
PHYSICAL REVIEW E 108, 035208 (2023)

Simulation study of the harmonic structure of lower hybrid waves driven by energetic ions

Tsubasa Kotani ,1,* Mieko Toida ,2 Toseo Moritaka ,2 and Satoshi Taguchi 1

1Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
2National Institute for Fusion Science, Toki, Gifu 509-5202, Japan

(Received 29 August 2022; revised 7 June 2023; accepted 1 August 2023; published 15 September 2023)

By means of one-dimensional, electromagnetic, particle-in-cell simulations considering the effects of
energetic-ion injection, we study the harmonic structure of lower hybrid waves (LHWs) driven by energetic ions
under the condition where the electron plasma frequency (ωpe) is smaller than the electron cyclotron frequency
(�e). It is found that after the LHWs are excited with the wave number and frequency of (k1, ω1), many harmonic
LHWs are generated at (mk1, nω1) where m and n are integers, up to far beyond the lower hybrid resonance
frequency, m and n ∼ 10. We show that the harmonic LHWs are generated by nonlinear wave-wave coupling
between the LHWs directly excited by the energetic ions and the energetic-ion cyclotron waves above the lower
hybrid resonance frequency. We also find that the harmonic LHWs can exist even after the energetic ions are
artificially removed because they can be coupled with ion Bernstein waves due to bulk ions. The effect of the
energetic-ion injection and the dependence of ωpe/�e on the development of the harmonic LHWs are investigated
to compare the simulation results with an observation in Earth’s magnetosphere.
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I. INTRODUCTION

Based on cold plasma approximation, the characteristics
of waves propagating perpendicular to the magnetic field are
completely different below and above the lower hybrid reso-
nance frequency (ωLH) defined as

ω2
LH = (�i�e)2

1 + ω2
pi/�

2
i

ω2
pe + �2

e

. (1)

Here, the subscript s denotes particle species (s = i and s =
e), �s is the cyclotron frequency, and ωps is the plasma fre-
quency. Below ωLH, there is a dispersion branch of ω = kvA

in the limit of k → 0, where vA is the Alfvén speed, and ω =
ωLH in the limit of k → ∞. This branch corresponds to mag-
netosonic and lower hybrid waves. The magnetosonic wave
in the small-wave-number region is almost electromagnetic,
whereas the lower hybrid wave in the large-wave-number
region is almost electrostatic. However, above ωLH, there is no
dispersion branch and waves are evanescent. This means that
wave excitation is much more difficult above ωLH than below
it even if plasma kinetic effects are considered [1]. In this pa-
per, we study the excitation and development of such unusual
waves above ωLH caused by nonlinear wave-wave coupling
due to lower hybrid waves (LHWs) driven by energetic ions.

The LHWs are observed in various plasma environments
such as comet [2], fusion [3,4], and magnetospheric plasmas
[5]. In Earth’s magnetosphere, the LHWs play important roles
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in particle acceleration and pitch angle scattering. For ex-
ample, the LHWs contribute to the energization of oxygen
ions in the auroral region [6], cold ion heating in the inner
magnetosphere [7,8], electron acceleration in the radiation
belts [9], and the proton aurora by pitch angle scattering [10].
The mode conversion between the LHWs and whistler waves
caused by density inhomogeneity has also been an important
subject [11–15].

The LHWs can be excited by energetic ions with a ringlike
velocity distribution perpendicular to the background mag-
netic field [16–21]. Suppose that the ring velocity of energetic
ions is smaller than the Alfvén velocity (v⊥ < vA), then elec-
trostatic components are dominant in the LHWs. By contrast,
electromagnetic components are dominant if the ring velocity
is comparable to or larger than the Alfvén speed (v⊥ � vA).
The ringlike velocity distribution is observed in space and
fusion plasmas. In Earth’s inner magnetosphere, such distri-
butions in both cases v⊥ < vA and v⊥ � vA are observed in
the dusk to dayside sector associated with the excited LHWs
[22].

Unlike the LHWs with ω � ωLH, waves above ωLH have
received little attention. However, an experimental study on
fusion plasma [23] has reported that unusual waves above
ωLH have been observed. The frequency of the unusual wave
is in the range of ωLH < ω � 2ωLH and is almost twice the
frequency of the dominant wave below ωLH. In Ref. [23],
particle-in-cell simulations were performed, and it was sug-
gested that the unusual waves were excited by the nonlinear
wave-wave coupling between these waves and ion cyclotron
emissions due to fusion-born ions. In other simulation studies
on energetic-ion driven instabilities [24,25], unusual waves in
the range of ωLH < ω � 2ωLH were reported, although they
were not investigated in detail. Other fusion experiments have
reported unusual waves with ω > ωLH [26–28]. These are
excited by the parametric decay instability of upper hybrid
waves, and their frequencies above ωLH are due to warm
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plasma effects. Such waves with ω > ωLH have also been
reported by particle-in-cell simulations [29] and investigated
by a theoretical study [30].

Recently, unusual waves above ωLH have been observed in
Earth’s magnetosphere [31]. The frequencies of the observed
unusual waves are integer multiples of ωLH, and the maxi-
mum frequency exceeds 2ωLH. Here, we define these unusual
waves as harmonic LHWs characterized by ωn � nωLH where
n is an integer. According to Ref. [31], the harmonic LHWs
propagate almost perpendicular to the background magnetic
field with linear polarization. The harmonic LHWs have larger
amplitudes in the electric fields than the magnetic fields. The
order of the harmonic LHWs is only up to two in the mag-
netic field but is up to four in the electric fields, indicating
that the higher harmonic LHWs with n = 3 and 4 are almost
electrostatic. The harmonic LHWs have been proposed to be
excited by nonlinear wave-wave coupling, but the detailed
excitation mechanism has not been fully understood. Also,
there is a problem that energetic ions, which are believed to
be necessary to excite the observed LHWs, have not been
found. A particle-in-cell simulation [32] has recently found
that ringlike energetic ions can generate the harmonic LHWs,
but the excitation of the harmonic LHWs by nonlinear wave-
wave coupling has not been confirmed.

