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Electronic density response of warm dense hydrogen on the nanoscale
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The properties of hydrogen at warm dense matter (WDM) conditions are of high importance for the under-
standing of astrophysical objects and technological applications such as inertial confinement fusion. In this work,
we present extensive ab initio path integral Monte Carlo results for the electronic properties in the Coulomb
potential of a fixed ionic configuration. This gives us unique insights into the complex interplay between the
electronic localization around the protons with their density response to an external harmonic perturbation. We
find qualitative agreement between our simulation data and a heuristic model based on the assumption of a local
uniform electron gas model, but important trends are not captured by this simplification. In addition to being
interesting in their own right, we are convinced that our results will be of high value for future projects, such as
the rigorous benchmarking of approximate theories for the simulation of WDM, most notably density functional
theory.

DOI: 10.1103/PhysRevE.108.035204

I. INTRODUCTION

Hydrogen constitutes the most abundant element in our
universe. Despite its apparent simplicity, it exhibits a plethora
of complex and intriguing phenomena, including the metal-
lization transition at high pressure [1–6] that might give rise
to a potential exotic supersolid state [7]. Of particular interest
are the properties of hydrogen at extreme densities and tem-
peratures. These warm dense matter (WDM) conditions are
typically defined by two characteristic parameters, that are of
the order of one [8,9]: (i) the Wigner-Seitz radius rs = a/aB

(where aB is the Bohr radius), and (ii) the degeneracy tem-
perature � = kBT/EF (with EF being the usual Fermi energy
[10]). In fact, warm dense hydrogen is ubiquitous throughout
nature, and occurs in a number of astrophysical objects such as
the interior of giant planets [11,12] and brown dwarfs [13,14].
Moreover, the fuel capsule in inertial confinement fusion
(ICF) experiments [15] has to traverse the WDM regime [16]
on its pathway towards ignition in a controlled way, which
makes the accurate understanding of warm dense hydrogen
an important step towards the technological utilization of ICF
as a source of green energy [17].

Unfortunately, the theoretical understanding of WDM con-
stitutes a difficult challenge due to the highly nontrivial
interplay of various physical effects, including Coulomb cou-
pling between the electrons and ions, quantum degeneracy
effects such as diffraction and Pauli blocking, as well as strong
thermal excitations out of the ground state [8,18]. Indeed,
the condition rs ∼ � ∼ 1 that defines the WDM regime of-
ten rules out potential expansions around the ground-state
limit, or weak-coupling expansions around the noninteracting
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case such as many-body Green functions [19]. This generally
makes computational quantum many-body simulation meth-
ods the most promising option, with the combination of a
classical molecular dynamics (MD) propagation of the ions
with the electron-ion forces obtained from density functional
theory (DFT) calculations being arguably the work horse of
WDM theory. At ambient conditions, it is known empirically
that DFT offers an attractive balance between a manage-
able computation cost and an often reasonable accuracy for
different properties. Extending DFT simulations to extreme
conditions is thus associated with two main challenges. (1)
It is well known that the computation cost of the standard
Kohn-Sham DFT method [20] rapidly increases with the tem-
perature, which constitutes a bottleneck over substantial parts
of the WDM regime. To address this obstacle, a number of
computationally less expensive methods have been suggested
in the literature [21–26]. (2) The accuracy of any DFT simula-
tion decisively depends on the employed exchange-correlation
functional; it cannot be obtained within DFT itself and has to
be supplied as an external input. While the performance of
different types of functionals is reasonably well understood
at ambient conditions [27], the development of novel func-
tionals that are explicitly designed for applications at WDM
conditions is substantially less advanced. At the same time,
it has also become clear that the application of ground-state
functionals becomes questionable for � ∼ 1 [28–31].

