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Representative deflection angle for the single-deflection method of direct simulation Monte Carlo
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The total cross section of binary collision is, in general, unbounded due to the long-range interations of
molecules. It is conventional to truncate the small angle deflections of collisions. The present work suggests
an alternative way of avoiding the difficulty of unboundedness. We employ the mean value theorem of definite
integral over the deflection angle for the cross section. A series of numerical experiments were carried out to
look for the representative collision cross section through which the single-angle simulation is amenable to the
solution of the Boltzmann equation. Results show that the cross section should be 〈�〉 = �2

D/(2�D − �μ), and
the representative deflection for the single-angle simulation be cos〈χ〉 = �μ/�D − 1, where �D is the diffusion
cross section and �μ is the viscosity cross section. The single-angle computations for the inverse power law
and the Lennard-Jones force law perfectly reproduce the conventional scattering algorithms for one-dimensional
(1D) simulations of transport coefficients and 1D shock thickness. The computation costs for Lennard-Jones
molecules are comparable to the costs for inverse power-law models.

DOI: 10.1103/PhysRevE.108.035301

I. INTRODUCTION

It is well known that the direct simulation Monte Carlo
(DSMC) method provides a powerful numerical tool for sim-
ulating dilute gas flows in various nonequilibrium problems.
The method has been well established through the pioneering
efforts of Bird [1,2]. One of the most important aspects of
the simulation may be estimating the collision probability
between a pair of molecules selected within a volume element.
The no-time counter (NTC) theory developed by Bird and
further refined for two-dimensional (2D) and 3D problems
[3,4] is an efficient and precise method for calculating this
probability. Over the past several decades, many other colli-
sion counting methods have been proposed [5–7]. All these
methods use the total collision cross section rather than the
differential cross section to achieve their purpose.

DSMC is based on the assumption that the free flight of
molecules can be decoupled from collisional events by con-
sidering binary. collisions. In this assumption, the directions
of encountering and departing molecules in a collision are
independent of the probability that the collision will actu-
ally occur. Postcollision velocities are estimated by assuming
an isotropic scattering law [the variable hard sphere (VHS)
model] or its variant [the variable soft sphere (VSS) model].
There seems to be no place for the differential cross section to
play a role in the simulation, although the laws of mechanics
rigorously predict postcollision deflections in terms of the
trajectory equation of colliding molecules [8].

The total cross section is generally an unbounded, diverg-
ing quantity for both mathematical and physical reasons. A
conventional way to avoid this unboundedness in DSMC is to
cut off small deflections. Bird employed the other method [1]:
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His total cross section is exactly equal to 3
2 times the viscosity

cross section.
In the present paper, we suggest another way to avoid

the unboundedness difficulty, introducing a “representative
cross section” (RCS). Since the total cross section is an angle
integration of the differential cross section over deflections,
it can be expressed using the first mean value theorem for
definite integrals [9] and by multiplying and dividing by an
appropriate function,

�t = 2π

∫ π

0
�χ sin χdχ, (1a)

〈�〉 = 2π

F (χ0)

∫ π

0
F (χ )�χ sin χdχ, (1b)

where �t is the total cross section, �χ is the differential
cross section, 〈�〉 is the RCS, χ is the deflection angle, F (χ )
is the appropriate integrable function, and χ0 is a certain
deflection angle within 0 < χ0 < π . Equation (1b) suggests
a cross section giving the deflection χ0 for the postcollision
velocities, leading us into a single-angle deflection simulation.
The energy dependence of �χ is reflected on the RCS through
the trajectory equation for binary collisions.

The F (χ ) is to be determined by numerical experiments
for different χ0’s in the form of

F (χ ) = 1 − cos� χ, (2)

where � is a positive integer. For � = 1 and 2, it gives the dif-
fusion cross section (�D) and the viscosity cross section (�μ)
[1], respectively,

�D = 2π

∫ π

0
(1 − cos χ )�χ sin χdχ, (3a)

�μ = 2π

∫ π

0
(1 − cos2 χ )�χ sin χdχ. (3b)
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These are bounded integrals in contrast to the unbounded total
cross section, �t , in Eq. (1a).

In the conventional DSMC algorithm, deflection angles for
postcollision velocities are estimated by randomly selecting
impact parameters (actually, squares of them, representing an
impact area). In the center-of-mass frame of reference, the
uniformity of the impact area results in isotropic deflections
of outgoing molecules. Any directionalities of nonequilibrium
flows are reflected by the direction of the center-of-mass
velocity according to the corresponding boundary condi-
tion, not by the direction of relative velocity. There is a
report that more sophisticated scattering models for de-
flections cannot predict flow physics more representatively
[10].

Since the deflection angle is one of the degrees of freedom
in constructing the ensemble, its effect should be averaged
at the end of the simulation. In this respect, the single-angle
simulation can be regarded as a simulation using preaveraged
deflections over uniform impact areas. This new algorithm not
only saves one call to a random number generator but also
reduces one degree of freedom in the ensemble generation.
Successful simulation using a single angle implies that the ef-
fect of preaveraging over the impact area should have a small
or negligible influence on the independence of the generated
ensemble constituents.

The new algorithm is particularly useful for simulations
of more realistic force models in which the attractive force
is important, such as Lennard-Jones (L-J) molecules at low
temperatures. Although Bird commented that “. . . it should
not be assumed that an increase in physical realism nec-
essarily leads to improved validation against experimental
observation” [11], many efforts have been made to imple-
ment attractive intermolecular forces in DSMC [12–16], not
only for physical realism but also for better understanding
the nature of observations. However, computation tasks in-
crease drastically when the attractive part is introduced to
the binary collision event. The present study demonstrates
that the single-angle computation of DSMC works well for
attractive molecules with comparable costs to conventional
inverse power law (IPL) molecules, which constitutes one of
the most remarkable results.

Since the hard sphere (HS) is an archetypal model for
DSMC, we first examine the RCS of HS by computing the
mass, momentum, and energy transport coefficients. Then
we apply the information obtained from HS to Maxwell
molecules and L-J molecules and determine χ0 and F (χ ) in
Sec. II. In Sec. III, we compare the results of single-angle
simulations to theoretical predictions and measured values,
along with the results of conventional computations. We also
present an application to shock waves in the same section and
discuss the coarser graining of fine meshed values and their
statistical fluctuaton. We discuss some aspects of computation
costs at the end of Sec. III and give concluding remarks in
Sec. IV. A brief description of the collision dynamics of L-J
molecules is provided in the Appendix, where the dynamics
are analyzed into two branches: the repulsive and attractive
branches. The limiting laws of strong and weak energy colli-
sions are considered, and the results of numerical integrations
for χ0, 〈�〉, �D, and �μ are tabulated and presented in the
Supplemental Material [17].

II. NUMERICAL EXPERIMENTS

The one-dimensional flows of dilute gases can be simulated
with the use of Bird’s 94-version of the DSMC program [1],
DSMC1.FOR, which is the only version for which the FORTRAN

source is available in the public domain. The program uses
many initial parameters. Some of them are taken as fixed val-
ues throughout the present work, according to the following
rules:

(i) The mean free path and the mean free flight
time of HS are taken as λH = 1/(

√
2πnd2

H ) and τH =
λH/

√
8kBTref/(πm), respectively, where dH is the hard sphere

diameter, n is the number density, and Tref is a reference
temperature.

(ii) The uniform cell width is equal to 0.1λH , and each cell
has 10 subcells.