Although there are some candidates of waves to excite
the harmonic LHWs by nonlinear wave-wave coupling, they
cannot explain the characteristics of the observed harmonic
LHWs. For example, whistler waves, which can be gener-
ated from the LHWs due to nonlinear wave-wave coupling
[19,20], cannot explain the characteristics that the harmonic
LHWs propagate perpendicular to the magnetic field with
dominant electrostatic components. Ion Bernstein waves due
to bulk ions can interact with the LHWs; a pump LHW
decays into a lower-frequency LHW and an ion Bernstein
wave [33]. However, the ion Bernstein waves cannot fully
explain the excitation of the harmonic LHWs because they are
unlikely to be excited in the high-frequency region (ω > ωLH).
Although energetic-ion cyclotron waves can interact with the
harmonic LHWs, the existence of such an interaction has
not been confirmed. As described above, in the previous
studies [23–25], the frequencies of unusual waves driven
by energetic ions were reported in the range of ω � 2ωLH.
The nature of the higher harmonic LHWs is completely
unknown.

In this paper, we use one-dimensional, electromagnetic,
particle-in-cell simulations to study the excitation mechanism
and development of the harmonic LHWs. We show that af-
ter the LHWs are excited directly by energetic ions, many
harmonic LHWs are excited in the broadband wave-number
region and the wide frequency range from 0 to far beyond
2ωLH by nonlinear wave-wave coupling. The higher harmonic
LHWs are more electrostatic than the LHWs. This paper is
organized as follows. In Sec. II, we describe the simulation
methods and parameters. The two parameters, ωpe/�e and
u⊥/vA, are chosen so that the excited LHWs are almost elec-
trostatic. In Sec. III, we show the simulation results. The
development of the harmonic LHWs and which waves are
coupled with the harmonic LHWs are investigated. In Sec. IV,
we discuss how the energetic-ion injection and the parame-
ter ωpe/�e affect the development of the harmonic LHWs.

FIG. 1. Time evolution of energies for bulk ions, electric fields,
magnetic fields, energetic ions, and electrons. The horizontal axis is
normalized by �−1

i . The changes from their initial values normalized
by the initial energy of the bulk ions are plotted. For the energetic
ions and electrons, their net energy changes are plotted. The dashed
gray line in the fourth panel shows the density ratio of the energetic
to bulk ions (%).

We also compare the simulation results with an observa-
tion in Earth’s magnetosphere. In Sec. V, we summarize our
work.

II. SIMULATION METHODS AND PARAMETERS

In this paper, we consider a plasma consisting of bulk ions,
electrons, and energetic ions. We perform one-dimensional,
three-velocity components electromagnetic particle-in-cell
simulations with the PASTEL code [34]. To keep track of
the long-term development of instabilities driven by energetic
ions and wave-wave interactions, we adopt the energetic-ion
injection model where the density of the energetic ions is
zero at �it = 0 and then gradually increases. The energetic-
ion injection plays a crucial role in the development of the
instabilities and the ion acceleration [25,35]. At the final step
of the simulation, �it � 160, the density of the energetic ions
is 1% to the bulk ions, which is illustrated in Fig. 1. The
same number of electrons as energetic ions is also injected
for charge neutrality. The positions and gyro-phases of the
injected particles are given at random.

In the simulations, the initial background magnetic field
and the plasma density are uniform. This is used to define the
plasma parameters. The background magnetic field is along
the z direction, and waves are considered to propagate in
the x direction. We set a periodic boundary condition and a
spatial length as Lx = 4096� where � is the grid separation
equivalent to the Debye length. The time step is 0.25�−1

e . The
total number of computational particles is on the order of 108.

We consider the following parameters. The ion-to-electron
mass ratio is mi/me = 1000, which is chosen to reduce the
computational cost and to analyze waves with frequencies on
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the order of �i. The frequency ratio is ωpe/�e = 0.25, which
is chosen to focus on the LHWs with dominant electrostatic
components. The details are discussed below. For these pa-
rameters, the lower hybrid resonance frequency defined by
Eq. (1) is ωLH � 7.7�i. The electron beta is βe � 2.0 × 10−3.
The bulk ions and electrons have Maxwellian velocity distri-
butions with the temperature ratio Ti/Te = 0.2. The electron
beta and temperature ratio are arbitrarily chosen to be some-
what small such that the instabilities are not suppressed, but
they are not particularly unusual compared to typical parame-
ters of Earth’s magnetosphere.

The energetic ions have a ringlike velocity distribution
given by

fh(v⊥, v‖) = 1

2π3/2u⊥vth
δ(v⊥ − u⊥)exp

(
− v2

‖
v2

th

)
, (2)

where the subscripts ‖ and ⊥ denote parallel and perpendicu-
lar to the background magnetic field, respectively, u⊥ is the
ring speed, and vth is the thermal velocity of the energetic
ions. We set vth equal to the thermal velocity of the bulk ions.
To focus on the electrostatic LHWs, the ring speed is set to
u⊥ = 0.6vA (vA is the Alfvén velocity).

We consider the ratio of the electric field Ex to the magnetic
field Bz. Based on the cold plasma approximation, this ratio is
given by ∣∣∣∣Ex

Bz

∣∣∣∣ = vph

c

∣∣∣∣D

S

∣∣∣∣, (3)

where vph is the phase velocity of a wave and D and S are the
Stix symbols defined as [36]

D =
∑

s

ω2
ps�s

ω
(
ω2 − �2

s

) , (4)

S = 1 −
∑

s

ω2
ps

ω2 − �2
s

. (5)

This equation can be used to evaluate how strong the elec-
trostatic component is relative to the electromagnetic one.
When the ring velocity coincides with the phase velocity of
the LHWs (vph = u⊥), Eq. (3) is expressed as

|Ex

Bz
| = u⊥

vA

(
mi

me

)−1/2(
ωe

�e

)−1

|D

S
|. (6)

If the ratio of the ring velocity to the Alfvén velocity (u⊥/vA)
is fixed, Eq. (6) is a function of the frequency ratio, ωpe/�e,
and its value becomes the maximum for ωpe/�e � 0.25.

When the harmonic LHWs were observed [31], energetic
ions, which are believed to excite the LHWs, were not found.
Therefore, we do not know the plasma parameters (such as
ωpe/�e and u⊥/vA) needed for the simulation because the
parameters at the time when the harmonic LHWs were ob-
served may not match the ones when the harmonic LHWs
were excited. ωpe/�e in Earth’s magnetosphere takes a wide
range of values. The value can be small in a region where
the magnetic field is strong or the plasma density is small.
Although the chosen value of ωpe/�e is lower than the typical
one, this condition (ωpe/�e < 1) associated with the LHWs
can exist in Earth’s magnetosphere, for example, in the cusp
region [37].

FIG. 2. Snapshots of the perpendicular velocity distribution of
energetic ions at four different time points. The horizontal axis is
normalized by the ring speed, u⊥.