This unsatisfactory situation has started to change only re-
cently with the advent of the first highly accurate parametriza-
tions of the exchange-correlation free energy of a uniform
electron gas (UEG) [32–35] based on extensive ab initio
path integral Monte Carlo (PIMC) simulations [36–42]. In
particular, these parametrizations allow for thermal DFT cal-
culations [43] on the level of the local density approximation.
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Subsequently, Karasiev and coworkers have presented im-
proved functionals [44,45] on higher rungs of Jacob’s ladder
[46]. These efforts have been complemented by Moldabekov
et al., who have benchmarked different functionals for the
weakly nonuniform and the strongly inhomogeneous elec-
tron gas [47–50]. Yet, a rigorous benchmark against exact
reference data has hitherto been missing. We note that this
is a general feature of WDM simulations and also applies,
e.g., to PIMC simulations based on the de facto uncontrolled
fixed-node approximation [51,52].

Very recently, Böhme et al. [53,54] have presented the first
unbiased PIMC simulation results for the electronic density
response of hydrogen in the WDM regime. While being com-
putationally very costly due to the notorious fermion sign
problem [55,56], these calculations did not use any uncon-
trolled approximations such as the usual restrictions on the
nodal surface of the fermionic density matrix. This has al-
lowed them to study different linear-response properties of
hydrogen such as the static exchange-correlation kernel, a
key property for a multitude of applications [57,58] such
as time-dependent DFT calculations [59,60]. This is par-
ticularly important for the modeling and interpretation of
x-ray Thomson scattering (XRTS) experiments [61,62], which
have emerged as a widely used method of diagnostics for
WDM [63–68].

In this work, we substantially extend these efforts by pre-
senting extensive PIMC simulation data for the electronic
density in warm dense hydrogen on the nanoscale. This allows
us to study the interplay of the electrons with the protons, and
to assess the localization for different parameters. Moreover,
we give direct insights into the impact of the protons onto the
reaction of the electrons to an external harmonic perturbation,
i.e., into the static electronic density response of warm dense
hydrogen. In addition to being interesting in their own right,
our results, having been obtained within the fixed external
potential of an ion snapshot, will be of high value for the
rigorous benchmarking of thermal DFT simulations of WDM
in future works.

The paper is organized as follows. In Sec. II, we introduce
the relevant theoretical background, including a discussion of
the relevant system parameters (Sec. II A) and a brief sum-
mary of the PIMC simulation setup (Sec. II B). Section III is
devoted to the presentation of our simulation results, starting
with an in-depth analysis of the convergence with the number
of imaginary-time propagators in Sec. III A. We study the
electronic localization and static density response to an exter-
nal harmonic perturbation in the low-density regime (rs = 4)
in Sec. III B, and consider the cases of metallic density (rs =
2) and high density (rs = 1) in the subsequent Sec. III C. The
paper is concluded by a summary and outlook in Sec. IV.

II. THEORY

We assume Hartree atomic units throughout this work.

A. Hamiltonian and system parameters

Following the notation from Ref. [54], we express the
Hamiltonian of N electrons (in periodic boundary conditions
and a cubic simulation cell of volume � = L3) within the

fixed external potential of N protons as

Ĥ = −1

2

N∑
l=1

∇2
l

︸ ︷︷ ︸
K̂

+Ŵ + V̂I ({I0, . . . , IN−1})︸ ︷︷ ︸
V̂

, (1)

where Ŵ denotes the electron-electron interaction that we
evaluate using the standard Ewald summation technique [69],
and V̂I is the single-particle potential due the ions at posi-
tions I0, . . . , IN−1. We note that the Hamiltonian (1) can be
decomposed into a kinetic (K̂) and a potential (V̂ ) part, which
becomes important for the discussion of the PIMC method in
Sec. II B below.

To study the electronic density response, we follow
Refs. [70–76] and extend Eq. (1) by an external static cos-
inusoidal perturbation of wave vector q and perturbation
amplitude A,

Ĥq,A = Ĥ + 2A
N∑

l=1

cos(q · r̂l ). (2)

In the limit of small perturbation amplitudes A, the density
response is described accurately by linear-response theory,
and the density profile is given by [76]

n(r) = n0 + 2Aχ (q) cos(q · r) (3)

for uniform systems, with χ (q) being the linear density-
response function. Extensions of density response theory to
the nonlinear regime have been discussed in detail, e.g., in
Refs. [75–82], but are not covered in this work.

