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Finite-size effects in the static structure factor S(k) and S(0) for a two-dimensional Yukawa liquid
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Finite-size effects in the static structure factor S(k) are analyzed for an amorphous substance. As the number
of particles is reduced, S(0) increases greatly, up to an order of magnitude. Meanwhile, there is a decrease in
the height of the first peak Speak. These finite-size effects are modeled accurately by the Binder formula for S(0)
and our empirical formula for Speak. Procedures are suggested to correct for finite-size effects in S(k) data and
in the hyperuniformity index H ≡ S(0)/Speak. These principles generally apply to S(k) obtained from particle
positions in noncrystalline substances. The amorphous substance we simulate is a two-dimensional liquid, with
a soft Yukawa interaction modeling a dusty plasma experiment.
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I. INTRODUCTION

The static structure factor S(k) is a function used to de-
scribe the arrangement of particles in a substance. Analogous
to a diffraction pattern, it characterizes the microscopic struc-
ture of the substance. When S(k) is computed from the
positions of individual particles, finite-size effects could play
a significant role. In this paper we quantify these effects
and propose procedures to improve upon them. Our literature
search did not reveal recent papers that prominently mention
finite-size effects in the S(k) curves obtained from a finite
number of particles. Most of the relevant literature [1–14] that
we have found is from the 1980s and 1990s, describing finite-
size effects for isothermal compressibility χ . That quantity
has a theoretical relation to the value of S(k) at k = 0, i.e.,
for infinitely long scale lengths. This relation, for equilibrium
conditions, is

χ = S(0)/nkBT, (1)

where n is the particle number density [15–17].
Our focus on finite-size effects for S(k) is motivated by

recent interest in the theoretical concept of hyperuniformity
[18–33], which refers to a special type of spatial order
characterized by the suppression of long-wavelength density
fluctuations. For a hyperuniform system, S(k) exhibits a dis-
tinctive behavior at small k, i.e., long distances. Specifically,
S(k) approaches zero, or becomes strongly suppressed, as
k → 0. Hyperuniform substances are predicted to have unique
photonic and mechanical properties [22]. As a practical mea-
sure of hyperuniformity of a substance, the hyperuniformity
index [22,34]

H ≡ S(0)/Speak (2)

is the ratio of two values from the S(k) curve: its value at
k = 0 and the height Speak of the first peak of S(k). These
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two values and in particular their finite-size effects will be the
focus of this paper.

For our finite-size effect analysis, we adopt a notation so
that the values for a finite size N are distinguished from the
values for an infinite system. Hereafter, we will write S(k, N )
as the static structure factor curve obtained using a finite
number N of particles and likewise S(0, N ) and Speak (N ) as
its values at k = 0 and at the first peak, respectively. These
are distinguished from the values S(k), S(0), and Speak for an
infinite system, i.e., as N → ∞.

We briefly summarize how S(k, N ) is calculated from po-
sitions ri(t ) of a finite number N of particles. These particles
may be physical particles imaged by cameras in experiments
[33,35–37] or models of real particles in a numerical simula-
tion [38–41]. This method can be used for liquids as in the
present paper, as well as amorphous molecular solids. The
instantaneous particle density ρ(k, N, t ) for a finite size N is
calculated as

ρ(k, N, t ) =
N∑

i=1

exp[ik · ri(t )], (3)

where k is a specified value of a wave number [15]. Subtract-
ing the average value of ρ(k, N, t ) yields ρ̃(k, N, t ), which is
the input to an autocorrelation calculation

S(k, N, t ) = N−1〈ρ̃(k, N, t )ρ̃ ∗(k, N, t )〉θ , (4)

where 〈 〉θ is an angular average. Calculations of (3) and (4)
can be repeated for not only various values of the magnitude
of the wave vector k but its direction as well. If the available
data were not just from a single snapshot of particle positions
but were recorded over a range of time, one would perform a
time average to obtain the static structure factor

S(k, N ) = 〈S(k, N, t )〉t . (5)

In an initial assessment of the finite-size effects in the
static structure factor obtained from particle positions using
expressions like Eqs. (3)–(5), Zhuravlyov et al. [42] used

2470-0045/2023/108(3)/035211(10) 035211-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0502-5189
https://orcid.org/0000-0002-3988-0848
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.035211&domain=pdf&date_stamp=2023-09-21
https://doi.org/10.1103/PhysRevE.108.035211


ZHURAVLYOV, GOREE, ELVATI, AND VIOLI PHYSICAL REVIEW E 108, 035211 (2023)

data from a molecular-dynamics simulation. They reported
opposite trends: The calculated value of static structure fac-
tor near k = 0 decreased, while the height of the first peak
increased, with an increasing number of particles N . Those
results were for a two-dimensional (2D) liquid, with a Yukawa
interparticle interaction to model a dusty plasma with highly
charged micron-size particles immersed in an ionized gas.