III. SIMULATION RESULTS

A. Time development of energy and velocity distribution

Before presenting the results of the harmonic structure of
the LHWs, we show the time development of the velocity dis-
tribution of the energetic ions and the energy. First, we show
the time evolution of total energies for bulk ions, electric and
magnetic fields, energetic ions, and electrons in Fig. 1. The
percentage changes from their initial values normalized by
the initial bulk-ion energy are plotted. For energetic ions and
electrons, the net percentage energy changes are plotted. The
net change is the difference between the total energetic-ion
(electron) energy at a given time t and the total injected energy
of energetic ions (electrons) by the time t . Before �it � 60,
all of the energies remain almost unchanged, which means
that the instabilities driven by the ringlike energetic ions are
very weak in this time interval. However, after �it � 60,
the energetic-ion energy rapidly decreases, whereas the other
energies rapidly increase. This indicates that the ringlike en-
ergetic ions excite the LHWs, which will be shown later. The
excited LHWs are almost electrostatic because the electric
field energy is significantly larger than the magnetic field
energy. The bulk ions are accelerated by the LHWs, while the
electrons are not accelerated as much. At �it � 80, the LHWs
are saturated. After saturation, the energies of the bulk ions
and electric fields maintain their large amplitudes because the
newly injected energetic ions can further excite the LHWs,
even after �it � 80. For the initial value problem, the energies
of the bulk ions and electric fields significantly decrease after
the saturation of the LHWs [25]. Comparison between the
injection model and the initial value problem will be discussed
in Sec. IV.

These results are consistent with the development of
the perpendicular velocity distribution of the energetic ions.
Figure 2 shows snapshots of the perpendicular velocity distri-
bution of the energetic ions at �it � 60, 80, and 120. At �it �
60, which is the time just before the energetic-ion energy
begins to rapidly decrease (see Fig. 1), the perpendicular ve-
locity distribution is slightly deformed from the ideal ringlike
velocity distribution given by Eq. (2). At �it � 80, when the
energetic-ion energy reaches the minimum, the perpendicular
velocity distribution is drastically changed and its gradient be-
comes very small, as shown by the gray line in the left panel.
This means that the ability to excite waves is significantly
reduced due to the nonpositive or small positive gradient of the
perpendicular velocity distribution. However, new energetic
ions (and also electrons) are continuously injected into the
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FIG. 3. Frequency spectra of the electric and magnetic field fluc-
tuations obtained from the data for the period of 0 � �it � 160. The
horizontal axis is normalized by �i. The Fourier components, Ex and
Bz, are normalized by the background magnetic field (CGS units are
used in this paper, unless otherwise noted). The dashed lines indicate
integer multiples of ω1(= 7.0�i ). The base of “log” throughout this
paper is the natural logarithm.

plasma in this simulation. Because of this, the gradient of the
velocity distribution becomes large at �it � 120. Therefore,
the LHWs can be excited by the energetic ions after �it � 80
and maintain a large amplitude even after �it � 80.

Finally, we mention the second peak of the perpendicular
velocity distribution for v⊥/u⊥ � 1.5 at �it � 120 and the
third but weak peak for v⊥/u⊥ � 1.9 at �it � 160. Such
peaks are observed in the final stage of the simulation and
are probably formed by the stochastic acceleration of the
energetic ions by the large amplitude LHW [38,39]. A
detailed discussion is given in Appendix A. The acceleration
of the energetic ions is also confirmed in Fig. 1 where
the energy of the energetic ions gradually increases after
�it � 80. The second peak of the velocity distribution cannot
contribute to the instabilities [40].

B. Harmonic structure of the LHWs

In this subsection, we investigate the harmonic structure of
the LHWs excited by energetic ions. Figure 3 shows the fre-
quency spectra of the electric and magnetic field fluctuations
obtained from the data for the period of 0 � �it � 160. One
can see that there are clear peaks at the multiples of ω1(�
7.0�i ), which is slightly smaller than ωLH(� 7.7�i ), both in
the electric and magnetic field fluctuations. The strongest peak
at ω1 = 7.0�i is the LHWs directly excited by energetic ions
and the other peaks at nω1 are the harmonic LHWs. One can
find peaks up to 8ω1. Also, we confirm that peaks are observed
up to 11ω1 (ω � 10ωLH) in the simulation although their am-
plitudes are very small (see Appendix B). As expected from
Sec. II, the excited LHWs are almost electrostatic because the
amplitudes of the electric field fluctuations are significantly
larger than those of the magnetic field fluctuations. As the
order of the harmonic mode increases, the difference between
the amplitudes of the electric and magnetic fields increases.
This indicates that the harmonic LHWs with the higher fre-
quency are more electrostatic.

FIG. 4. Wave-number-frequency spectrogram of the electric field
fluctuations. The horizontal axis is normalized by �i/vA.

Next, we investigate the harmonic structure of the LHWs
in more detail. Figure 4 shows the wave-number-frequency
spectra of the electric field fluctuations for the four periods,
0 � �it � 40, 40 � �it � 80, 80 � �it � 120, and 120 �
�it � 160. The spectra for both positive and negative wave
numbers of waves are plotted. Since the instabilities are very
weak in the first-quarter period (0 � �it � 40), as shown in
Fig. 1, the amplitudes of the LHWs are very small in this
period. For 40 � �it � 80, one can find the strongest waves
at (kx, ω) � (±16�i/vA, 7.0�i ), and we define these wave
numbers and this frequency as (k±1, ω1). Moreover, one can
find the many strong waves at multiples of (k±1, ω1). This
harmonic structure appears as a lattice in the (kx, ω) plane.

We show that the modes (k±1, ω1) are directly excited by
the energetic ions but the other waves are not directly excited
by them. We can roughly estimate the most unstable wave
number ku of the LHWs as [25]

ku
vA

�i
= ±ξn

vA

u⊥

u⊥
Vgm

. (7)

Here, Vgm is the speed where the gradient of the perpendicular
velocity distribution of the energetic ions is maximum, and ξn

is given by the condition where the Bessel function Jn(ξn)2 is
maximum. When n = 7, Jn(ξn)2 is maximum for ξn � ±8.6
[41]. Setting u⊥/vA = 0.6 and Vgm/u⊥ = 0.98, which is the
value at �it = 60 in Fig. 2, the most unstable wave number for
the frequency ω = 7�i is kuvA/�i ∼ ±14.5. This is in good
agreement with the excited waves (k1, ω1), which indicates
that they are directly excited by the ringlike energetic ions.
However, the excitation of the other waves such as (k2, ω2)
and (k2, ω0) cannot be explained by this theory. Therefore,
these waves are not excited directly by the energetic ions, and
can be excited by nonlinear wave-wave coupling.

