1.00000000
2.0 42.30848951 41.54407638
2.0 1.00000000 1.00000000
2.5 38.81141215 38.06548505
2.5 1.00000000 1.00000000
3.0 37.24306629 36.50948288
3.0 1.00000000 1.00000000
4.0 36.02852439 35.31604862
4.0 1.00000000 1.00000000
10.0 35.38896539 34.70171862
10.0 0.99999999 1.00000000

(b)
1.5 35.60806974 33.81031661
1.5 1.00000001 1.00000001
1.75 36.33379056 35.85519414
1.75 1.00000001 1.00000001
2.0 36.39444590 35.68011353
2.0 1.00000001 1.00000001
2.5 36.06603022 35.26443309
2.5 1.00000001 1.00000001
3.0 35.80183277 35.00361644
3.0 1.00000001 1.00000000
6.0 35.40503351 34.70524871
6.0 1.00000001 1.00000001
8.0 35.38935804 34.70035518
8.0 1.00000001 1.00000001
10.0 35.38784681 34.70008913
10.0 1.00000001 1.00000001
∞ 35.38771674110a 35.38771674 34.70007506
∞ 0.999999993 0.99999994

aPseudospectral method to solve HF equations by Cinal [56].
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FIG. 3. Hartree-Fock total energy for two-electron atoms con-
fined by the potential W1 = 1

2 ω2r2 for atoms with different nuclear
charge Z .

confinement imposed by soft walls there is a confinement
region where the electron density is localized close to the
nucleus giving a maximum of ρ(0). This result is valid for
both the HF and KS (LDA) methods.

D. Confinement imposed by a harmonic potential

The harmonic potential has been used to confine atoms and
molecules. By its nature, this potential can be incorporated
relatively easily in codes based on Slater or Gaussian func-
tions to represent HF or KS orbitals. As we have mentioned
in this article, the FEM is quite versatile to solve HF or
KS equations. In particular, for potentials defined in Eq. (2),
its implementation is very simple. The HF total energy for

two-electron atoms with the configuration 1s2 is presented in
Fig. 3. The results of Fig. 3 can be compared with those plots
reported by Bielinska-Waz et al. [42]. Such a comparison is
not exact since the results in Ref. [42] were obtained from
the correlated method’s configuration interaction. Therefore,
our results are above those reported by Bielinska-Waz et al.,
although our results exhibit the same behavior delivered by the
correlated method. Results found by our FEM implementation
are reported in Table VII. These results are contrasted with
those results obtained from MEXICA-C code using three dif-
ferent basis sets, specifically those from Clementi and Roetti
[58], Bunge et al. [59], and Koga et al. [60]. These basis
sets were optimized to use Slater-type orbitals for free atoms.
This article used the corresponding basis set designed for the
helium atom for the hydride ion. We must mention that all
implementations of the confinement imposed by the harmonic
potential in codes based on basis set functions use the basis
sets designed for free atoms. The results obtained by the three
basis sets are reported in Table VII. This comparison shows
that the three basis sets considered in this article give HF total
energies above the results estimated by our FEM implemen-
tation. This observation corroborates the results mentioned
in the Introduction: If a basis set is used to study confined
systems, then such a basis set must be optimized for the
confinement imposed. With this observation, we suggest that
all calculations reported for confined systems by harmonic
potentials must be revisited to test the impact of the basis
set on the reported results. For our discussion, we observe a
difference of 0.19 a.u. (119.98 kcal/mol) between the results
obtained from the basis sets of Koga et al. and Bunge et al.
for the Be atom and ω = 1.0 a.u. It is worth noting that the
basis set from Koga et al. was designed to get the best total
energy and satisfy some wave-function properties such as the

TABLE VII. Hartree-Fock total energy for atoms confined by the harmonic potential W1 = 1
2 ω2r2. Results in the fourth column were

obtained using eighth-order polynomials.

ω Clementi and Roettia Bunge et al.b Koga et al.c FUNQC

H−

0.2 −0.23937076 −0.24794176 −0.28483591 −0.28544318
0.4 0.06729260 0.06609749 0.06864058 0.06389895
0.6 0.48545799 0.47895270 0.46711497 0.46523991

He
0.2 −2.81544799 −2.81554321 −2.81592590 −2.81593280
0.4 −2.68854519 −2.68954291 −2.69181420 −2.69195250
0.6 −2.50486912 −2.50720761 −2.50927756 −2.51068594

Li+

0.2 −7.21869241 −7.21869372 −7.21869395 −7.23530227
0.4 −7.16653556 −7.16654448 −7.16654539 −7.16654566
0.6 −7.08249366 −7.08252456 −7.08253290 −7.08253437

Be
0.2 −14.29660455 −14.29451804 −14.29773456 −14.29836511
0.4 −13.70656154 −13.69856651 −13.70731445 −13.71051865
0.6 −12.94888570 −12.87378951 −12.95805790 −12.96077544
0.8 −12.03653792 −11.91864778 −12.08533531 −12.10213223
1.0 −11.00897304 −10.93607421 −11.12727584 −11.16148999

aRoothaan’s approach using the basis set of Clementi and Roetti [58].
bRoothaan’s approach using the basis set of Bunge et al. [59].
cRoothaan’s approach using the basis set of Koga et al. [60].
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cusp condition. Consequently, large basis sets were reported
by Koga et al. This is why this basis set gives results close to
those obtained by the FEM. In this comparison, MEXICA-C and
FUNQC spend similar computational time to get convergence
in the self-consistent process. However, we will need many
calculations for Roothaan’s approach if we want an optimized
basis set. This is an example of the aim of this article: The
FEM is convenient for studying systems submitted to different
confinements without loss of accuracy.

IV. CONCLUSION

In this article the fully numerical quantum chemistry code
was developed to solve Hartree-Fock and Kohn-Sham equa-
tions for atoms confined by impenetrable or penetrable walls
through a model potential. The FUNQC code solves HF or
KS equations by using the finite element method, where
polynomials of different order are used to solve algebraic

equations associated with Poisson’s equations. The benefits
of the finite element method were observed for atoms con-
fined by spatial restrictions since this method is quite versatile
to impose different boundary conditions, particularly for po-
tentials defined by piecewise functions. The implementation
is numerically stable and reliable when previous results of
hydrogen, helium, and beryllium atoms are contrasted with
the results delivered by our proposal. The implementation
of the same methodology to solve HF and KS equations for
many-electron diatomic molecules is left for future work. This
is the first step to building a code free of global basis sets to
study atoms and molecules spatially confined.
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