In this paper, to extend that initial assessment of the finite-
size effects, we analyze simulation data over a much wider
range of N , up to nearly 106 particles. We use these results
to test two formulas, by fitting them. The Binder formula [1]
is found to accurately model the system-size dependence of
S(k, N ) at small k, i.e., S(0, N ). Likewise, another formula,
that we suggest is found to describe how the height of the first
peak Speak (N ) depends on N . Furthermore, these results, along
with Eq. (2), allow us to assess how the hyperuniformity index
H depends on the analyzed system size.

We review the Binder formula along with its historical con-
text in Sec. II, where we also present our empirical formula for
the height of the first peak Speak (N ). The 2D Yukawa liquid
and simulation method are described in Secs. III and IV, re-
spectively. Particle-position data were used with Eqs. (3)–(5)
to calculate S(k, N ) for analyzed regions of varying size N ,
leading to our primary results that are presented in Sec. V.
These results lead us to suggest, in Sec. VI, procedures useful
for correcting S(k) data for finite-size effects.

II. FORMULAS FOR FINITE-SIZE EFFECTS TO TEST

A. Finite-size effects for S(k, N) at small k

While in this paper we are primarily interested in the
finite-size effects of S(k), we must turn to another physical
parameter, the isothermal compressibility χ , for historical
context. While we found a paucity of literature for finite-
size effects in S(k), there is a considerable number of papers
[1–14] for finite-size effects in χ . The latter studies motivate
our work because they offer practical formulas for finite-size
effects and there is a theoretical connection between S(0) and
χ in Eq. (1).

The formulas that describe finite-size effects for χ were
presented beginning with a paper by Binder [1]. In Binder’s
notation, the best estimate of the true isothermal compress-
ibility χ for an infinite system is related to the value for a
finite system χL by

χL = χ − χbL−1, (6)

where the factor χbL−1 is the finite-size correction for an
analyzed region of a linear dimension L. We will refer to
Eq. (6) as the Binder formula. Essentially, the Binder formula
is an expansion with a single term for a small correction due
to finite size.

The history behind the Binder formula traces back to a
scaling theory of Fisher and Barber [43]. Their paper was
for critical phenomena in a film of finite thickness, which
they generalized for various dimensions. Fisher and Barber
took into account the boundary conditions of this thin film by
using a first-order expansion for a thermodynamic quantity,
which was the critical temperature. The paper by Fisher and
Barber motivated Landau to investigate finite-size behavior of
compressibility along with other thermodynamic parameters,

in a 3D Ising lattice [44]. Landau’s paper in turn motivated
Binder’s paper on Ising lattices in various dimensions, and
this paper included the formula for susceptibility, which is
the same as isothermal compressibility. After Binder’s pub-
lication, the formula was used by other authors for various
physical systems, including binary mixtures [7], polymers
[9], hard-disk fluids [11,45], and Lennard-Jones fluids [3,4,6].
Among those who investigated 2D Lennard-Jones fluids were
Rovere et al. [3], who chose to add a second-order correc-
tion to the first-order correction of Binder. To describe trends
with varying N , starting with Binder, all the authors we cited
used two phrases: finite-size effects and boundary corrections.
Many of these authors used the two terms interchangeably and
some further complicated their terminology by mixing in a
third phrase: boundary effects. For the present paper we will
simply use the term finite-size effects.