Here, we consider the modes with the following wave
number and frequency:

(km, ωn) = (mk1, nω1),

{
m = ±1,±2, · · · ,

n = 0, 1, 2, · · · .
(8)

We refer to the mode (k±1, ω1) as the original one, and to the
others as harmonic modes. For example, for ω2, there are six
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FIG. 5. (Left panel) Time development of Ex (kx, t ). (Right panel) Detailed development of five harmonic modes.

harmonic modes with the wave numbers k±2, k±4, and k±6 in
Fig. 4.

We investigate the development of the original and har-
monic modes for 80 � �it � 160, which is the latter half
of the simulation. One can find that some harmonic modes
disappear and newly appear in this period. This is confirmed
by comparing the right-top panel with the lower ones in Fig. 4.
The amplitudes of the harmonic modes in the region of the
short wavelength and the high frequency, especially (k±6, ω4)
and (k±7, ω5) for 80 � �it � 160, become much smaller than
those for 40 � �it � 80. However, other harmonic modes
with (k±2, ω4), (k±3, ω5), and (k±4, ω6) are newly observed.
One can also find that other LHWs around (k±1, ω1) are
excited in a wider wave number region. This is caused by a
change of the perpendicular velocity distribution of the ener-
getic ions [25] shown in Fig. 2. The broadening of the wave
number spectrum is also seen in the harmonic modes, espe-
cially for ω2. This can be explained by nonlinear wave-wave
coupling for the broadband wave-number region. Finally, ion
Bernstein waves and energetic-ion cyclotron waves with small
amplitudes are seen in Fig. 4, and the relationship between the
two waves and the harmonic modes will be discussed later.

Next, we show the detailed time development of the orig-
inal and harmonic modes in Fig. 5. The left panel shows
the time development of the Fourier components Ex(k, t ) in
the (t, kx ) plane, and the dashed lines correspond to the five
wave numbers, k1, k2, k3, k4, and k5. Note that the k1 mode
includes the original mode (k1, ω1), and the k2 mode includes
the three harmonic modes, (k2, ω0), (k2, ω2), and (k2, ω4),
as shown in Fig. 4. After the initial growth, the first mode
(k1) begins to grow before �it � 20, and then its amplitude
becomes largest at �it � 80, which is in good agreement with
the collapse time of the perpendicular velocity distribution of
the energetic ions in Fig. 2. After �it � 80, the first mode
(k1) maintains the large amplitudes due to the energetic-ion
injection. Other LHWs are excited in the broadband wave-
number region around k1 after �it � 70 in the left panel of
Fig. 5. This is consistent with the broadband excitation of the
LHWs around the original mode (k1, ω1) in Fig. 4. The four
modes with k2, k3, k4, and k5 are excited at almost the same
time, �it � 60.

The time development of the five wave-number modes,
k1, k2, k3, k4, and k5 is clearly shown by the right panel in

Fig. 5. When the amplitude of the first mode (k1) exceeds
log(δEx ) = −3 (normalized by the background magnetic field
in CGS units), the other four are excited at almost the same
time. However, there are somewhat different developments
between the four modes. The k3 mode, which includes the one
on the dispersion branch of the LHWs, (k3, ω1), has slightly
larger growth rates than the k2 mode, which does not include
those on the dispersion branch of the LHWs. Moreover, after
�it � 80, the k3 mode continues to gradually grow until the
end of the simulation, whereas the amplitude of the k2 mode
gradually decreases. This is also consistent with the time
development of k5 (includes a mode on the branch of the
LHWs) and k4 (does not include a mode on the branch of the
LHWs) modes.

Finally, we mention that there are also the harmonic modes
below �i, such as (k±2, ω0) and (k±4, ω0) in Fig. 4. We have
not understood which waves are coupled with these harmonic
modes, as there are no perpendicularly propagating waves
below �i for these wave numbers. The nonlinear wave-wave
coupling for waves below �i will be the subject of future
work.

C. Nonlinear wave-wave coupling with the harmonic LHWs

To investigate the relationship between the original and
harmonic modes, we perform bicoherence analysis which is
widely used to evaluate nonlinear wave-wave coupling. Here,
we define the bicoherence index as

bc(kA, kB) = |〈Ex(kA)Ex(kB)E∗
x (kC )〉|2

〈|Ex(kA)Ex(kB)|2〉〈|E∗
x (kC )|2〉 ,

kC = kA + kB, (9)

where ∗ denotes a complex conjugate, and brackets <> de-
note the time average for 10�−1

i . The bicoherence index is
between 0 and 1. A large value of the bicoherence index in-
dicates strong wave-wave coupling between three waves with
the wave numbers, kA, kB, and kC , while a small value indi-
cates weak wave-wave coupling between the three waves. The
bicoherence index is symmetrical around the line of kA = kB

in the (kA, kB) plane. Figure 6 shows the bicoherence index
calculated from Ex(kx, t ) shown in Fig. 5 for 51 � �it � 61
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FIG. 6. Bicoherence index calculated by Eq. (9) for three periods. The bicoherence index is between 0 and 1, and is symmetrical around
the line of kA = kB.

(left panel), 56 � �it � 67 (middle panel), and 67 � �it �
77 (right panel).

For 51 � �it � 61, one can find two large bicoherence
indices at (kA, kB) � (k1, k1) and (k1, k2). The large value of
the index at (k1, k1) indicates the strong wave-wave coupling
between the modes with k1, k1, and k2. This means that the
k2 mode is excited by coupling between the two k1 modes.
Note that the k2 mode includes the frequency ω � 2ω1. The
large value of the index at (k1, k2) also indicates that the k3

mode is excited by the strong wave-wave coupling between
the k1 and k2 modes. The third harmonic mode also includes
the frequency ω � 3ω1. Both couplings are consistent with
the fact that the two harmonic modes, k2 and k3, begin to grow
during this period in Fig. 5.

For 56 � �it � 67, the previously observed two couplings
at (kA, kB) = (k1, k1) and (k1, k2) become stronger. These two
stronger couplings are in good agreement with the significant
growth of the k2 and k3 modes during this period, as shown in
the right panel of Fig. 5. Moreover, one can find new strong
wave-wave coupling at (kA, kB) = (k2, k3). This coupling in-
dicates that the k5 mode is excited by the wave-wave coupling
between the k2 and k3 modes. However, the wave-wave cou-
pling to excite the k4 mode [for example, (k1, k3) or (k2, k2)]
is weak, indicating that the k4 mode cannot grow so much.
These results are consistent with the time evolution of each
mode during this period shown in Fig. 5.