As a side note, we mention that the PIMC method is per-
fectly capable to treat both electrons and ions on the same
footing, i.e., without the Born-Oppenheimer approximation
inherent to Eq. (1), and without the need for an additional
averaging over individual snapshots [83] to obtain properly
averaged thermodynamic properties. This, however, is not the
purpose of this work, where we intend to isolate the effects of
the local ionic structure onto the electronic density, instead
of averaging it out. Moreover, solving the electronic prob-
lem defined by Eqs. (1) and/or (2) makes our PIMC results
directly comparable to DFT calculations, which is important
for the benchmarking of the latter. Full PIMC simulations of
both electrons and ions will, therefore, be pursued in dedicated
future works.

As mentioned in the Introduction, it is common practice
to characterize WDM in terms of the Wigner-Seitz radius
rs = (3/4πn0)1/3, with n0 = N/� being the mean number
density. From a physical perspective, rs plays the role of a
quantum coupling parameter, with rs → 0 corresponding to
the limit of an ideal Fermi gas and rs � 1 indicating a strongly
coupled system. The degeneracy temperature � serves as
an inverse degeneracy parameter, and � � 1 (� � 1) cor-
responds to the fully degenerate (semiclassical [84]) limit.
A third parameter is given by the spin-polarization degree
ξ = (N↑ − N↓)/N ; we limit ourselves to the unpolarized case
of ξ = 0 (i.e., N↑ = N↓) throughout this work.

B. Path integral Monte Carlo

We consider a system governed by the general Hamiltonian
(2) in the canonical ensemble, where the number of electrons
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N , volume �, and inverse temperature β = 1/kBT are fixed.
The canonical partition function is then readily expressed in
coordinate representation as

Zβ,N,� = 1

N↑!N↓!

∑
σ↑∈SN↑

∑
σ↓∈SN↓

sgn(σ ↑, σ ↓)

×
∫

dR 〈R| e−βĤ |π̂σ↑ π̂σ↓R〉 , (4)

where the summation over all possible permutations σ i from
the respective permutation group SNi (with i ∈ {↑,↓}) taken
together with the sign function sgn(σ ↑, σ ↓) and the per-
mutation operators π̂σ↑ π̂σ↓ ensures the correct fermionic
antisymmetry with respect to the exchange of particle coordi-
nates. While Eq. (4) is formally exact, it cannot be evaluated
in practice as the kinetic and potential contributions to the
total Hamiltonian do not commute. The basic idea behind the
PIMC method [85–87] is to utilize a well-known semigroup
property of the density operator ρ̂ = e−βĤ , which makes
it possible to express Eq. (4) as a combination of P inte-
grals in coordinate space at P times the original temperature.
For sufficiently large P, one can then introduce a suitable
high-temperature factorization of ρ̂, and the associated fac-
torization error can be made arbitrarily small by increasing
P. For systems where V̂ is bounded from below, the conver-
gence of this approach is ensured by the well-known Trotter
formula [88,89]. This, however, is not the case for the present
hydrogen problem, where the Coulomb attraction between an
electron and a proton diverges for small distances r. This
problem can be circumvented by incorporating the exact so-
lution to the quantum two-body problem, which is typically
known as pair approximation in the literature [54,85,90]. It
is a common practice to precompute the required two-body
density matrix, and utilize a polynomial parametrization for
the PIMC simulation itself to save compute time. Here, we
follow the approach introduced in Refs. [54,90]. In addition,
we have also implemented the diagonal Kelbg potential [91],
which is based on a perturbation expansion around the exact
pair density matrix. Both Kelbg and the full pair approxima-
tion become exact in the limit of large P (see Sec. III A for
numerical results), although the latter converges substantially
faster in practice.

To evaluate the resulting 3PN-dimensional integral, one
typically employs some implementation of the celebrated
Metropolis algorithm [92]. In this work, we use the extended
ensemble approach introduced in Ref. [93], which is a canon-
ical adaption of the worm algorithm by Boninsegni et al.
[94,95].