We will rewrite the Binder formula (6) in terms of not χ

and L, but instead S(0) and N . For three dimensions the Binder
formula becomes

S(0, N ) = S(0) + bN−1/3, (7)

and for two dimensions it is

S(0, N ) = S(0) + bN−1/2. (8)

Here S(0) ≡ S(0, N → ∞) is the asymptote for large N . To
obtain Eqs. (7) and (8) we combined Eqs. (6) and (1), moti-
vated by the way Eq. (1) theoretically relates two properties of
an infinite system, χ and S(0). We converted the L dependence
of Eq. (6) to the N dependence of Eqs. (7) and (8) using L =
(N/n)1/3 and L = (N/n2D)1/2, for three and two dimensions,
respectively, where n2D is the areal number density.

The coefficient b will in general depend on the physical
system and its temperature. One can obtain the value of b by
fitting data for various values of N , as we will demonstrate
later.

For studies of hyperuniformity, the value of S(0) is espe-
cially important. For that purpose, we can rewrite Eqs. (7) and
(8) with S(0) on the left side, so that for three dimensions we
have

S(0) = S(0, N ) − bN−1/3, (9)

while for two dimensions we get

S(0) = S(0, N ) − bN−1/2. (10)

In Eqs. (9) and (10) the last terms are the first-order correction
terms. We note that the power law for the correction term obvi-
ously depends on the dimensionality of the system. The power
law in that correction term is unfortunately weak, meaning
that obtaining good precision with a simulation might require
an enormously large particle number N , especially in three
dimensions with an exponent of only −1/3, unless one cor-
rects the simulation result using the Binder formulas, Eq. (9)
for three dimensions and Eq. (10) for two dimensions. This
correction requires knowledge of the coefficient b, which as
we mentioned depends on the substance and its temperature.
As a demonstration, we will obtain this coefficient in Sec. V
for a 2D Yukawa liquid.
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B. Finite-size effects for the first peak of S(k, N)

Here we will propose an empirical formula to model finite-
size effects for the height of the first peak Speak(N ). We found
no previous reports of such a formula in our literature search,
perhaps because the finite-size effects were studied mostly
for another quantity, isothermal compressibility, which is only
related to S(0), not Speak. We anticipate that other researchers
may wish to correct the first peak’s height for finite-size ef-
fects, for example, in calculating the hyperuniformity index
using Eq. (2).

In constructing our empirical formula, we are motivated
by the use of a power law in the Binder formula for S(0, N ).
Thus, we seek an expression for Speak (N ) that includes a
power law. Moreover, the formula must converge to an
asymptotic value as N increases, as in the Binder expression,
but with a different trend, since Speak (N ) increases instead
of decreases with N . A simple formula meeting these
requirements is

Speak (N ) = Speak

1 + (N/N0)−α
. (11)

The numerator Speak ≡ Speak (N → ∞) is the asymptotic
value.

The empirical formula (11) has a power-law exponent α

and a coefficient 1/N0. We consider both of them as free
parameters for fitting, for our test of Eq. (11) using data from
our 2D Yukawa liquid simulation. Further work would be
needed to determine how α and 1/N0 depend on other choices
of the temperature, density, dimensionality of the physical
system, and interparticle potential. Once the exponent α and
the coefficient 1/N0 are known, the desired quantity Speak can
be obtained

Speak = Speak (N )[1 + (N/N0)−α], (12)

which is simply Eq. (11) rewritten with Speak on the left side.

III. 2D YUKAWA LIQUID

In this paper we consider a 2D Yukawa liquid.
The binary interaction potential for such a system is
(Q2/4πε0r)exp(−r/λ), where Q is the particle charge and λ

is a screening length for the medium between two particles
separated by distance r. One reason for interest in 2D Yukawa
liquids is that they model experiments with dusty plasmas.

A dusty plasma is a mixture of solid charged particles and
an ionized gas consisting of electrons, ions, and neutral gas
atoms [46–49]. In laboratory experiments [50–52], the dust
particles are typically of a few microns in size with a negative
charge of thousands of elementary charges. The interactions
among the dust particles are governed by a screened Coulomb
repulsion, which is a soft interparticle interaction that is often
modeled as the Yukawa potential [53].

The large charge of the dust particles allows them to be
electrically levitated so that they are not in contact with any
solid surface [54–56]. When they are levitated in a single
horizontal layer [57–64], they can all be imaged using a video
camera, which allows the measurement of their positions in
each video frame [65]. The large charge also causes the inter-
particle potential energy of dust particles to be so large that
it dominates over their thermal kinetic energy. This condition

[66,67], known as strong coupling, leads the particles to self-
organize in a crystalline structure [68–71]. Such a crystal can
then be melted, using rastered laser beams, to sustain a steady
liquid condition [72–74].