(iii) The uniform time steps are equal to 0.01τH .
(iv) The time steps between samplings are eight steps

(NIS = 8).
(v) There are 120 simulators in a cell.
Additional rules for transport coefficients: The distance

between two boundaries is set 30λH , and the number density
(FND) is taken as 1020 m−3. These rules give the number of
cells, MNC = 300, the number of real molecules represented
by one simulator, FNUM = 2.78 × 1015, and the number of
simulators residing in a subcell is 1.2 in average. The max-
imum number of simulator is taken as MNM = 2 × 105. For
the computation of shock waves, a little different rule is to be
applied. The steady state is assumed to be attained by 8 × 105

time steps, and the final results are taken by ∼8 × 105–8 ×
107 time steps after the steady state.

The HS parameters are the standard VHS parameters of
Ar, m = 6.63 × 10−26 kg, dH = 4.17 × 10−10 m, and Tref =
273 K, which are given in Bird’s book [1].

The DSMC1.FOR uses the total cross section in FORTRAN

variable CVR in the SUBROUTINE SELECT,

CVR = g�t , (4)

where g is the absolute value of the relative velocity of collid-
ing molecules. In VHS theory, �t = 3

2�μ, which is reflected
in the DSMC1.FOR. For the single-angle computations, the CVR
is changed to

CVR = g〈�〉. (5)

The collision probability in NTC theory [1] depends on the
value g�t/(g�t )max. It is replaced by the change of CVR as

g〈�〉
(g�t )max

, (6)

in which the denominator (g�t )max is a number determined
internally for each cell during the computation and given
its initial value in the SUBROUTINE INIT1 by the variable
CCG(1,M,L,K),

CCG(1, M, L, K) = πd2
ref

√
300T , (7)

where dref is a VHS parameter (dref = dH for HS) and T is
the gas temperature. This number determines the value of the
COLLISION EVENT RATIO, which is put into the generated
file DSMC1.OUT. In conventional HS simulations, the event
ratio is about 0.3. For simulations other than HS, there are
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occasions when the event ratio becomes abnormally close to
1. Therefore, we have introduced an adjustable parameter X
to CCG(1, M, L, K),

CCG(1, M, L, K) = Xπd2
ref

√
300T , (8)

to make the event ratio about 0.3–0.5. For HS, X = 1; for
Maxwell molecules, X has been assigned to the range 1–10
for final answers. The COLLISION EVENT RATIO is sensitive
to X , but the final results of simulation is insensitive, although
not independent of the event ratio.

The DSMC1.FOR provides an option for the selection of VSS
computation by the formula,

cos χ = 2(R f )
1
α − 1, (9)

in the SUBROUTINE ELASTIC, with an input of 1/α, where
R f designates the random number between 0 and 1. If one
changes this formula by

cos χ = cos χ0, (10)

and gives an input for cos χ0, then the program carries out the
single deflection angle computation. Numerical experiments
are performed for different cos χ0’s.

It may be the right time to emphasize the fact that any
spatial changes of physical properties are not so meaningful
within a mean free path when the local Knudsen number
is small (Kn < 0.1). The reason for using a cell width of
0.1λH and time steps as small as 0.01τH is not to evaluate any
properties with such precision but to reduce possible errors
arising from the basic assumption of DSMC: the uncoupling
of the free flight and collision event of simulators. Therefore,
it is desirable to postprocess the simulated fine values by
spatially coarser graining. We discuss this point in more detail
in Sec. III D.

A. Hard spheres

By applying the above-mentioned changes to the FORTRAN

program DSMC1.FOR, we conduct experiments for transport
coefficients of HS using single deflection simulations. Results
are compared to the theoretical values given by the Chapman-
Enskog theory for the Boltzmann equation, which are

D11,CE = 3

8nd2
H

√
kBT

πm
(1 + 0.019), (11a)

μCE = 5m

16d2
H

√
kBT

πm
(1 + 0.016), (11b)

κCE = 75kB

64d2
H

√
kBT

πm
(1 + 0.025), (11c)

the self-diffusion coefficient, the shear viscosity, and the ther-
mal conductivity, respectively, where the decimal numbers
in parentheses are the higher-order corrections in the Sonine
polynomial expansions [18].

The differential cross section of HS, �χ = 1
4 d2

H , gives

�D = πd2
H , (12a)

�μ = 2

3
πd2

H . (12b)

The RCS in Eq. (1b) for HS, therefore, is given by

〈�〉 = πd2
H

1 − cos� χ0
, (13a)

for odd � and

〈�〉 = �

1 + �

πd2
H

1 − cos� χ0
, (13b)

for even �. The numerical experiments for HS determine the
value of � by the single-angle simulation for different deflec-
tions, cos χ0, from −0.9 to 0.9.

1. Self-diffusion coefficients

Self-diffusion is a simple mass transport phenomenon of
fluids through which molecular collisions in equilibrium can
be studied. The DSMC1.FOR program simulates the binary mix-
ture of two mechanically identical but distinguishable species
by labeling each one and applying the stream boundary con-
dition, IB(1) = IB(2) = 4 at XB(1) and XB(2), to a stationary
gas with no stream velocity at the boundary, BVFX(1) =
BVFX(2) = 0. The composition at each boundary is set to
be pure of the two species, BFSP(1, 1) = BFSP(2, 2) = 1,
BFSP(1, 2) = BFSP(2, 1) = 0, and IIS = 1. Following the
method given in Bird’s book [1], the results of simulation for
HS at T = 273 K are shown in Fig. 1(a).

Figure 1(a) shows the ratio of the simulated self-diffusion
coefficients to the theoretical values in Eq. (11a) versus cos χ0

for � = 1, 2, and 3. The curves for � � 4 are too irrelevant
and not drawn. The most important finding in this experiment
is the perfect coincidence of the simulated values for � = 1
with the theory for all cos χ0’s. The RCS in Eq. (1b) takes the
form

〈�〉 = �D

1 − cos χ0
, (14)

for any 0 < χ0 < π in the mass transports. It is noteworthy to
observe that the curves for � = 2 and 3 cross the horizontal
line, giving agreements with theory at the particular cos χ0’s.

2. Shear viscosity

The DSMC1.FOR manifests the collisional momentum trans-
fer through the shear viscosity of plane Couette flows. The
solid boundaries are set by IB(1) = IB(2) = 3 and IIS = 2,
together with the velocity difference of 0.5Ma where Ma =√

5kBT/(3m), i.e., BVY(1) = 0.25Ma, BVY(2) = −0.25Ma;
BT(1) = BT(2) = T = 273 K for equal wall temperatures.

Figure 1(b) shows the ratio of the simulated shear vis-
cosities to the theoretical values in Eq. (11b) versus cos χ0

for � = 1, 2, and 3. Due to viscous heating, the temperature
around the center between the two moving walls is increased
to about 277 K.

It is remarkable to observe that Fig. 1(b) shows that the
simulated viscosities for � = 2 perfectly coincide with the
theory for all cos χ0’s, whereas the simulated diffusivities for
� = 1 have shown the same behavior in Fig. 1(a). The RCS of
momentum transports is therefore regarded as

〈�〉 = �μ

1 − cos2 χ0
. (15)
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FIG. 1. Results of numerical experiments for hard spheres at the
wall temperature of 273 K are shown. The temperatures designated
in the figures are fluid temperatures. Empty circles represent � = 1,
solid circles represent � = 2, and × symbols represent � = 3, of
Eqs. (13). The upper figure (a) shows the results of self-diffusion co-
efficients as the ratio of the single-angle simulation to the theoretical
values for the full range of deflections. The middle figure (b) displays
the results of shear viscosity, and the bottom figure (c) shows those
of thermal conductivity.