An additional obstacle regarding the PIMC simulation of
quantum degenerate fermions (such as the electrons in warm
dense hydrogen) is given by the sign function in Eq. (4);
it leads to contributions with alternating signs, which might
cancel to a large degree. This is the root cause of the notorious
fermion sign problem [55,56], which leads to an exponential
increase in the required compute time with increasing the
system size N or decreasing the temperature T . While the
alleviation of this exponential bottleneck constitutes a highly
active topic of research [38,96–106], no general solution ap-
pears to be realistic at the present time. In this work, we carry

out direct PIMC simulations that are subject to the full sign
problem and, therefore, exact within the given Monte Carlo
error bars.

An alternative strategy has been introduced by Ceperley
[51] in the form of the fixed-node approximation. On the one
hand, this approach allows one to formally avoid the sign
problem, and, therefore, to perform simulations over substan-
tial parts of the WDM regime. This has allowed Militzer and
coworkers to present such restricted PIMC results for a variety
of different elements at WDM conditions [107–109], which
have subsequently been compiled into an extensive equation-
of-state database [110]. On the other hand, the fixed-node
approximation is uncontrolled in practice, and its accuracy
generally remains unclear. Indeed, Schoof et al. [96] have
found that the exchange-correlation energy can exhibit errors
exceeding 10% at high densities, which has subsequently
been corroborated by an independent group [105]. In con-
trast, Dornheim et al. [93,111] have found good agreement
for the momentum distribution at moderate temperatures. The
quasiexact PIMC results for warm dense hydrogen that are
presented here thus open up the intriguing possibility to rigor-
ously assess the accuracy of the fixed-node approximation (as
well as any other simulation method, including DFT) for a real
system, i.e., beyond the UEG, on the electronic nanoscale.

III. RESULTS

A. Convergence

Let us begin our investigation with an in-depth analysis
of the convergence of the PIMC results with the number of
high-temperature factors P. To this end, we carry out sim-
ulations with N = 4 at rs = 4 and � = 1. This corresponds
to dilute, strongly coupled hydrogen which can be realized
in experiments with hydrogen jets [112]. The expected high

FIG. 1. Snapshot of a PIMC simulation with N = 4, rs = 4,
� = 1 (i.e., T = 3.13 eV), and P = 500. The green orbs depict the
protons, and the red-blue paths visualize a given electronic config-
uration. The yellow surface in the y-z plane is investigated in more
detail in Fig. 4.
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FIG. 2. Density strip along the z direction for rs = 4 and � = 1,
computed from PIMC simulations using the pair approximation for
different numbers of high-temperature factors P.

degree of localization of the electrons around the protons
[54] makes this density particularly challenging with respect
to the convergence with P. In Fig. 1, we show a snapshot
from a corresponding PIMC simulation with P = 500 high-
temperature factors, with the green orbs representing the
protons and the red-blue paths depicting a particular electron
configuration.

As a first example, we investigate the density along the z
direction (i.e., averaged over x and y) in Fig. 2. Specifically,
the different symbols show results from individual PIMC sim-
ulations using the pair approximation for different numbers
of high-temperature factors P. First, we find a high degree
of localization as the electronic density nearly vanishes in-
between the protons. Second, hardly any factorization error is
visible on the depicted scale.

To get more quantitative insights into the convergence be-
havior, we analyze the difference towards a reference data

set that has been computed with the pair approximation for
P = 500 in Fig. 3. More specifically, Fig. 3(a) shows the
relative deviation for different P, and we observe a monotonic
convergence with increasing P. Remarkably, we find a small
factorization error that is bounded by ±2% of the average
density n0 even for as few as P = 20 high temperature factors;
the results for P = 1000 and 500 cannot be distinguished
within the given level of statistical uncertainty. In other
words, PIMC simulations with P = 500 pair-approximation
propagators, which are used in Secs. III B and III C below,
give us an accuracy of ∼0.1% in the density.