In Zhuravlyov et al. [42], particle-position data were ana-
lyzed for the dusty plasma experiment of Haralson and Goree
[75,76], as well as for data from a Yukawa molecular dynam-
ics simulation. The results from the simulation and experiment
were found to be consistent, indicating that even though it
had simplified physics, the simulation was able to capture the
most important aspects of the static structure factor for the
experiment. These simulation data were also used in an initial
assessment of finite-size effects for measurements of the static
structure factor at long wavelengths, i.e., at small k.

In this paper we explore the finite-size effects more com-
prehensively. The same simulation method was used, as in
Ref. [42], but with a much larger system size. Moreover,
we also test two formulas for finite-size effects: the Binder
formula (8) for S(0, N ) and our empirical formula (11) for
Speak (N ).

IV. SIMULATION

Here we briefly summarize the simulation details. The
LAMMPS code [77] was used to perform a molecular-dynamics
simulation of identical particles in a microcanonical ensem-
ble. The particles interacted via the Yukawa potential with a
cutoff radius of 20a, where

a ≡ (πn2D)−1/2

is the 2D Wigner-Seitz radius. The dimensionless parame-
ters describing the Yukawa system are the Coulomb coupling
parameter 	 and the screening parameter κ defined as in
Ref. [42], which were chosen to be 130 and 0.719, respec-
tively. For the corresponding number density, the kinetic
temperature had a value that exceeded the melting point Tm for
a 2D Yukawa system [78] by a factor of 1.19. The system was
equilibrated to the target temperature by a thermostat [79],
with the same time constant and integration time step as in
the work of Zhuravlyov et al. [42], and then the thermostat
was turned off. Particle positions were recorded at intervals
of 10ω−1

0 over a duration of 5000ω−1
0 , where ω0 ≡ ωpd/

√
2

as in Ref. [42]. Here ωpd = (Q2/2πε0Ma3)1/2 = 89 s−1 is a
2D dusty plasma frequency, where M is the particle mass. The
boundary conditions for the simulation were periodic. Further
details of the simulation method can be found in Ref. [42].

To study the finite-size effects of the static structure factor
S(k, N ), we varied the size of a circular analyzed region cen-
tered within a large simulation box. The simulation box itself
was square, containing a fixed number of 937 501 particles,
much greater than in Ref. [42]. The analyzed regions were
smaller and did not strictly contain a fixed number of particles,
as they could leave or enter the region randomly. Hence, we
will report time-averaged values of the number N of particles,
ranging from N = 70 up to N = 736 771, according to the
chosen diameter of the circular region analyzed. Example
snapshot of particles in some of the smaller analyzed regions
is shown in Fig. 1. Data for S(k, N ), for the analyzed regions
reported in this paper, can be found in Ref. [80].
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FIG. 1. Tiny portion of the simulation box, showing individual
particle coordinates at one time. Also shown are quarters of the
three circular regions analyzed, which in total contained on average
N = 70, 492, and 9163 particles. The entire simulation box, which
is too large to show here, is a square containing 937 501 particles,
with periodic boundary conditions. Distances are normalized by the
2D Wigner-Seitz radius a = (πn2D)−1/2, for an areal number density
n2D. This snapshot reveals the degree of microscopic disorder for this
2D Yukawa liquid, at a temperature above the melting point Tm by a
factor of 1.19.

V. RESULTS

A. Assessing the finite-size effects

We now present the results of our analysis of the 2D
Yukawa simulation. The static structure factor S(k, N ) curves
were obtained for various finite values of N . Example curves
are presented in Fig. 2(a). The shape of the curves is typi-
cal of simple liquids [15,81,82], with just a few peaks that
rapidly diminish in height as k is increased. The first peak of
S(k, N ) exhibits a finite-size effect of tens of percent, as seen
in Fig. 2(a).

At small k, the finite-size effect is more substantial than
for the first peak. Instead of tens of percent, S(k, N ) changes
by much more than a factor of 2 as N is varied, as seen in
Fig. 2(b), where we have magnified the low-k portion of the
curves.