The curve for � = 1 in Fig. 1(b) crosses the horizontal line at
almost the same point as the curve for � = 2 does in Fig. 1(a).
The curves for � = 3 also cross the horizontal lines in both
Figs. 1(a) and 1(b), but the crossing points are apparently
different. Therefore, it is certain that both RCS in Eqs. (14)
and (15) for � = 1 and 2 must be simultaneously true for both
the simulated viscosities and diffusivities to be consistent with
theoretical values,

〈�〉 = �D

1 − cos χ0
= �μ

1 − cos2 χ0
, (16)

which gives

cos χ0 = �μ

�D
− 1 (17)

and

〈�〉 = �2
D

2�D − �μ

. (18)

Equation (17) defines the “representative deflection angle”
(RDA), writing 〈χ〉,

cos 〈χ〉 = �μ

�D
− 1. (19)

Equation (18) is the definition of the RCS, which should
always be positive since

2�D − �μ ∼
∫

[2(1 − cos χ ) − (1 − cos2)]�χ sin χdχ

=
∫

(1 − cos χ )2�χ sin χdχ > 0 (20)

for 0 < χ < π . For hard spheres,

cos〈χ〉 = − 1
3 and 〈�〉 = 3

4πd2
H . (21)

One may observe that the curve for � = 2 in Fig. 1(a) and
the curve for � = 1 Fig. 1(b) cross horizontal lines at about
cos χ0 = − 1

3 which is consistent with the obtained value.

3. Thermal conductivity

The collisional energy transfer of molecules in fluids is
exhibited by thermal conductivity. The solid surface boundary
condition is IB(1) = IB(2) = 3 and IIS = 2, with stationary
boundaries BVY(1) = BVY(2) = 0 of different temperature:
BT(1) = T + 0.5
T and BT(2) = T − 0.5
T , where 
T is
taken as 0.3T and T = 273 K.

The simulation results are shown in Fig. 1(c). The fig-
ure almost duplicates the viscosity simulation in Fig. 1(b),
which means that DSMC1.FOR reproduces Eucken’s formula
well [18],

κ

μ
= 5

2
cv = 15

4

kB

m
. (22)

B. Maxwell molecules

The intermolecular force of the IPL model takes the
form k/rη for η > 1, where k > 0 is the repulsive force
parameter and r is the intermolecular distance; η = 5 for
Maxwell molecules. For a given η, the deflection angle of IPL
molecules depends only on a single dimensionless parameter
[1], defined by

z ≡ b

(
mrg2

k

) 1
η−1

, (23)

where b is the impact parameter of binary collisions and mr

is the reduced mass of two colliding molecules. According to
Chapmann-Cowling [18], the viscosity of IPL molecules has
the temperature dependence,

μ ∼ T ω, (24)

where ω is given by

ω = 1

2
+ 2

η − 1
. (25)
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The force parameter k is determined by the measured vis-
cosity at a certain reference temperature [1], writing μref

and Tref ,

k

2kBTref
=

[
5

8A2

m

μref
(

9
2 − ω

)√
kBTref

πm

] 2
2ω−1

, (26)

in which  is the Gamma function and A2 is defined below.
The �D and �μ of IPL molecules are given in the forms

�D = 2πA1

(
k

mrg2

)ω− 1
2

, (27a)

�μ = 2πA2

(
k

mrg2

)ω− 1
2

, (27b)

where A1 and A2 are pure numbers depending on ω only
(coming in through the η dependence in z), defined by

A1 =
∫ ∞

0
(1 − cos χ )zdz, (28a)

A2 =
∫ ∞

0
(1 − cos2 χ )zdz. (28b)

The A1 and A2 are tabulated in the literature by Koura and
Matsumoto [12]. Therefore, �D and �μ are estimated by
the literature values for A1, A2, and μref measured at Tref .
Substituting Eq. (26) into Eqs. (27),

�D = 2A1

3A2
�VHS, (29a)

�μ = 2

3
�VHS, (29b)

where

�VHS = 15

8

√
πmkBTref

μref
(

9
2 − ω

)(
2kBTref

mrg2

)ω− 1
2

. (30)

It is conventional to write the �VHS in terms of the reference
diameter, dref , defined by

πd2
ref = 15

√
πmkBTref

2μref (7 − 2ω)(5 − 2ω)
. (31)

Then, we have

�VHS = πd2
ref


(

5
2 − ω

)(
2kBTref

mrg2

)ω− 1
2

. (32)

The �VHS in Eq. (32) is the total cross section in Bird’s
VHS theory, used to define the FORTRAN variable CVR in the
DSMC1.FOR as mentioned in Eq. (4).

Since the experiment with � = 1 utilizes the �D in
Eq. (29a), we need A1 and A2 for Maxwell molecules [12],

A1 = 0.4219, A2 = 0.4362. (33)

The theoretical transport coefficients are given by the
Chapman-Enskog solutions for the Boltzmann equation,

FIG. 2. Results of numerical experiments for Maxwell molecules
at the wall temperature of 273 K are shown. The temperatures
designated in the figures are fluid temperatures. Empty circles
represent � = 1, and solid circles represent � = 2. The upper fig-
ure (a) shows the results of self-diffusion coefficients by the ratio
of the single-angle simulation to the theoretical values for the full
range of deflections. The lower figure (b) displays the results of shear
viscosity.

which can be written in our current notations as

D11,CE = 3(7 − 2ω)

10nm

A2

A1
μCE, (34a)

μCE = μref

(
T

Tref

)ω

= 15m

2d2
ref

(T/Tref )ω

(7 − 2ω)(5 − 2ω)

√
kBTref

πm
, (34b)

κCE = 15kB

4m
μCE, (34c)

where ω = 1 for Maxwell molecules.
Numerical experiments are carried out by the use of RCS

in Eq. (1b) and cross sections in Eqs. (29),

〈�〉 = 1

1 − cos� χ0
��, (35)

where �1 ≡ �D and �2 ≡ �μ for � = 1 and 2, respectively.
Figure 2 shows the results of experiments. Because the ex-
periments on thermal conductivity show almost equivalent
behaviors to viscosity, we have not drawn duplicate fig-
ures. As shown in the figure, the experiments for Maxwell
molecules show exactly the same behaviors of transport coef-
ficients as those of HS, except for the location of the crossing
point on the horizontal line. Substituting Eqs. (29) into (18)
and (19), we obtain

〈�〉 = �2
D

2�D − �μ

= �D

2 − A2/A1
≡ ξ 2�VHS (36)

035301-5



YOUNG GIE OHR PHYSICAL REVIEW E 108, 035301 (2023)

and

cos 〈χ〉 = �μ

�D
− 1 = A2

A1
− 1, (37)

where

ξ 2 ≡ 2A2
1

3A2(2A1 − A2)
. (38)

The ξ 2 in Eq. (36) is a scaling parameter which is equal to 3
4

for HS [Eq. (21)], and

ξ 2 = 0.6674, cos 〈χ〉 = 0.0339, (39)

for Maxwell molecules. One can confirm again that the curve
for � = 2 in Fig. 2(a) and the curve for � = 1 in Fig. 2(b) cross
the horizontal lines at cos χ0 = 0.0339 predicted in Eq. (39).

C. Lennard-Jones molecules

The L-J potential is written in the form

V = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (40)

with the potential minimum, ε, and the contact distance, σ .
The dynamics of binary collision of L-J molecules have been
well studied in the literature [19]. What we need for experi-
ments are �D and �μ. In dimensionless forms,

�̃D =
∫ ∞

0
(1 − cos χ )̃bdb̃, (41a)

�̃μ =
∫ ∞

0
(1 − cos2 χ )̃bdb̃, (41b)

where

�̃D ≡ �D

2πσ 2
, �̃μ ≡ �μ

2πσ 2
, b̃ ≡ b

σ
. (42)

One more parameter for the experiment is the reference diam-
eter of colliding molecules, which corresponds to dref of VHS
computations and is used for (g�t )max of the NTC theory in
Eq. (8). It is reasonable to take it as the distance at which the
L-J potential is equal to 0, writing

(g�t )max = Xπσ 2
√

300T , (43)

for the initial number. Then the (g�t )max value is adjusted
by the parameter X = 1–15 in order to have the COLLISION
EVEN RATIO in the range 0.3–0.5.