In Fig. 3(b), we repeat this analysis, but consider the
difference to the P = 500 pair-approximation reference data
set to PIMC calculations using the diagonal Kelbg potential.
While we again find a monotonously decreasing factorization
error in these simulations, the factorization error of the Kelbg
approximation is an order of magnitude larger compared to
Fig. 3(a). This clearly demonstrates the superior performance
of the full pair approximation and is consistent to previous
investigations in Refs. [54,91].

While the observed high fidelity of the pair approximation
is promising, potential factorization errors might still have
been masked by the averaging over the x and y directions for
the density strips shown in Figs. 2 and 3. Indeed, one would
expect any factorization errors to be particularly manifest in
the vicinity of the protons, where the gradient in the electron
density is large. At the same time, we stress that accurate
PIMC data are also particularly important precisely in this
region to benchmark other methods, most notably density
functional theory. To rigorously assess the convergence of our
PIMC simulations with P, we consider the density in the z-y
plane for a value of x that is identical to the location of a
proton (see the yellow surface in Fig. 1).

Let us first consider the PIMC results for the density itself,
which is shown in Fig. 4. This nicely illustrates the high
degree of localization around the in-plane proton (bottom left
corner), which had been mostly averaged out for the density
strip shown in Fig. 2. Indeed, the density in the direct vicinity
of the proton is increased by a factor of almost 30 compared
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FIG. 3. Relative difference in the density along the z direction towards P = 500 pair-approximation reference data. (a) Pair approximation;
(b) diagonal Kelbg potential.
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FIG. 4. Top: electronic density in the y-z plane for P = 1000, see
the yellow surface in Fig. 1. The dashed green lines depict scan lines
that are investigated in Fig. 6.

to the average density n0. Consequently, the density nearly
vanishes between the protons.

To investigate the spatially resolved manifestation of the
factorization error in our PIMC simulations, we show the
relative difference towards reference data with P = 1000 for
P = 50 (top) and 200 (bottom) (Fig. 5). From the top panel,
we see that the relative propagator error has a similar mag-
nitude around the protons and in-between, although with a
different sign. Specifically, the localization around the pro-
tons is overestimated by about 3% for P = 50. Increasing
the number of high-temperature factors to P = 200 leads to
a maximum error of 1% around the proton in the bottom left
corner. Hardly any propagator error can be resolved within the
given error bars for P = 500, which further substantiates our
previous estimate regarding the capability of PIMC to provide
the electronic density with an accuracy of ∼0.1% over the
entire system.

This becomes even more clear in Fig. 6, where we show
the density along two scan lines (see the dashed green lines
in Fig. 4) for different values of P. Figure 6(a) includes the
direct vicinity of a proton, where the factorization error is
most pronounced in absolute terms (although not in relative
terms, cf. Fig. 5). This region is magnified in the inset, thereby
giving us additional insights into the convergence with P. No
difference between P = 500 (red circles) and P = 1000 (gray
triangles) can be resolved within the Monte Carlo error bars.
In Fig. 6(b), we show the same analysis for the second scan
line over a region without a proton and, therefore, with low
electronic density. In this region, the density gradients are
small, and hardly any factorization error can be resolved even
for P = 50.

Let us conclude this convergence study by considering the
static electronic density response to an external cosinusoidal
perturbation. In Fig. 7, we show the relative change in the
density along scan line 1 (cf. Fig. 4) between the unperturbed
system, and a harmonically perturbed snapshot calculation
with A = 0.1 and q = 2π/L(0, 0, 1)T . Let us postpone the
physical interpretation, and exclusively focus on the conver-
gence with P. If anything, we find that factorization errors
seem to cancel to a large degree between the perturbed and
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FIG. 5. Relative difference (in %) towards PIMC reference data
with P = 1000 (cf. Fig. 4) for (a) P = 50 and (b) P = 200 pair-
approximation factors.

unperturbed results for the density, and hardly any differences
can be resolved even for as few as P = 50.