Since we are especially interested in the static structure
factor at k = 0, we will extrapolate S(k, N ) to k → 0. This ex-
trapolation is done by fitting S(k, N ) data points to a parabola,

S(k, N ) = S(0, N ) + Ak2, (13)

as in the work of Huang et al. [83]. We note that the fit
coefficient A may depend on temperature and the nature of
the physical system. More importantly for our analysis, the in-
tercept S(0, N ) is the desired estimate, for a finite N . Because
Eq. (13) fits our simulation data well in Fig. 2(b), for ka � 1,
we will use the parabola of Huang et al. to estimate S(0, N ).

FIG. 2. Static structure factor S(k, N ) data. Here the wave num-
ber k is normalized by the 2D Wigner-Seitz radius a. The S(k, N )
data were obtained using Eqs. (3)–(5) with an input of particle
positions from 500 snapshots of the simulation. We varied the size
of the analyzed region over 20 values of N , three of which are shown
here, as in Fig. 1. The same S(k, N ) data are shown as curves in
(a) and data points in (b). Semilogarithmic axes in (b) help reveal the
finite-size effects at small k. The smooth curves in (b) are parabolas,
Eq. (13) obtained by fitting the data points in the range ka � 1. That
fit also yielded the extrapolated values of S(0, N ) shown as dotted
lines.

We note that our simulation data for S(k, N ) vary monoton-
ically with k, as can be seen in Fig. 2(b). However, there are
other physical systems where the static structure factor is not
monotonic with k so that Eq. (13) could not be used directly. In
some physical systems [36,83–89], the static structure factor
exhibits an upturn feature at small k, where the static structure
factor increases instead of decreases at the smallest values of
k. Huang et al. called such a feather an enhancement and they
found that for water they could generalize Eq. (13) by adding
an anomalous term, in the fit to the static structure factor data
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FIG. 3. Finite-size dependence of S(0, N ). We found that S(0, N )
can vary by an order of magnitude, as N is varied from 70 to 736 771.
The S(0, N ) data points shown here were obtained as in Fig. 2(b);
their error bars are smaller than the symbol size. The solid line is a fit
to the Binder formula (8), which has two free parameters: the asymp-
totic value S(0, N → ∞) and a coefficient b. For our 2D Yukawa
liquid at T = 1.19Tm, we obtained S(0, N → ∞) = 3.99 × 10−3 as
our estimate of S(0) for an infinite system, while the coefficient b was
found to be 0.260. The good fit gives us confidence that the Binder
formula is useful for this 2D liquid.

points. For such a physical system, that generalized fitting
scheme would still allow obtaining S(0, N ).

Finite-size effects for S(0, N ), which are noticeable even
over a limited range of N in Fig. 2(b), are even more profound
over a wider range of N , as we show in Fig. 3. In particular,
S(0, N ) is reduced by nearly an order of magnitude over the
wide range of N .

Finite-size effects for the height of the first peak Speak(N )
are weaker than those for S(0, N ), as shown in Fig. 4. There is
at most 25% reduction in Speak (N ) over the range of N that we
investigated. Since the peak height has this weak dependence
on N , we needed to obtain the values of Speak (N ) in Fig. 4 with
good practical precision. We do this by using a quadratic fit of
several data points of S(k, N ) near its first peak.

B. Formulas for finite-size effects

1. S(k, N) at small k

We used our simulation data to test the Binder formula
(8) for the finite-size effect for S(0, N ). This test is shown in
Fig. 3. With two free parameters, we find that it is possible for
the Binder formula to fit the simulation data very well. The
difference between the individual data points and the fit was
only 0.56%, on average.

Having found that the Binder formula fits the data well,
we can exploit the fit parameter that has a special physical
significance, the asymptotic value S(0, N → ∞). We found
this value to be 3.99 × 10−3 for our 2D Yukawa liquid at the
simulated temperature. This asymptotic value serves as our
best estimate for S(0) for an infinite system.