The theoretical transport coefficients of L-J molecules take
the forms [19]

D11,CE = 3

8nσ 2

1

�(1,1)∗

√
kBT

πm
, (44a)

μCE = 5m

16σ 2

1

�(2,2)∗

√
kBT

πm
, (44b)

κCE = 15kB

4m
μCE, (44c)

where

�(1,1)∗ =
∫ ∞

0
�̃Dx2e−xdx, (45a)

�(2,2)∗ = 1

2

∫ ∞

0
�̃μx3e−xdx, (45b)

FIG. 3. Results of numerical experiments for Lennard-Jones
molecules at the wall temperature of 273 K are shown. The tem-
peratures designated in the figures are fluid temperatures. Empty
circles represent � = 1, and solid circles represent � = 2. The upper
figure (a) shows the results of self-diffusion coefficients as the ratio
of the single angle simulation to theoretical values for the full range
of deflections. The lower figure (b) displays the results of shear
viscosity.

and

x ≡ mrg2

2kBT
. (46)

The look-up tables for �̃D and �̃μ are prepared in the present
work and described in the Appendix.

The L-J parameters taken are the standard values for Ar
[19], ε/kB = 124 K, and σ = 3.418 × 10−10 m. Results of
experiments are shown in Fig. 3. As shown in the figure, the
behaviors of transport coefficients for L-J molecules are again
the same as those for HS and Maxwell molecules.

Apparently, the formulas for RCS and RDA in Eqs. (18)
and (19) are also true for L-J molecules, which should be
g-dependent values,

〈
�̃

〉 = �̃2
D

2�̃D − �̃μ

, cos 〈χ〉 = �̃μ

�̃D
− 1, (47)

where

〈
�̃

〉 ≡ 〈�〉
2πσ 2

. (48)

The numerical values of 〈�̃〉 and cos〈χ〉 are tabulated in the
Supplemental Material [17] and plotted in Figs. 4.

035301-6



REPRESENTATIVE DEFLECTION ANGLE FOR THE … PHYSICAL REVIEW E 108, 035301 (2023)

FIG. 4. Behaviors of the representative collision cross section in
(a) and the representative deflection angle in (b) versus collisional
energy in logarithm of dimensionless forms defined in Eqs. (48) and
(A3) are shown. Circles represent the values computed using the
literature values given by Hirschfelder, and dotted lines represent the
limiting values given in Eqs. (A32c), (A32d), (A34c), and (A34d).

III. DISCUSSIONS

A. Comparison with theoretical values

The RCS and RDA are determined by the condition that
the simulations of mass transport, momentum transport, and
energy transport are simultaneously consistent with the theo-
retical values given by the Chapman-Enskog theory for the
Boltzmann equation at a specific temperature. This consis-
tency is also remarkable at other temperatures. For illustrative
purposes, the computations for Maxwell molecules are shown
in Table I. The fact that the simulations reproduce the the-
oretical values demonstrates that the simulation algorithm is
appropriate for representing the solution of the Boltzmann
equation.

It is well known that the conventional VHS method shows
a deficiency in computing the diffusivity of IPL molecules
(except for HS), while it accurately reproduces other trans-
port coefficients [1,12], as shown in Table I. The VSS theory
has been developed to overcome this defect by introducing a
small extension to the scattering law and writing the impact
parameter as follows:

b = d cosα
(χ

2

)
, (49)

where d is an energy dependent collision diameter and α is a
positive parameter which depends also on the colliding energy
in general; α = 1 for HS or VHS computations.

TABLE I. Temperature dependence of simulated transport coef-
ficients of Maxwell molecules relative to the theoretical values given
in Eqs. (34).

T (K) Present VHS VSS

(D11/D11,CE − 1) × 100
80 0.12 −36 −1.0
273 0.02 −36 0.02
640 −0.45 −36 −0.45
1500 −0.49 −36 −0.33

(μ/μCE − 1) × 100
81.3 −1.4 −1.0 −1.0
277.3 −0.96 −0.89 −0.15
650.3 −0.80 −0.75 −0.42
1524. −0.60 −0.68 −0.75

(κ/κCE − 1) × 100
80 −0.83 −0.49 −0.49
273 −0.63 0.37 −0.63
640 −0.74 −0.53 −0.32
1500 −0.58 −0.40 −0.58

According to Koura and Matsumoto [12,20], the α and the
total cross section (�VSS) are given by �D and �μ,

α = 2�μ

2�D − �μ

, (50a)

�VSS = �D

2

2�D + �μ

2�D − �μ

. (50b)

The VSS theory can be applied to any force models as long as
�D and �μ are given. For IPL molecules, Eqs. (29) give

α = 2A2

2A1 − A2
, (51a)

�VSS = (1 + α)(2 + α)

6α
�VHS, (51b)

which become α = 2.140 and �VSS = 1.012�VHS for
Maxwell molecules by the A1 and A2 in Eq. (33). These values
are used for the VSS computations given in Table I.

B. Comparison with measured values

As Bird mentioned [11], the main advantage of DSMC is
its validity against experimental observations. It is demon-
strated here that L-J computations are superior to the
conventional IPL model in terms of validity, especially at
low temperatures. All computations were carried out for Ar
gas. The molecular force parameters are the most up-to-date
values given by Weaver and Alexeenko in 2015 [15]: For the
IPL model, ω = 0.697, α = 1.311, dref = 3.5645 × 10−10 m,
μref = 35.07 × 10−6 Pa s, and Tref = 523.15 K; for the L-J,
ε/kB = 143.78 K and σ = 3.3237 × 10−10 m. The measured
values taken for comparisons with computations are the ref-
erence values [21,22] which were used to determine the force
parameters.

Caution is needed when using these parameters. In VHS
theory, the reference diameter, denoted as dref,VHS to avoid
confusion, should be determined by the measured viscosity
(μref ) and its temperature dependence (ω) at Tref according to
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the formula in Eq. (31),

dref,VHS = 3.614 × 10−10 m, (52)

This value is different from that of Weaver and Alexeenko. For
the VHS computations, the value of dref,VHS in Eq. (52) should
be used together with α = 1. Because the VHS method shows
some discrepancies with experimental diffusivity results, the
VSS method is conventionally used. When a value for ω is
given, the VSS parameter α is determined. Since ω gives A1

and A2 in Eqs. (28) uniquely, the α is obtained by the use of
Eq. (51a). For ω = 0.697, they are

A1 = 0.3837, A2 = 0.3181, (53)

and

αvss = 1.416, (54)

in which the subscript “vss” of α is put to distinguish from the
Weaver and Alexeenko’s value, α = 1.311. Weaver and Alex-
eenko have optimized the α by the best fitting of measured
Schmidt numbers, and their dref is also the optimized value
according to the formula in Eq. (51b), i.e.,

dref =
√

(1 + α)(2 + α)

6α
dref,VHS. (55)

The unoptimized genuine value should be

dref,VSS =
√

(1 + αvss)(2 + αvss)

6αvss
dref,VHS

= 3.562 × 10−10 m. (56)

For comparison purposes, we carry out two VSS computa-
tions of the diffusivity of IPL molecules. One computation
uses the values dref,VSS and αvss, while the other uses the
optimized values of Weaver and Alexeenko. These results are
compared in Fig. 5(a).