For 67 � �it � 77, the amplitude of the k1 mode is close
to the maximum, as shown in the right panel in Fig. 5. During
this period one can find the strongest coupling at (kA, kB) �
(k1, k1) and very strong coupling around it in Fig. 6. The
coupling in the broadband wave-number region around k1

can be caused by the broadband excitation of the LHWs
around the original mode (k1, ω1), as shown in the left panel
of Fig. 4. Also, one can find many other couplings in the
broadband wave-number region, such as around (k1, k2) and
(k1, k3). Finally, some couplings at kA ∼ 0 are observed, and
this is probably caused by the decay processes of the original
or harmonic modes. The detailed coupling processes of the
LHWs are discussed in Appendix C.

Thus, we have confirmed that the harmonic modes are
excited by nonlinear wave-wave couplings between the
original mode driven by the energetic ions and other modes.
Note that we have also confirmed the coupling by performing

the bicoherence analysis in frequency, which is described in
Appendix D.

D. Which waves are coupled with the harmonic LHWs?

There are no eigenmodes of waves above ωLH in the cold
fluid model, but some eigenmodes can exist when thermal or
kinetic effects are significant (e.g., see Ref. [42]). To investi-
gate which waves are coupled with the harmonic modes above
ωLH, we show two other simulation results.

First, we show the simulation results without energetic ions
in the left panel of Fig. 7. In this panel, the LHWs excited by
energetic ions and their harmonics are not observed, and the
eigenmodes of the LHWs and the ion Bernstein waves (IBWs)
are observed. However, when energetic ions exist, energetic-
ion cyclotron waves (eICWs) are observed in the right panel
of Fig. 7. The eICWs above ωLH are almost electrostatic (see
Appendix E). We also confirm that the eICWs are observed up
to ω ∼ 100�i, although only up to ω � 40�i is shown in this
figure. Here, the right panel of Fig. 7 is the same as the left-top
panel of Fig. 4 but their color scale is different to clearly
show the IBWs/eICWs with small amplitudes. We discuss
the relationship between the IBWs/eICWs and the harmonic
modes of the LHWs. Comparing the two panels in Fig. 7,
one can clearly see that the excitation regions of the eICWs
and IBWs are different. The IBWs, due to the bulk ions, have
large amplitudes for ω � ωLH in the short-wavelength region.
However, the eICWs, due to the energetic ions, have large
amplitudes for ω � ωLH in the long-wavelength region. The

FIG. 7. Wave-number-frequency spectra of the electric field fluc-
tuations during the period of 0 � �it � 40 for the two cases:
without (left panel) and with (right panel) energetic ions. The other
simulation parameters are the same for the two cases.
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FIG. 8. Frequency spectra of the electric field fluctuations for
80 � �it � 120 (same format as in Fig. 3). Three cases, where
energetic ions are continuously injected after �it = 80 (case A),
removed at �it = 80 (case B), and do not exist from the beginning
(case C), are plotted.

amplitudes of the eICWs decrease as the wave number and the
frequency increase. Comparing the right panel in Fig. 7 with
the right-top one in Fig. 4, one can find that the excitation
region of the harmonic modes, especially with (kl , ωl )
(l = 2, 3, · · · ), overlaps with that of the eICWs. In addition,
the fact that the amplitudes decrease as the wave number and
the frequency increase is consistent between the eICWs and
the harmonic modes. Therefore, these results indicate that the
harmonic modes with ω > ωLH are coupled with the eICWs.

Next, we perform another simulation for the case where the
energetic ions (and the same number of electrons) disappear
in the middle of the simulation period; at �it � 80, all the
injected energetic ions and electrons are artificially removed.
This means that until �it = 80, the simulation results are
exactly the same as those shown in the previous section. We
investigate how the loss of the energetic ions affects the devel-
opment of the harmonic modes after �it � 80. Figure 8 shows
the frequency spectra of the electric field fluctuations for the
three cases, where energetic ions are continuously injected
after �it = 80 (case A), removed at �it = 80 (case B), and
do not exist from the beginning (case C). One can easily
see that the higher harmonic modes for n > 5 in case B are
damped due to the loss of the energetic ions. The amplitudes
of the harmonic modes for n = 4 and 5 in case B are much
smaller than those in case A, but change significantly less for
n = 2 and 3. The strong decay and damping of the harmonic
modes with n � 4 are consistent with the damping of the
eICWs, whose amplitudes other than the harmonic modes for
ω � 24�i are almost the same as those in case C. It indicates
that higher harmonic modes are coupled with the eICWs.

However, the fact that the lower harmonic modes (n =
2, 3) can exist even after the loss of energetic ions indicates
that other waves, apart from the eICWs, are coupled with the
harmonic modes. To study this, we show the wave-number-
frequency spectra of case A in Fig. 9. By comparing Fig. 9
and the left panel of Fig. 7, one can see that the amplitudes of
the IBWs for ω > ωLH in the short-wavelength region become
much larger in case A than those in case C. This is because the

FIG. 9. Wave-number-frequency spectra of the electric field fluc-
tuations for case B (energetic ions are removed at �it � 80) with two
different color scales.

bulk ions driving the IBWs have obtained a large amount of
energy from the LHWs by the time of the loss of energetic ions
(see Fig. 1). Moreover, the IBWs near ω � 2ω1 and 3ω1 in the
broadband wave-number region also have large amplitudes,
and those of the harmonic modes in this region (n = 2, 3)
remain large. This indicates that the IBWs near ω � 2ω1 and
3ω1 can substitute for the eICWs and be coupled with the
lower harmonic modes.

Thus, summarizing the simulation results presented so far,
after the original mode is directly excited by the energetic
ions, the harmonic modes are excited by the nonlinear wave-
wave couplings. The harmonic modes above ωLH can exist
without significant damping because they can be on the branch
of the eICWs or IBWs. However, when the eICWs are damped
due to the disappearance of the energetic ions, the harmonic
modes on the branch of the eICWs are damped whereas those
on the branch of the IBWs can exist.

IV. DISCUSSION

A. Comparison with the initial value problem

In this subsection, we compare the initial value problem
and the injection model to investigate how the energetic-ion
injection affects the development of the harmonic modes. Ini-
tial value problems, where energetic ions are set at the initial
time, are often used to study the excitation process of LHWs.
In this problem, after the collapse of the velocity distribution
of the energetic ions, the free energy to excite the LHWs is
exhausted, and the excited waves are damped.