Another use of the asymptotic value S(0, N → ∞) is quan-
tifying the finite-size effect for the static structure factor at

FIG. 4. Finite-size dependence of the height of the first peak of
S(k, N ). The data points were obtained by a quadratic fit at the first
peak. The solid line is the fit to Eq. (11), which has three free parame-
ters, an exponent α, an asymptotic value Speak ≡ Speak (N → ∞), and
a coefficient N0. The exponent and the coefficient were found to be
0.57 and 9.6, respectively, while the asymptotic value, i.e., Speak for
an infinite system, was found to be 4.0 for our simulated liquid. The
error bars are shown where they are bigger than the symbol size.
These error bars, as well as the scatter in the data points, became
bigger at large N due to random errors that arose from the quadratic
fit to a first peak that became narrower and therefore more difficult
to fit at large N .

k = 0. We define a discrepancy as the percentage differ-
ence between a data point S(0, N ) and the asymptotic value
S(0, N → ∞). This discrepancy

[S(0, N ) − S(0, N → ∞)]/S(0, N → ∞) (14)

is plotted in Fig. 5, where we see that it can be very large,
unless N is closer to 1 × 106 than to 1000 for this 2D system.
Moreover, the discrepancy diminishes rather slowly with N ,
with a −1/2 power-law scaling found in Fig. 5, as one would
expect from examining the Binder formula (8).

We note that there would be an even more unfavorable
−1/3 power law for a 3D system. Thus, a large simulation
would be required to obtain a reasonable estimate of S(0),
for a simulation of 3D system using a single value of N .
To improve upon this situation, one could exploit the Binder
formula as an extrapolation, as we suggest later.

Since the asymptote S(0, N → ∞) is a particularly useful
result from fitting to the Binder formula, we investigated
whether there is an alternative formula that would offer a
further improvement in obtaining the value of this asymptote.
In our literature search for the isothermal compressibility,
we found that there is a lesser-known formula that extends
the Binder formula by adding a higher-order expansion term.
This formula, which was proposed by Rovere et al. [3] for
isothermal compressibility, can be rewritten for static structure
factor of a 2D system, as

S(0, N ) = S(0) + bN−1/2 + cN−1, (15)
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FIG. 5. Percent discrepancy in S(0, N ). Data points were ob-
tained by using Eq. (14), which simply defines the discrepancy
as the difference S(0, N ) − S(0, N → ∞), obtained from Fig. 3,
normalized by the asymptotic value S(0, N → ∞). The error bars,
obtained by propagation of errors, are shown only if they are bigger
than the symbol size. The dashed line that we drew through our
data points has a slope corresponding to the power law predicted for
two dimensions by the Binder formula, N−1/2. For three dimensions
we would expect a weaker scaling of N−1/3, which might therefore
require a larger simulation than for our 2D liquid.

which has three fit parameters instead of two. We tested this
Rovere formula by fitting to our simulation data and found
that the difference between the individual data points and
the fit was only 0.62% on average, which is comparable to
the 0.56% difference for the Binder formula. The asymptote
S(0) ≡ S(0, N → ∞), which is one of the fit parameters,
was 3.96 × 10−3 for our 2D simulation data. This asymptote
differs from that of the Binder formula by less than 1%, so we
judge, for our 2D system, that there is no great advantage in
the additional complexity of the Rovere formula.

2. Height of the first peak of S(k, N)

Another result is the finite-size effect for Speak (N ) in Fig. 4.
We tested our empirical formula (11) by fitting to our simu-
lation data. There is good agreement between the fit and the
data, as seen in Fig. 4. We found only a 0.17% difference, on
average, between the individual data points and the fit.

From the fit to Eq. (11), one can obtain the asymptotic
value Speak (N → ∞). This value serves as our best estimate of
Speak for an infinite system. The asymptotic value was found
to be 4.0 for our 2D Yukawa liquid.

To quantify the finite-size effect for Speak (N ), we can define
a discrepancy similar to the one for S(0, N ). This percent
discrepancy is defined as

[Speak(N ) − Speak (N → ∞)]/Speak (N → ∞), (16)

which is plotted in Fig. 6. It can be seen from the figure that
the finite-size effect for Speak (N ) is at most a 25% effect.

FIG. 6. Percent discrepancy in Speak (N ). The discrepancy was
obtained by using Eq. (16), with an input of the data points Speak (N )
and the asymptotic value Speak (N → ∞) from Fig. 4. The dotted line
indicates 0% discrepancy. The error bars, obtained by propagation of
error, are bigger at large N for the same reason as in Fig. 4.

3. Hyperuniformity index H

We now quantify the finite-size effect for the hyperuni-
formity index H for our 2D Yukawa liquid. We obtained
the hyperuniformity index H (N ) ≡ S(0, N )/Speak (N ) over the
same range of N that was investigated. The result is shown in
Fig. 7.