For single-angle computations of the IPL model, we need
the RDA and RCS values, which are given in Eqs. (36), (37),
(38), and (53),

〈�〉 = 2A2
1

3A2(2A1 − A2)
�VHS = 0.6867�VHS, (57a)

cos 〈χ〉 = A2

A1
− 1 = −0.1710. (57b)

The �VHS in Eq. (57a) should be evaluated by Eqs. (32) and
(52).

The L-J computations are also carried out in two ways. One
is a single-angle computation using a look-up table for �D

and �μ. The other is a VSS computation using formulas in
Eqs. (9) and (50) and the same look-up table. It is interesting
to compare the accuracy, which is shown in Figs. 5 using
different symbols (solid circles for LJ-VSS and empty circles
for the present work, denoted as LJ-RDA).

1. Self-diffusion coefficient

Let us first look at the diffusivity. Figure 5(a) shows the
ratios of computed values to measured values [21] at some
interpolated temperatures. The various symbols in the fig-
ure denote different computations: empty symbols represent

FIG. 5. Ratios of simulated self-diffusion coefficients in (a) and
viscosity in (b), relative to their measured values, are shown. LJ-VSS
represents VSS simulation of L-J molecules by using Eqs. (50) and
the look-up table. LJ-RDA represents single-angle simulation of L-J
molecules by using the same look-up table. IPL-VSS represents VSS
simulations of IPL molecules by using parameters in Eqs. (54) and
(56). IPL-RDA represents single-angle simulation of IPL molecules.
IPL-VSS(opt) represents VSS simulation of IPL molecules by us-
ing the optimized parameters of Weaver and Alexeenko. Dotted
lines along symbols represent the corresponding theoretical values
in Eqs. (34a), (34b), (44a), and (44b).

single-angle computations and solid symbols represent con-
ventional computations. The dotted lines along the symbols
indicate the corresponding theoretical values in Eqs. (34a) and
(44a).

For IPL molecules, the conventional VHS theory does
not accurately represent diffusivity, as shown for Maxwell
molecules in Table I. Therefore, we use the VSS method
for conventional computations. The VSS computations are
twofold: One computation follows Koura and Matsumoto’s
original method (represented by solid box symbols) using
formulas in Eqs. (51), (53), and (56); the other computa-
tion uses the optimized parameters of Weaver and Alexeenko
(represented by a thick solid line). As shown in the fig-
ure, the computation using optimized parameters shows good
agreement with measured values at T > 300 K but has some
discrepancies from theoretical values. On the other hand, both
single-angle computations (represented by empty box sym-
bols) and original VSS computations (represented by solid
box symbols) closely reproduce theoretical values (repre-
sented by a dotted line), while showing some discrepancies
from measured values.

For L-J molecules (represented by circular symbols), we
carry out two types of computations: single-angle computa-
tions (represented by empty circles) and VSS computations
(represented by solid circles). Both types of computations are
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consistent and perfectly reproduce theoretical values (repre-
sented by a dotted line). The L-J force model has an error
of less than 1% relative to experimental values for 150 K <

T < 1500 K, which is much better than the IPL force model
at temperatures below 400 K. The validity of L-J simulations
against measurements seems superior to that of the IPL force
model, especially at low temperatures.

2. Shear viscosity

Comparisons of simulated viscosities to measured values
[22] are shown in Fig. 5(b) as ratios of simulated to measured
values. For IPL molecules, VSS computations do not show
any significant differences from VHS computations, regard-
less of whether optimized or unoptimized VSS parameters are
used. Therefore, we use the VHS method for conventional
simulations. Boxed symbols represent IPL molecules and
circular symbols represent L-J molecules; empty symbols rep-
resent single-angle computations and solid symbols represent
conventional computations. The dotted lines along the sym-
bols indicate the corresponding theoretical values in formulas
of Eqs. (34b) and (44b). It is apparent that all simulations
accurately reproduce theoretical values. In terms of validity
against measurements, the IPL force model works well for
T > 300 K, while the L-J force model is again superior to
the IPL at low temperatures

At very high temperatures (T > 3000 K), IPL computa-
tions are better than L-J computations. This may be due to
the fact that the repulsive part of intermolecular forces is
dominant in high-speed collisions and the rigidity of IPL,
ω = 0.697 [which corresponds to η = 11.15 in Eq. (25)], is
more appropriate than the L-J (12-6) repulsion, η = 13 .

3. Shock wave thickness

To further examine the single deflection angle simulation,
1D normal shock waves are computed using Bird’s program,
DSMC1S.FOR [1] . The computational procedures are the same
as those of the 1D Couette program, DSMC1.FOR, except for
some changes to initial parameters: The number of cells is
increased to MNC = 500–1500 to set the distance between the
upstream and downstream limits to be about 15 times the
shock thickness, while keeping a cell width of 0.1λH and 10
subcells per cell. The maximum number of simulators is then
increased to MNM = 5 × 105–15 × 105.

In 1976, Alsmeyer measured the shock wave thickness of
common gases and compared it with other observations [23].
Despite considerable experimental scatter, we have redrawn
the reciprocal shock thickness of Ar in Fig. 6 and compared it
with our computations. To follow the experimental conditions,
we used Ar gas at T = 300 K and p = 0.05 torr, which cor-
responds to a number density of FND = 1.61 × 1021. We also
used an upstream mean free path of 1.098 × 10−3 m, which
Alsmeyer used to present shock profiles.

In DSMC computations for shock waves, the outputs
of density and flow rate are postprocessed. In principle,
they should satisfy the continuity equation if the simulation
is sufficiently accurate. Therefore, their numerical fluctua-
tions should be smoothed by postprocessing. The continuity

FIG. 6. The dimensionless inverse shock thickness, λ/
, of Ar-
gon vs Mach numbers is shown. Small scattered symbols represent
measured values, and the solid line represents the compiled curve
of them. Solid boxes represent VHS of IPL molecules. Empty
boxes represent single-angle computation of IPL molecules. Solid
circles represent VSS computations of L-J molecules using the look-
up table. Empty circles represent single-angle computation of L-J
molecules using the same look-up table.

equation for shock waves demands

ρux = ρ (u)u(u)
x , (58)

where ρ and ux are the density and the flow rate, respectively,
and the superscripts (u)’s denote the upstream values. The
simulated values should satisfy

ρ

ρ (u)

ux

u(u)
x

= 1. (59)

Because ρ (u) and u(u)
x are known values for the given Mach

number, the postprocessing can be carried out by taking the
arithmetic mean,

ρ̃ ≡ 1

2

[(
ρ

ρ (u)

)
DSMC

+
(

ux

u(u)
x

)−1

DSMC

]
, (60a)

ũ ≡ 1

ρ̃
. (60b)

The coordinate origin is usually defined at the location of half-
density,

ρ(0) = 1
2 [ρ (u) + ρ (d )], (61)

where ρ (d ) is the downstream density. After the postprocess-
ing, the value of density is changed a little and gives

ρ ′(δ) = 1
2 [ρ (u) + ρ (d )], (62)

where ρ ′ is the changed density by the postprocessing. There-
fore, the coordinates should be translated, x′ = x − δ, in order
to have

ρ̃(0) = 1
2 [1 + ρ̃ (d )], (63)

where ρ̃ (d ) = ρ (d )/ρ (u), the reduced downstream density.
Then, all the ρ̃ of different Mach numbers have common
origin.
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The reciprocal shock wave thickness is an important physi-
cal quantity of 1D shock waves, which represents the Knudsen
number of shock waves. It can be defined by the maximum
density slope,

λ



= 1

ρ (d ) − ρ (u)

[
dρ

dx̃

]
max

= 1

ρ̃ (d ) − 1

[
d ρ̃

dx̃

]
max

, (64)

where 
 is the shock thickness, λ is the mean free path of
upstream molecules, and x̃ = x/λ, the reduced distance.