B. Density response of low-density hydrogen

In the following, we will investigate in more detail the
physical impact of the ions on the electronic density response
of hydrogen on the nanoscale. We again start by considering
the comparably dilute regime with rs = 4, where the impact
of the ions is most pronounced. From a physical perspective,
these conditions might give rise to interesting phenomena
such as a recently predicted roton-type feature in the dynamic
structure factor [113] (see also Refs. [114–118] for studies
of this effect in the UEG). In addition, this regime consti-
tutes a challenging benchmark for other simulation methods
such as DFT due to the large impact of electronic exchange-
correlation effects [119,120]; this is a direct consequence of
the role of the Wigner-Seitz radius as the quantum coupling
parameter. A corresponding snapshot from a PIMC simulation
with N = 14, � = 1, and P = 500 is shown in Fig. 8.

In the top panel of Fig. 9, we show PIMC results for the
electronic density in the z-y plane (cf. the yellow surface in
Fig. 8). We find a high degree of localization around the
two in-plane protons, with a relative increase in the density
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FIG. 6. Scan lines over the density in the y-z plane shown in Fig. 4, computed for different numbers of high-temperature factors P using
the pair approximation.

compared to the average value of n0 of around 40. In addition,
there appear regions with an approximately vanishing density
in-between. To get a better insight into the latter, we also show
the logarithm of the density in the bottom panel of Fig. 9,
which reveals a richer structure.

In Fig. 10, we investigate in detail the response of this
system to an external harmonic perturbation of amplitude A =
0.1, which is close to, though somewhat beyond the linear-
response regime [53]. More specifically, the top, center, and
bottom rows have been obtained for q = 2π/L(0, 0, 1)T , q =
2π/L(0, 0, 2)T , and q = 2π/L(0, 0, 5)T , respectively, and the
left and right columns show the density change (compared to
the unperturbed system) in units of n0, and the relative density
change, i.e., 
nx,y(z)/nx,y(z). We observe two main trends,
which are the same for all values of the wave vector q. First,
the absolute value of the density response is more pronounced
in the vicinity of the ions; it positively correlates with the
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FIG. 7. Induced relative density change along scan line 1
(cf. Fig. 4) due to an external harmonic perturbation with q =
2π/L(0, 0, 1)T and A = 0.1 [see Eq. (2)] for different numbers of
high-temperature factors P.

electronic density n(r). Second, the relative density response
exhibits the opposite trend, and is reduced around the protons.
This holds both in regions where the cosinusoidal potential
is positive (negative induced density) and negative (positive
induced density). In addition, we find that the induced change
in the density is the largest for q = 2π/L(0, 0, 2)T . This is
expected, as the static density response function χ (q) attains
a maximum modulus value for intermediate q [53].

To investigate these trends in more detail, we show the
density change along two representative scan lines (cf. the
dashed red lines in Fig. 9) in Fig. 11 for q = 2π/L(0, 0, 1)T .
The top panel corresponds to scan line 1, which crosses a
proton at z ≈ 0.6L; this can be easily seen in the green crosses
depicting 
n/n0. As noted above, most contributions to the
induced density come from the vicinity of the proton where
the density is maximal. In contrast, the relative change in
the density (yellow triangles) exhibits the opposite trend. In
addition, we include the induced density along the z direction
that has been averaged with respect to x and y as the solid

FIG. 8. Snapshot from a PIMC simulation with N = 14, rs = 4,
� = 1, and P = 500. The green orbs depict the protons, and the
red-blue paths visualize a given electronic configuration. The yellow
surface in the y-z plane is investigated in more detail in Figs. 9, 10,
and 13.
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FIG. 9. PIMC results for the (unperturbed, i.e., A = 0) electronic
density in the z-y plane (cf. the yellow surface in Fig. 8) for N =
14, rs = 4, � = 1, and P = 500. (a) Density; (b) logarithm of the
density.