The density of the energetic ions in the initial value prob-
lem is 0.5% of the bulk ions, which is the same as the
time-averaged density in the injection model. The other pa-
rameters are the same as in the injection model. The upper
panel of Fig. 10 shows the energy development of the har-
monic modes in the injection model and the initial value
problem. The energy of the harmonic modes (HE ) is defined
by the following equation:

HE ≡
∫ 140�i/vA

0
dk

∫ 5ωLH

1.3ωLH

dωE2
x (k, ω). (10)

The four harmonic modes (n = 2, 3, 4, 5) are included in HE .
The Fourier component Ex(kx, ω) is obtained for every 20�−1

i
with the simulation period 0 � �it � 160. The value of HE is
normalized by the maximum value in the initial value prob-
lem.

In the initial value problem, the value of HE for 40 �
�it � 60 is maximum. After that, HE rapidly decreases and
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FIG. 10. (Upper panel) Energy development of the harmonic
modes within the injection model and the initial value problem. The
energy of the harmonic modes (HE ) is defined by Eq. (10). The value
of HE is normalized by the maximum value within the initial value
problem. (Lower panels) Snapshots of the velocity distribution of the
energetic ions in the initial value problem with the same format as
in Fig. 2. The time �it � 47 corresponds to the collapse time of the
energetic-ion velocity distribution.

finally becomes about 1% of the maximum value. The snap-
shots of the velocity distribution in the lower panels of
Fig. 10 show that the ability to excite the original modes is
significantly reduced after the collapse time at �it � 47,
which leads to damping of the original modes.

This strong decay of the harmonic modes is due to the
damping of the original modes because the harmonic ones are
supported by the original ones driven by the energetic ions, as
shown in Sec. III.

However, the energy of the harmonic modes (HE ) remains
very large in the injection model. The value of HE after the
peak time is more than 80% of the maximum HE in the initial
value problem. In the injection model, the original modes also
maintain large amplitudes due to the newly injected energetic
ions, such that the harmonic modes maintain large amplitudes
even after the peak time. Additionally, the maximum value
of HE is about 1.3 times larger than that in the initial value
problem.

Thus, we have confirmed that energetic-ion injection plays
a crucial role in sustaining the large amplitudes of the
harmonic modes.

B. Dependence of frequency ratio ωpe/�e

In this subsection, we investigate the development of the
harmonic modes in the case of the frequency ratio ωpe/�e

being higher. The higher frequency ratio, ωpe/�e, means
higher density or weaker magnetic field conditions. To focus
on the dependence of the frequency ratio, the following pa-
rameters are set to the same values as for the simulation in
Sec. III: electron thermal velocity, the ratio of the ring velocity
to the Alfvén velocity, and the density ratio of energetic ions to
bulk ions.

Figure 11 shows the simulation results for ωpe/�e =
0.5 and 0.75. For these simulation parameters, the lower
hybrid resonance frequencies are ωLH � 14.2�i, 19.0�i, re-
spectively, and the ratio |Ex/Bz| given by Eq. (6) is smaller
than that for ωpe/�e = 0.25. The left panels show the fre-
quency spectra for ωpe/�e = 0.5 and 0.75 in the same format
as in Fig. 3. Comparing the amplitudes of the harmonic modes
with the same order (for example, n = 2) for ωpe/�e = 0.25
(see Fig. 3), they are clearly smaller as ωpe/�e increases.
Furthermore, for ωpe/�e = 0.75, the amplitudes of the har-
monic modes for n � 3 are negligibly small. This is also
confirmed by the wave-number-frequency spectra in the right
panels of Fig. 11. The clear lattice pattern in the (kx, ω) plane
is not observed for ωpe/�e = 0.5 and 0.75. However, for
ωpe/�e = 0.5, the LHWs around ωLH are excited in the broad-
band wave-number region. These waves are directly excited
by the energetic ions, and the broadening of the wave-number
region is due to the change of the velocity distribution of the
energetic ions. Associated with this, the harmonic modes for
ω � 2ωLH are excited in the broadband wave-number region.
Thus, these results indicate that the higher harmonic modes
are unlikely to be excited under the condition with relatively
higher ωpe/�e.

C. Comparison with experimental observations

Based on the simulation results, we now discuss the condi-
tions under which harmonic LHWs in Earth’s magnetosphere
are excited and observed even though energetic ions were not
observed. The plasma parameters used in our simulations are
different from the parameters when the harmonic LHWs were
observed. However, considering that such comparisons have
never been done, this attempt gives insight into the excitation
and development of the harmonic LHWs in Earth’s magneto-
sphere.

First, as illustrated in Fig. 8, we have shown that the
harmonic LHWs with a lower order (up to third order) can
exist even after energetic ions disappear. The existence of the
harmonic LHWs is supported by the coupling with IBWs,
which have large amplitudes because bulk ions are accelerated
by the LHWs. This result helps explain the observation, where
energetic ions, which are believed to excite the LHWs, have
not been found. In other words, the harmonic LHWs might
be observed after the energetic ions exciting the LHWs have
disappeared.

Second, from the observations, the harmonic LHWs are
observed for at least 1.5 s with a background magnetic field
of 20 nT. However, for the initial value problem in Fig. 10, the
energy of the harmonic modes after the peak time decreases to
1/e at �it � 40. Assuming that the background magnetic field
is 20 nT and the mass ratio is mi/me = 1000, this decay time
corresponds to �t � 11.4 s, which is larger than the observed
decay time. The harmonic LHWs can be interpreted as being
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FIG. 11. (Left panel) Frequency spectra of the electric field fluctuations for ωpe/�e = 0.5 and 0.75 obtained by integrating Ex (kx, ω) over
the wave-number range 0 � kxvA/�i � 140. (Right panels) Wave-number-frequency spectra of the electric field fluctuations for ωpe/�e = 0.5
and 0.75 (same format as in Fig. 4).

observed by the spacecraft after the velocity distribution of
the energetic ions has collapsed but before these waves decay.
The energetic ions were not injected for a long time but were
likely injected instantaneously. This interpretation is consis-
tent with the fact that the energetic ions were not found in the
observation.

Third, as illustrated in Fig. 11, we have shown that the har-
monic LHWs are likely to be excited under conditions where
the LHWs directly excited by energetic ions have dominantly
electrostatic components. The frequency ratio (ωpe/�e) has
to be lower to excite more electrostatic LHWs, as predicted
by Eq. (6). The same is true for the velocity ratio (u⊥/vA).
This result indicates that the observed harmonic LHWs might
be excited by energetic ions with a smaller ring velocity
than the Alfvén velocity under low ωpe/�e conditions (equiv-
alent to relatively strong magnetic field or small density
conditions).