In shock wave simulations of IPL molecules, there are no
significant differences between VHS and VSS computations.
Results of computations are shown in Fig. 6. The solid line
represents measured values compiled by Alsmeyer, circu-
lar symbols represent L-J computations, and boxed symbols
represent IPL computations; empty symbols represent our
computations and solid symbols represent conventional VHS
(for IPL) and VSS (for L-J) computations. As shown in the
figure, single-angle simulations perfectly reproduce conven-
tional ones for both IPL and L-J force models. At very high
Mach numbers, IPL computations are better than L-J com-
putations. This may be due to the same reason that viscosity
computations show at very high temperatures.

C. Collision frequency

It has been conventional to test the DSMC algorithm cal-
culating the mean collision frequency in an equilibrium gas.
The NTC algorithm is designed to cope with the test. The
zero-dimensional single-cell code, DSMC0.FOR, one of the 94-
family of old DSMC codes, can be used for this purpose.
Because the collision number is determined by the total cross
section at a certain density and temperature, regardless of the
deflection laws, the RCS gives different collision frequencies
from the theoretical values. For HS, 〈�〉 = 3

4πd2
H , in Eq. (21),

which gives the collision frequency exactly 3
4 times the the-

oretical value. Let us recall that the single-angle algorithm
reproduces the transport coefficients not only of the conven-
tional but also of the theoretical predictions. This implies that
one collision in the new algorithm represents 4

3 collisions of
actual HS collisions on average. This understanding is parallel
to the postulate that one simulator represents the FNUM real
molecules in Monte Carlo simulations. The lessened collision
number in the single-angle simulation is regarded as a conse-
quence of the reduction of one degree of freedom.

Since the DSMC program outputs the cumulative collision
numbers for each restarting run, we can examine the total col-
lision number (the FORTRAN variable NCOL in DSMC1C.FOR)
as a function of time steps. Figure 7(a) shows this for differ-
ent computations. The NCOLs are almost straight lines versus
elapsed time steps. The slope gives the collision frequency,

collision frequency = d (NCOL)

d (time step)
, (65)

the values of which are shown in Table II.

(a)

(b)

FIG. 7. These figures show the computaion for the xy component
of the stress tensor of viscous flows: (a) The total collision number
(NCOL) versus elapsed time steps; (b) the total fluctuation given in
Eq. (70) versus time steps. The time steps are in increments of
8 × 103, the collision numbers are in 108, and the fluctuations are
in arbitrary units.

D. Coarse graining

The coarser graining of simulated fine values is a succes-
sive moving average of the values accommodated in cells. It
gives smoothed values averaged over a certain interval. Let Qi

be the simulated value at the ith cell, where 1 � i � MNC and
MNC is the total number of cells. The cell widths are assumed
to be uniform. The (2k + 1) cells moving average is defined
by

Q̄ j ≡ 1

2k + 1

2k+1∑
i=1

Qj+i−1, j = 1, . . . , MNC − 2k. (66)

TABLE II. A crude estimation of collision frequencies and rel-
ative computing costs for the viscosities, diffusivities, and shock
waves. (The relative values for diffusivity are relative to the IPL-VSS
computations.) The ranges of computing costs are for the different
machines used.

IPL-VHS IPL-RDA LJ-VSS LJ-RDA

Viscosity (300 K)
Col freq 1 0.7 2.3 1.6
Cost 1 1.0 1.7 ∼1.5–1.6

Diffusivity (300 K)
Col freq 1 (VSS) 0.7 2.2 1.5
Cost 1 (VSS) 1.0 1.6 ∼1.3–1.5

Shock wave (Ma = 4)
Col freq 1 0.7 2.2 1.5
Cost 1 ∼0.9–1.0 ∼2.0–2.3 ∼1.7–1.8
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The location of Q̄ j is imposed by the x coordinate of the center
of grain,

x̄ j = x j+k , for j = 1, . . . , MNC − 2k, (67)

where xi is the cell location of Qi. After averaging, the cell
number (i.e., the number of grains) is reduced to MNC − 2k.
In this averaging scheme, adjacent grains are overlapped and
their centers are a cell width apart from each other. Therefore,
the distances between the nearest grains are equal to 0.1λH in
the present work. One may give a separation between adjacent
grains reducing the number of grains. Also, the averaging
can be done once again using the obtained average values.
There can be many different types of coarse graining. In the
present work, just a simple moving average of Eq. (66) by
k = 5 has been taken for the graining of one mean free path.
For transport coefficients, the final values have been taken by
averaging over seven mean free paths, taking 71 Q̄ j’s about
the center of two boundary walls,

〈Q〉 = 1

71

1
2 (MNC−2k)+35∑

j= 1
2 (MNC−2k)−35

Q̄ j, (68)

where 〈Q〉 is the final transport coefficient.
The grain size should be determined considering the Knud-

sen number. For the Couette flows, it is less than 0.1. For
shock waves, the Kn number corresponds to the reciprocal
shock thickness scaled by the mean free path, which amounts
to 0.2–0.3 for strong shocks. The coarser graining has been
carried out with k = 5, for one mean-free-path interval of
shock profiles. It has been confirmed that there are no appre-
ciable differences in choices, k = 1–5, on the shock thickness.
The postprocessing of shock profiles, discussed in Sec. III B 3,
should be carried out after the coarser graining.

The moving variance can be defined by

s2
j ≡ 1

2k

2k+1∑
i=1

(Qj+i−1 − Q̄ j )
2, j = 1, . . . , MNC − 2k. (69)

One may define the measure of statistical fluctuations of sim-
ulation by the formula

fluctuation =
MNC−2k∑

j=1

s2
j . (70)

For demonstrative purposes, we compare the fluctuations in
different computations of viscosity of Ar at 300 K. The fluc-
tuations of the xy component of the stress tensor are evaluated
and shown in Fig. 7(b). As shown in the figure, the fluctuations
decrease quickly at the early stage of iterations and very
slowly when time steps increase and are almost indistinguish-
able between the single-angle computations and conventional
ones.

E. Cost comparison

It is a nontrivial problem to compare the costs of DSMC
for different computations. Here the cost is defined by the
run time that a computer takes to produce final answers for
a given condition. There may be two ways of evaluating the
cost: One is by measuring the run time to reach the steady

state from an initial state (called the transient method), and
the other involves measuring the time it takes to produce
an acceptable number of independent stationary systems, the
average of which gives the final answer within a certain tol-
erance (called the stationary method). The latter can easily
be achieved by taking an appropriate number of time steps
in the simulation. However, the former essentially involves
computing temporal changes and cannot be achieved by a
single run but rather requires many identical computations to
construct a time-dependent ensemble. The common procedure
of DSMC is the stationary method. It assumes a steady state
after a certain number of initial time steps and then begins
sampling to construct an ensemble of systems, assuming the
independence of samples. Any possible transient effects of the
initial state melt away after a sufficient number of time steps.
The independence of samples ensures that the average over
the samples is equal to the value obtained from the transient
method.

Because the independence of samples is crucial and the
number of time steps required to reach the steady state is
somewhat arbitrary in the stationary method, it is deemed
meaningful to test and monitor the onset of the steady state
before attempting to evaluate computation costs.