As a practical approach of estimating H , corrected for
finite-size effects, we simply divide our two asymptotic val-
ues S(0, N → ∞) and Speak (N → ∞) that were obtained

FIG. 7. Finite-size dependence of the hyperuniformity index H .
Each data point was calculated as S(0, N )/Speak (N ). The error bars
are smaller than the symbol size. The dotted line is the result of
the quotient of asymptotic values S(0, N → ∞)/Speak (N → ∞) =
1.0 × 10−3, which were obtained from Figs. 3 and 4. This quotient is
our best estimate of the hyperuniformity index for an infinite system
H (N → ∞).
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FIG. 8. Percent discrepancy in H (N ) obtained from Eq. (17). The
inputs to the calculation of this discrepancy were the data points
H (N ) and our estimate of H (N → ∞) from Fig. 7. This result is for
a 2D Yukawa liquid; we expect that the percent discrepancy would
diminish more weakly with N for a 3D system. Only those error bars
that are larger than the symbol size are shown.

by fitting to the Binder formula and our empirical formula,
respectively. The result, which is our estimate of the hyperuni-
formity index for an infinite system, is H ≡ H (N → ∞) =
1.0 × 10−3.

We can also quantify the finite-size effect for H (N ). This
can done as above by defining the percent discrepancy

[H (N ) − H (N → ∞)]/H (N → ∞). (17)

This discrepancy is plotted in Fig. 8, where we see about the
same percent discrepancy as for S(0, N ) in Fig. 5.

VI. SUGGESTED PROCEDURES FOR CORRECTING S(k)
DATA TO OBTAIN S(0) AND Speak

We now suggest procedures to obtain S(0), Speak, and the
hyperuniformity index H , all corrected for finite-size effects.
These procedures start with S(k, N ) curves that were ob-
tained from particle-position data, from either simulation or
experiment.

To obtain S(0), corrected for finite-size effects, there are
two steps. The first step yields S(0, N ), which is an input to
the second step that yields S(0).

The first step in finding S(0) starts with the S(k, N ) curve
for a given value of N . One then fits that curve to an appro-
priate expression. The expression we used was the parabola
of Eq. (13), since there was no upturn in our S(k, N ) data
at small k. This fitting will yield S(0, N ), as one of the fit
parameters. This is essentially the asymptotic value at small
k. For an experiment or simulation which, unlike ours, has
a static structure factor with an upturn at small k, the fitting
formula can be modified by adding a term to Eq. (13), for
example, the term in Eq. (2) of Ref. [83].

The second step is to use S(0, N ), from the first step, as an
input to the Binder formula. This formula is Eq. (10) or (9),
for two or three dimensions, respectively. If the coefficient
b is already known for a given substance and temperature,

this can be done with S(0, N ) for just a single value of N .
Otherwise, one must use S(0, N ) data for multiple values of
N and fit to the Binder formula to obtain that coefficient, as
we did in Sec. V. The result of using the Binder formula is
the asymptotic value S(0, N → ∞), which is the same as the
desired quantity S(0), corrected for finite-size effects.

To obtain Speak, we use our empirical formula (12). The
input for this formula is the height of that peak, for multi-
ple values of N , i.e., Speak (N ). The result of this step is the
asymptotic value Speak (N → ∞), which is the same as the
desired quantity Speak, the height of the first peak corrected for
finite-size effects. An artifact of small N is that the first peak
tends to be lower and broader than for large N . This tendency
has the counterintuitive consequence that error bars for the
height of the first peak are bigger for large N , due to random
errors arising from quadratic fitting to a narrow peak.

The hyperuniformity index can then be obtained simply by
using Eq. (2). For example, for our 2D Yukawa liquid simu-
lation data, we obtained H ≡ S(0)/Speak = 1.0 × 10−3. This
value is lower than the estimate 3.7 × 10−3 that was reported
by Zhuravlyov et al. [42] for a simulation with N = 791, with-
out correcting for finite-size effects. We note that lower values
of H indicate a condition closer to hyperuniformity and that
some authors consider the value of 1.0 × 10−3 attained in our
simulation to be the threshold for effective hyperuniformity
[20,21,24,90].