V. SUMMARY

In this paper, we performed one-dimensional, electro-
magnetic, particle-in-cell simulations to study the harmonic
structure of the LHWs driven by energetic ions at low ωpe/�e.
To investigate the long-term development of the harmonic
LHWs, the effects of energetic ion injection are considered
in the simulations. We have shown that the harmonic LHWs
are generated at many wave numbers and frequencies by non-
linear wave-wave coupling. The frequency of the harmonic
LHWs extends up to ten times ωLH.

We have shown that the energetic ions excite the LHWs
first, and then the harmonic LHWs begin to be excited at
almost the same time. The harmonic LHWs have integer mul-
tiples of the frequency and the wave number of the original
LHWs directly excited by the energetic ions. Bicoherence
analysis indicates that the harmonic LHWs are excited by
nonlinear wave-wave coupling. To investigate which waves
are coupled with the harmonic LHWs, we also perform other
simulations for the case where energetic ions are artificially

removed in the middle of the simulation period. These addi-
tional simulation results have shown that the harmonic LHWs
are coupled with the ion cyclotron waves due to energetic ions
and that ion Bernstein waves can also be coupled with the
harmonic LHWs if the energetic ions disappear. It could also
be mentioned that the magnetospheric observations may be
consistent with the energetic ion generation mechanism of the
LHWs based on the simulations.

The effects of energetic ion injection and the dependence
of the frequency ratio, ωpe/�e, on the development of the
harmonic LHWs are investigated. We have shown that ener-
getic ion injection plays a crucial role in sustaining the large
amplitudes of the harmonic LHWs. At higher frequency ratios
(equivalent to relatively weak magnetic field or large density
conditions), the harmonic LHWs are unlikely to be excited,
especially in the high-frequency region.

In this paper, we performed one-dimensional particle-in-
cell simulations where the waves propagating perpendicular
to the magnetic field are considered. It is unclear how the har-
monic LHWs interact with other waves propagating in various
directions. Therefore, in the near future, we will perform two-
dimensional particle-in-cell simulations, including effects of
such waves, to investigate the excitation and development of
the harmonic LHWs.
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APPENDIX A: STOCHASTIC ACCELERATION
BY THE LHWS

Many studies showed that ion motion becomes stochastic
in a large amplitude electrostatic wave propagating perpen-
dicular to the magnetic field (e.g., Refs. [38,39]). Particularly,
Ref. [38] predicts that peaks of the ion velocity distribution
can form by stochastic acceleration due to a large amplitude
LHW. We find that the second peak of the energetic-ion ve-
locity distribution shown in Fig. 2 can be explained by the
stochastic acceleration driven by the dominant large ampli-
tude LHW. The peak velocity determined by the separatrix
velocity agrees well with the theory in Ref. [38].

Here, for simplicity, we assume that only the dominant
LHW contributes to the stochastic acceleration. The separa-
trix, which determines the trapped region of ions, can be given
by the zero points of the Bessel function, Jn(kxv⊥/�i ) = 0.
When n = 7 (ωLH � 7.0�i), the zero points of the Bessel
function, J7(kxv⊥/�i ), are

kxv⊥/�i = 0, 11.08, 14.82, · · · . (A1)

Using the parameter (u⊥/vA = 0.6) and the dominant wave
number of the LHW (kxvA/�i = 16), the separatrix velocity
of the energetic ions (v⊥/u⊥) can be obtained as

v⊥
u⊥

� 0, 1.15, 1.54, 1.90, · · · . (A2)

This means that there are trapped regions for 0 � v⊥/u⊥ �
1.15, 1.15 � v⊥/u⊥ � 1.54, and 1.54 � v⊥/u⊥ � 1.90,...,
and ions in a trapped region cannot move to another re-
gion. However, if the wave amplitude is large, then ions
are stochastically accelerated and they can move to another
region. These separatrix velocities agree well with the peak
velocity of the energetic-ion distribution in Fig. 2. The ve-
locity distribution of energetic ions at �it � 80 significantly
decreases for v⊥/u⊥ � 1.15, indicating that fewer energetic
ions can move to the adjacent region, 1.15 � v⊥/u⊥ � 1.54.
At �it � 120, although many energetic ions are in the region,
1.15 � v⊥/u⊥ � 1.54, very few energetic ions can cross the
separatrix velocity, v⊥/u⊥ � 1.54, and they remain around
there. As a result, the second peak can form. Finally, Eq. (A2)
also predicts the third peak at v⊥/u⊥ � 1.9. The weak third
peak can be seen at v⊥/u⊥ � 1.9 at the end of the simulation
�it � 160 in Fig. 2.

APPENDIX B: HIGH-FREQUENCY HARMONIC LHWS

The lattice pattern of the harmonic structure of the LHWs
shown in Fig. 4 is clearly seen in Fig. 12. One can see that
many harmonic modes are excited in the broadband wave-
number and frequency regions. The maximum orders of the
harmonic modes exceed m = 10 and n = 10, respectively.
Particularly, the maximum frequency (ω � 11ω1 � 10ωLH)
observed in this simulation is much higher than the frequency
of unusual waves above ωLH, reported so far in the simulations
and observations [23–25,31].

FIG. 12. Wave-number-frequency spectrum of the electric field
fluctuations (similar to the right-top panel of Fig. 4, but with a
different color scale).

APPENDIX C: COUPLING PROCESS OF
THE HARMONIC LHWS

In general, the wave-wave coupling processes can be
divided into two types: coalescence and decay. In the co-
alescence process, one wave merges with another to excite
a third, expressed as (kA, ωA) + (kB, ωB) = (kC, ωC ) for
ωA, ωB, ωC > 0. Figure 13 illustrates the coalescence and de-
cay processes in the simulation shown in the main text. For
example, the original mode with (k1, ω1) merges with itself
to excite the harmonic mode (k2, ω2), and merges with the
harmonic mode (k3, ω3) to excite the harmonic mode (k4, ω4).
By considering the original and harmonic LHWs propagat-
ing in the opposite direction, the higher harmonic modes
such as (k2, ω4), observed in the latter half of the simulation
(see Fig. 4), can be explained by merging the original mode
(−k1, ω1) with the harmonic mode (k3, ω3). Thus, the coa-
lescence process results in wave-wave coupling such that the
frequency of the excited waves increases.