Let us define a running cycle as 8 × 103 time steps and
test three cases of initial time steps for the steady state: 1, 10,
and 100 cycles. After the initial time steps, sampling begins
every eight steps. Samples are recorded at the end of every
cycle. The viscosities at 300 K for three cases are computed
up to 900 cycles and compared in Fig. 8(a) by the ratio to the
Chapman-Enskog theoretical value. As shown in the figure,
three computations show similar behaviors at the early stage
of iterations. Since the initial time steps for the steady state
have the role of suppressing transient effects arising from
arbitrary initial states, the three cases should show different
early behaviors. However, the sample size at this stage is not
sufficient and the lack of independence of samples should also
be considered. It seems reasonable to regard that the transient
effect of initial states diminishes quickly during the first few
cycles as the fluctuation does as shown in Fig. 7(a), so that
the independence of samples should be more important at the
early stage. The only way to have independent samples is to
increase the sample size, and since all three cases have the
same rate of iteration, they eventually show similar behaviors.
In other computations of this work, we let the initial time steps
be 100 cycles to reach a steady state, which may be more than
sufficient. This test shows that ∼1–10 cycles are sufficient
before sampling begins

The rate of iteration can be monitored by recording the
machine time taken versus the time steps. Figure 8(b) shows
that the machine time is strictly proportional to the time steps.
The computing cost can be defined by the slope,

computing cost = d (machine time)

d (time step)
. (71)

The computations for the diffusivity and shock waves give
similar results. The relative computing costs for different com-
putations are given in Table II.

The computations of this work were carried out by using
the MacMini M1 machine with the gfortran compiler and
the Xeon Silver4112 workstation with the ifort compiler.
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(a)

(b)

FIG. 8. (a) The IPL-RDA computations of viscosity for Ar at
300 K using different initial time steps for steady states. (b) The rate
of iteration of different force models for viscosity, plotted as machine
time taken versus elapsed time steps. The time steps are in increments
of 8 × 103, and the machine times are in minutes using the MacMini
machine.

IV. CONCLUSION

In the simulation of molecular systems, a proper imple-
mentation of the symmetry comprised by dynamic systems
may reduce the simulation task considerably. In this respect,
it is important to reveal the hidden symmetry of dynamic
systems. There appears to be a hidden symmetry in the DSMC
about the deflection angles. The deflection angles should in
principle be given by the solution of the trajectory equa-
tion in classical mechanics (for classical problems). It is out
of the question to solve the equation for every collision in the
DSMC; however, the symmetry makes it possible to simulate
the deflection by a preaveraged angle.

The single deflection angle simulation suggested in the
present work reproduces the conventional random deflection
simulations as well as the theoretical predictions by the Boltz-
mann equation. It is an alternative deflection algorithm for
DSMC, which is applicable to any collision models. Espe-
cially, it is remarkable to have an application to the L-J force
model with comparable costs to the conventional IPL mod-
els. There may be no reason that prevents the application of
present suggestion to more complicated problems; however, it
is certain that the suggestion should be tested in a wider range
of problems, e.g., charged particles in PIC simulations [24],
and 2D or 3D rarefied flows like lid-driven cavity problems
[25]. Further applications of the new algorithm will be left to
the DSMC community.

This paper is a revised version of the previous retracted
paper [26].

APPENDIX: THE CROSS-SECTION TABLE
OF L-J MOLECULES

1. Collision dynamics of L-J molecules

The relationship among χ , g, and b is given by the orbit
equation, which is explained in normal textbooks of classical
mechanics [8]. The equation can be applied to any intermolec-
ular force models of physical problems. The orbit equation is
well summarized in Bird’s book [1], rewriting with a little
different symbols,

χ = π − 2
∫ u

0

dw√
1 − w2 − 2V

mr g2

, (A1)

where w ≡ b/r, u ≡ b/rm, and rm is the distance at the closest
approach of colliding molecules; u is equal to the greatest
positive root of

1 − u2 − 2V (b/u)

mrg2
= 0. (A2)

Let us define the dimensionless quantities,

r̃ ≡ r

σ
, g̃2 ≡ 1

2ε
mrg2, (A3)

which give for the L-J potential in the form

1 − u2 − 4

g̃2

[(
u

b̃

)12

−
(

u

b̃

)6
]

= 0, (A4)

where b̃ is the value defined in Eq. (42). Introducing a dimen-
sionless positive quantity ζ defined by

ζ ≡
(

u

b̃

)6

=
(

σ

rm

)6

, (A5)

we rewrite Eq. (A4),

g̃2(1 − u2) + 4ζ (1 − ζ ) = 0. (A6)

Then the deflection angle takes the form

χ = π − 2
∫ u

0

1√
F

dw, (A7)

where

F = 1 − w2 + 4ζ

g̃2

(w

u

)6
[

1 − ζ
(w

u

)6
]
. (A8)

The collision dynamics has two branches by the two solutions
of Eq. (A6) for ζ ,

ζ1 = 1
2

[
1 +

√
1 + g̃2

(
1 − u2

1

)]
: branch-1, (A9a)

ζ2 = 1
2

[
1 −

√
1 + g̃2

(
1 − u2

2

)]
: branch-2, (A9b)

with the restrictions for ζ > 0,

0 < u1 � uM : branch-1, (A10a)

1 < u2 � uM : branch-2, (A10b)

where u1 and u2 are the u values of corresponding branches,
and

uM = 1

g̃

√
1 + g̃2. (A11)
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FIG. 9. Behaviors of F in Eq. (A8) for 0 � w � uM when ζ = 1
2

with different g̃2 values.

It is noteworthy to observe that branch-2 diappears when g̃ →
∞, since uM → 1 in this limit and the allowed range for u2

in Eq. (A10b) diminishes. Then the L-J force model reduces
to the IPL model. Branches 1 and 2 are considered to account
for the repulsive and attractive forces, respectively.

The deflection angles are given by the integrals,

χ1 = π − 2
∫ u1

0

1√
F1

dw, (A12a)

χ2 = π − 2
∫ u2

0

1√
F2

dw, (A12b)

in which

Fi = 1 − w2 + 4ζi

g̃2

(
w

ui

)6[
1 − ζi

(
w

ui

)6]
, (A13)

for i = 1, 2.

2. Singularity

Due to the attractive force, there is a possibility that two
encountering molecules are bound and show trajectories in
which the molecules circle about each other. This situation
arises when F → 0, giving χ → −∞, which defines the sin-
gularity.

It seems possible to examine the singularity using graphical
method. Let us first consider the case when u1 = u2 = uM .
Since ζ1 = ζ2 = 1

2 in this case, the functions F1 and F2 take
the same forms,

F1 = F2

= 1 − w2 + 1

g̃2

(
w

uM

)6[
2 −

(
w

uM

)6]
, (A14)

and show the behaviors depicted in Fig. 9 for different g̃2 in
the ranges, 0 � w � uM . The singularity occurs when g̃2 � c,
in which c should be given by the conditions, F = 0, and
∂F/∂w = 0. Applying these conditions to Eq. (A14), we
obtain two algebraic equations for g̃2 and w2, whose simul-
taneous solutions are

g̃2
c ≡ c = 0.544 · · · , (A15a)

w2
c = 1.583 · · · . (A15b)

It is noteworthy to observe that there appears F = 0 at the
point of w = uM for g̃2 > c. This is not the singular point but

FIG. 10. Behavior of impact parameter when (a) g̃2 = g̃2
c,

(b) g̃2 < g̃2
c, and (c) g̃2

c < g̃2 � 4
5 versus the closest approach between

two colliding molecules in u, where u = b/rm.

the turning point at which the incident particle would deflect
its direction giving finite χ . The integration in Eq. (A7) should
be carried out up to the point of w where F = 0 at first.