VII. SUMMARY

We have identified two finite-size effects for the static
structure factor: at small k and at the first peak of S(k, N ).
We have shown that the finite-size effect for S(k, N ) at small
k can be quite significant, up to an order of magnitude,
while the finite-size effect for the height of the first peak is
weaker.

To model the finite-size effect for S(k, N ) at small k, one
can use the Binder formula, which was originally intended
for the finite-size effect for isothermal compressibility. The
Binder formula expresses S(0) for an infinite system as com-
pared to that for a system of finite size N as a simple difference
which scales as a power law of N . That power law, for the cor-
rection, is N−1/2 or N−1/3, for 2D or 3D systems, respectively.

Modeling the finite-size effect for the height of the first
peak Speak (N ) required that we devise our own formula, as we
found none in the literature. This empirical expression (11)
has a correction factor that asymptotically approaches unity.

We identified two challenges arising from finite-size effects
that might be unfamiliar to researchers who obtain values Speak

and S(0), for example, in calculating the hyperuniformity
index. For Speak, we encountered a counterintuitive tendency
that the uncertainty in Speak increased, instead of decreased,
with larger N , due to the practical issue of measuring the
height of a peak that narrows at large N . For S(0), there
is a very slow convergence in this value as N is increased,
especially in three dimensions where the finite-size correction
scales very weakly as N−1/3. This problem means that calcu-
lating S(0) from the positions of a finite number of particles
can have a substantial error, even if the number of particles
might seem rather large. To correct S(0) for this finite-size
effect, we devised the second step of our two-step procedure.
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In the common scenario that one has particle-position data
from a simulation or an imaging experiment, the static struc-
ture factor curve obtained from those data will be limited by
a finite value of N . One might wish to correct those data,
especially for S(0) and Speak, to obtain a best estimate of their
values for an infinite system. For that purpose, we proposed a
two-step correction procedure. The first step, applicable only
to S(0), is an extrapolation of the S(k, N ) data to k → 0. This
extrapolation must be repeated for various values of finite N ,
to obtain the coefficient b in the Binder formula for the given
substance and temperature. The second step is an extrapo-
lation using the Binder formula for S(0) and our empirical
formula for Speak.

We tested this two-step procedure using particle-position
data from a 2D molecular-dynamics simulation. This simula-
tion had 937 501 particles, allowing us to repeat our analysis
of S(k, N ) for analyzed regions containing various numbers N
of particles. Our simulation was for a liquid with the Yukawa
potential, which is a soft potential that models dusty plasmas,
among other physical systems. The temperature was above
the melting point by a factor of 1.19. For this liquid, we
calculated the static structure factor curve for various values
of N . The extrapolation to k → 0 in the first step was done
by fitting to the parabola of Eq. (13). For the second step,
we found that our data for various N closely fit the Binder
formula for S(0) and our empirical formula for Speak, yielding
values 3.99 × 10−3 and 4.0, respectively. Calculating their
ratio, which is the hyperuniformity index H ≡ S(0)/Speak, we
found for our 2D Yukawa liquid that H = 1.0 × 10−3, which
has been corrected for finite-size effects using our two-step
procedure.

We have so far demonstrated our suggested procedure
for only one set of parameters. We can suggest that further
tests would be useful for different temperatures, densities,

interparticle potentials, and three dimensions. Those param-
eters would affect the value of the coefficient b, as we noted
in Sec. II.

In addition to obtaining values of S(0), Speak, and H by
considering finite-size effects, our approach can be extended
to other material parameters as well. Obviously, this ap-
proach will be useful for isothermal compressibility, because
of Eq. (1). Other physical quantities that have been identified
as being subject to finite-size effects, when they are estimated
from simulation data, include the self-diffusion coefficient
[91,92], chemical potential [93–95], and molar enthalpy [96].
We expect that the finite-size correction for such quantities
might be obtained by our approach provided they have an
asymptotic behavior with respect to N , analogous to the
Binder formula for S(0) or our empirical formula for Speak.

We note that another material description is the pair cor-
relation function g(r), which like S(k) would have a size
dependence when obtained from an analysis of particle-
position data. The size dependence for g(r) in this limit was
studied theoretically [97] and it was determined that it has a
correction proportional to 1/N . Another correction has also
been proposed [Eq. (2) of Ref. [98]], for mixtures of methanol
with either water or acetone.
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