However, in the decay process, one wave decays
into two, expressed as (kA, ωA) = (kB, ωB) + (kC, ωC ) for
ωA, ωB, ωC > 0. For example, the original mode (k1, ω1) de-
cays into the original mode (−k1, ω1) and the harmonic mode
(k2, ω0), and the harmonic mode (k3, ω1) decays into the
original mode (k1, ω1) and the harmonic mode (k4, ω0). Thus,

FIG. 13. Illustration of coupling processes leading to the
harmonic structure of the LHWs.
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FIG. 14. Bicoherence index in frequency calculated by Eq. (D1)
for the two cases where energetic ions are continuously injected (left
panel) as shown in Fig. 4 and removed (right panel) as shown in
Fig. 9. The frequencies ωA, ωB, and ωC are normalized by �i.

the decay process results in wave-wave coupling such that the
frequency of the excited waves decreases.

In addition to the processes stated above, there are many
other coalescence and decay ones, and the harmonic modes
can be excited by them.

APPENDIX D: BICOHERENCE ANALYSIS
IN FREQUENCY

In this Appendix, we show nonlinear wave-wave coupling
between the original and harmonic modes by performing the
bicoherence analysis in frequency. The bicoherence index in
frequency is defined as

bc(ωA, ωB) = |〈Ex,k1 (ωA)Ex,k2 (ωB)E∗
x,k3

(ωC )〉|2
〈|Ex,k1 (ωA)Ex,k2 (ωB)|2〉〈|E∗

x,k3
(ωC )|2〉 ,

ωC = ωA + ωB. (D1)

Here, to calculate the bicoherence index in frequency, we
divide the simulation period into eight periods of �i�t � 20.
We then obtain the frequency spectra, Ex,k1 (ω), Ex,k2 (ω), and
Ex,k3 (ω), with the wave numbers, k1vA/�i � 16, k2 = 2k1,
and k3 = 3k1, in the eight periods, respectively. By taking the
time average of the eight periods, we calculate the bicoherence
index in frequency. From Fig. 4, we see that the fre-
quency spectrum Ex,k1 (ω) includes the original mode (k1, ω1)
and the harmonic mode (k1, ω3); Ex,k2 (ω) includes the har-
monic modes (k2, ω0), (k2, ω2), (k2, ω4); Ex,k3 (ω) includes the
harmonic modes (k3, ω1), (k3, ω3), and (k3, ω5).

Figure 14 shows the bicoherence index for the two cases
where energetic ions are continuously injected (left panel) as
shown in Fig. 4 and removed (right panel) as shown in Fig. 9.
Different from bc(kA, kB), the bicoherence index, bc(ωA, ωB),
is not symmetrical around the line ωA = ωB because three
different electric fields are used to calculate bc(ωA, ωB).

In the left panel, one can see the large values of bc(ωA, ωB)
for ωA � 7.0 = ω1, which are marked by magenta solid cir-
cles. This means strong wave-wave couplings at the four
points: (ωA, ωB, ωC ) = (ω1, ω0 ∼ 0, ω1 + ω0), (ω1, ω1, ω2),
(ω1, ω2, ω3), and (ω1, ω4, ω5). Taking into account the wave
numbers of Ex,k1 (ωA), Ex,k2 (ωB), and Ex,k3 (ωC ), the large in-
dex, for example, at (ωA, ωB) = (ω1, ω2) indicates that the
original mode (k1, ω1) of Ex,k1 is strongly coupled with the
harmonic mode (k2, ω2) of Ex,k2 to excite the harmonic mode

FIG. 15. Wave-number-frequency spectra of the magnetic field
fluctuation amplitudes (left panel) and the ratio of the electric to
magnetic field fluctuations (right panel). In the right panel, the white
color indicates that no waves except those on the branch of the LHWs
exist.

(k3, ω3) of Ex,k3 . The other harmonic modes of Ex,k3 (ωC )
can be similarly excited by coupling between Ex,k1 (ωA) and
Ex,k2 (ωB). Thus, we have also confirmed that nonlinear wave-
wave couplings excite the harmonic LHWs by performing the
bicoherence analysis in frequency.

Moderate coupling can be seen for ωB � ω1 on the line
ωA + ωB − n�i � 0. This periodic coupling indicates nonlin-
ear wave-wave coupling between the eICWs/IBWs of Ex,k1

and the IBWs of Ex,k2 . However, for ωB � ω1, other mod-
erate couplings can be seen on the lines ωA + ωB � 20�i

and ωA + ωB � 35�i. They might be between the eICWs and
IBWs, but we do not give further discussion due to the reasons
described below.

In the right panel, paying attention to the region for ωB �
ω1 one can see that the coupling is clearly suppressed. The
small bc(ωA, ωB) in the region of ωB � ω1 means that the
eICWs no longer take part in the coupling, which is consistent
with the result in Fig. 9 where the eICWs are damped due to
loss of the energetic ions. However, strong coupling can be
seen for ωA = ω1 and at (ωA, ωB) = (ω3, ω2). Considering the
fact that the higher harmonic modes decrease in amplitudes
as shown in Fig. 8, these strong couplings can be interpreted
as the decay process of the higher harmonic modes. There is
some periodic coupling above the line ωA + ωB � 20�i. This
might be the coupling between the IBWs, but we do not give
further discussion.

The bicoherence analysis in frequency can give further in-
sights into nonlinear wave-wave couplings, but the following
problems should be noted when interpreting the results. The
bicoherence analysis in wave number can be easily calculated
with a high resolution in time average when using the wave-
number spectra E (k, t ), but one in frequency cannot be easily
calculated when using the frequency spectra E (ω, t ) (It takes
more computational cost to perform an ensemble average of
the frequency spectra instead of a time average). Since the
bicoherence index in frequency is calculated based on the
frequency spectra Ex(ω) in the eight periods, the time average
can be somewhat rough. Therefore, there may be some un-
physical noise included in the bicoherence index in frequency.
Second, the bicoherence index only indicates the strength of
nonlinear wave-wave coupling between three waves. In other
words, a larger index does not necessarily mean that the am-
plitude of the waves actually excited is larger.

Although the bicoherence analysis in frequency gives a
lot of information about nonlinear wave-wave coupling, the
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identification can be difficult and requires a high-cost analysis,
which is beyond the scope of our study.

APPENDIX E: CHARACTERISTICS OF EICWS

Figure 15 shows the wave-number-frequency spectra of the
magnetic field fluctuations (left panel) and the ratio of the

electric to magnetic field fluctuations (right panel) in the same
format as Fig. 9. One can see that the amplitudes of the eICWs
and the value of log(δEx/δBz ) decrease as the wave number
and the frequency increase. The latter means that the eICWs
are almost electrostatic in the region of high frequency and
short wavelength.
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