Next, consider the behavior of the impact parameter b̃
given in Eq. (A5). It can be written

b̃6
i = u6

i

ζi
(A16)

for i = 1, 2. Let us plot the b̃6
i at g̃2 = g̃2

c for the allowed
ranges of ui in Eqs. (A10) as shown in Fig. 10(a). In the
figure, the heavy solid curve represents branch-1, and both
the thin and dotted curves are for branch-2. The dotted curve
(ua < u2 < uM) is an unphysical part of the branch-2, which
gives negative F2. Therefore, the integration of branch-2 in
Eq. (A12b) gives the deflection angle only for 1 < u2 < ua,
while branch-1 can be integrated for the range, 0 < u1 < uM .
The ua should satisfy the conditions[

∂ b̃

∂u

]
u=ua

= 0,

[
∂2b̃

∂u2

]
u=ua

> 0, (A17)
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which give

u2
a = 6

25̃g2

(
2 + 5̃g2 −

√
4 − 5̃g2

)
(A18)

for g̃2 � 4
5 .

The impact parameter at u2 = ua, writing b̃c, is obtained by

b̃6
c = u6

a

ζ2
= 432

3125̃g6

(2 + 5̃g2 −
√

4 − 5̃g2)3

5 −
√

13 − 5̃g2 + 6
√

4 − 5̃g2
. (A19)

The two small solid circles in Fig. 10(a) are the singular points
at which χ → −∞ as F → 0.

a. When g̃2 < g̃2
c

In the case when g̃2 < g̃2
c, the impact parameter diagram is

illustrated in Fig. 10(b). There are unphysical parts (F < 0) in
both branch-1 and branch-2 curves, as shown by dotted curves
for the ranges

uc < u1 � uM : branch-1, (A20a)

ua < u2 � uM : branch-2, (A20b)

in which the point uc should be determined by the numerical
solution of

b̃6
c = u6

c

ζ1
= 2u6

c

1 +
√

1 + g̃2
(
1 − u2

c

) , (A21)

within the range ua < uc < uM . The singular points are
u2 = ua and u1 = uc, as designated by two solid circles in
Fig. 10(b).

b. When g̃2
c < g̃2 � 4

5

It is interesting to examine the case when g̃2
c < g̃2 � 4

5 . As
shown in Fig. 10(c), there appears to be an unphysical part
only in branch-2. The point at which the horizontal line cuts
the branch curve, u2 = ub, should be determined numerically
by solving the relation,

b̃6
c = u6

b

ζ2
= 2u6

b

1 −
√

1 + g̃2
(
1 − u2

b

) , (A22)

within the range ua < ub < uM . It should be carefully noted
that F2 > 0 when ub < u2 � uM giving regularity. The u2 =
ua and ub are the singular points giving χ → −∞, which are
designated by solid circles in Fig. 10(c).

c. When g̃2 > 4
5

When g̃2 = 4
5 , two singular points of branch-2 coincide at

u2
a = u2

b = 9
5 , and when g̃2 > 4

5 , there is no singularity for all
the allowed ranges of u1 and u2 [Eqs. (A10)], as noted by
Hirschfelder in 1948 [27].

3. Deflection angles

It is straightforward to obtain the χ ’s in Eqs. (A12) by nu-
merical integration, excluding the unphysical singular ranges.

FIG. 11. Deflection angles and their singularities versus impact
parameters. Upper curves in (a): A for g̃2 � g̃2

c; B1 and B2 for g̃2
c <

g̃2 � 4
5 . Lower curves in (b): C1 for g̃2 � 4

5 ; C2 for a typical behavior
in the region of g̃2 > 4

5 ; C3 for g̃2 → ∞.

a. Deflection angles when g̃2 � g̃2
c

In this case, both branches-1 and -2 have singularity. For
the integration, 0 < w < ui, the upper limit should be

0 < u1 < uc : branch-1, (A23a)

1 < u2 < ua : branch-2, (A23b)

where ua is in Eq. (A18) and uc is given by the numerical solu-
tion of Eq. (A21). The behavior of χ is depicted in Fig. 11(a)
by curve A. The critical impact parameter is designated by
bc,A in the figure.

b. Deflection angles when g̃2
c < g̃2 � 4

5

Branch-1 has no singular point in this case but branch-2 has
two. The integration limit, u2, should be carefully considered
for branch-2. First, we integrate with the limits,

0 < u1 � uM : branch-1, (A24a)

1 < u2 < ua : branch-2, (A24b)

as shown by the solid lines of curves B1(̃g2 < 0.67) and
B2(̃g2 > 0.68) in Fig. 11(a). We need additional integration
for branch-2 to the limit

ub < u2 � uM : branch-2, (A25)

which is shown by the dotted lines. The ub is given by the nu-
merical solution of Eq. (A22). The critical impact parameters
of this case are designated by bc,B1 and bc,B2 in Fig. 11(a).
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c. Deflection angles when g̃2 > 4
5

In this is the case, where both branches are regular, the
integration limits are

0 < u1 � uM : branch-1, (A26a)

1 < u2 � uM : branch-2. (A26b)

The results of numerical integration are depicted in Fig. 11(b).
Curve C1 in the figure represents the values for 4

5 < g̃2 <

1.01, and curve C2 represents the value for g̃2 > 1.01, show-
ing a typical behavior in this region. Curve C3 represents the
behavior of χ when g̃2 → ∞, in which the branch-2 disap-
pears.

4. Cross-section table

It is straightforward to obtain �̃D and �̃μ by numerically
integrating Eqs. (41) using the values of χ and b̃ obtained.
Because the singularity of deflection angles does not give rise
to a physical discontinuity, it has been conventional to assume
a functional form of χ around the singular point and integrate
analytically [27,28],

χ2 = constant

b̃2 − b̃2
c

. (A27)

In order for the contributions of the analytical integrals to the
cross section to be less than a few percentages, the integra-
tion limit of b̃ should be sufficiently close to b̃c. Results are
tabulated in the Supplemental Material [17].

At the limit when g̃2 → ∞, it is possible to have a limiting
law for the cross sections. Since the upper limit of the integra-
tion in Eqs. (A26), uM → 1, as seen in Eq. (A11), branch-2
does not contribute to the deflections and the integration limit
of branch-1 becomes

0 < u1 � 1 : branch-1. (A28)

Considering the limiting value in Eq. (A9a),

ζ1 → 1
2

√
g̃2

(
1 − u2

1

)
, (A29)

we see from Eq. (A13),

F1 → 1 − w2 − (
1 − u2

1

)( w

u1

)12

, (A30)

which is equal to the equation for χ of IPL molecules,

V = 4ε
(σ

r

)12
. (A31)

The cross sections at g̃2 → ∞ have the values

�D → 2πσ 2 (̃g2)−
1
6 (0.6590), (A32a)

�μ → 2πσ 2 (̃g2)−
1
6 (0.5313), (A32b)

which give

〈�〉 = 2πσ 2 (̃g2)−
1
6 (0.5520), (A32c)

cos 〈χ〉 = −0.1938. (A32d)

At the limit when g̃2 → 0, both branches 1 and 2 survive.
However, we can examine the g̃2-dependence of the cross
section by examining the behavior of b̃c in Eq. (A19). Since

lim
g̃→0

b̃6
c = 27

g̃2
, (A33)

it is certain that b̃2 ∼ (̃g2)−1/3, which reveals the limiting
property of cross sections at g̃2 → 0. By extrapolating the
numerical values obtained, we have the limiting laws,

�D → 2πσ 2(̃g2)− 1
3 (1.243), (A34a)

�μ → 2πσ 2 (̃g2)−
1
3 (0.9410), (A34b)

which give

〈�〉 = 2πσ 2 (̃g2)−
1
3 (1.00), (A34c)

cos 〈χ〉 = −0.243. (A34d)
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