red curve. It closely resembles an inverted cosinusoidal curve,
as it is predicted by linear-response theory for uniform sys-
tems [see Eq. (3) above]. To test this observation, we have
performed a cosine fit, with the density response function
χ (q) being the only free parameter. The resulting curve is
shown as the dashed black line, and it is indeed in good
agreement with the x-y averaged data set. The small residual
difference between the two curves can be interpreted as a
finite-size effect, and vanishes if one averages over a sufficient
number of snapshots [83]. This, however, is not the objective
of this work, where we intend to focus on the miscroscopic
structure, instead of averaging it out. The dotted blue curve
shows the results for Eq. (3), using the linear-density response
function of the UEG. The larger amplitude in this case nicely
illustrates the, on average, reduced density response of the
electrons as a consequence of the ions, even though it might be
locally increased, both in the relative or the absolute sense. For
completeness, we note that extensive quantum Monte Carlo
calculations for the linear-density response of the UEG are
available in the literature [60,70,71,84,121–129].

To get additional insights into the density response of hy-
drogen, we compare our simulation data with two heuristic
models. Let us assume that the system responds to the external

perturbation like a UEG, but rescaled by the inhomogeneous
density profile of the unperturbed system n(r). This leads to
the density profile


nlocal(r) = n0 + 2A χUEG(q) cos(q · r)
n(r)

n0
. (5)

The results for 
nlocal(r)/n0 are included in Fig. 11 as the
solid light gray curve, which qualitatively, though not quan-
titatively, reproduces the green crosses. Specifically, Eq. (5)
overestimates the actual density response around the protons.
As a second model, we drop the weighting factor of n(r)/n0

from Eq. (5) and instead make the density response function
of the UEG depend on the local value of the density,


nmodel(r) = n0 + 2A χUEG[q; n(r)] cos(q · r). (6)

This leads to the dashed-dotted purple curve in Fig. 11, which
is on average close to the dotted blue curve representing a
pure UEG, but also includes some local structure resembling
the yellow triangles. This can be understood by recalling the
exact long-wavelength limit of the static linear UEG density
response function, which is given by [130]

lim
q→0

χUEG(q) = − q2

4π
, (7)

with q = |q|. Since Eq. (7) holds independent of the density,
the local density response function χUEG[q; n(r)] in Eq. (6)
only weakly depends on the density for the comparably small
value of q considered here. This explains its similarity to the
pure UEG curve, rather than to the strongly inhomogeneous
absolute response.

In Fig. 11(b), we repeat this analysis for scan line 2, which
is located in a region without protons, and, therefore, with a
lower density that does not exhibit large density gradients. We
note that the solid red, dashed black, and dotted blue curves
are the same as in Fig. 11(a) and have been included as a
reference. As it is expected, the absolute induced density (in
units of n0, green crosses) is smaller by more than an order
of magnitude compared to the first scan line. It is qualita-
tively well reproduced by the rescaled UEG model defined
in Eq. (5), which is a consequence of the small variations
in the density. Furthermore, the local density response model
from Eq. (6) again closely agrees with the pure UEG curve
for this value of q. Finally, we observe that the relative change
in the density computed from our PIMC simulations (yellow
triangles) overall exceeds the response of the UEG in mag-
nitude. Taken together, Figs. 11(a) and 11(b) thus reveal the
following: (1) the density response of the hydrogen snapshot
is strongly inhomogeneous and qualitatively follows the un-
perturbed density profile n(r) [cf. Eq. (5)]; (2) the relative
response is increased in low-density regions and decreased
in high-density regions (i.e., around protons) compared to
the UEG; on average, the decrease predominates over the in-
crease, leading to an overall reduction in the density response
of hydrogen compared to the UEG [53]; (4) the decomposi-
tion into effectively bound and free electrons, with the latter
resembling the behavior of a UEG model, is questionable. In
particular, all electrons in the region investigated in Fig. 11(b)
would have to be considered as free, but their density response
differs significantly from the UEG.
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FIG. 10. PIMC results for the induced electronic density for N = 14, rs = 4, and � = 1 for A = 0.1. Top row: q = 2π/L(0, 0, 1)T ; center
row: q = 2π/L(0, 0, 2)T ; bottom row: q = 2π/L(0, 0, 5)T . The left and right columns show the change in the density in units of n0, and the
relative change in the density, respectively.

In Fig. 12, we extend this analysis to the larger wave
vectors q = 2π/L(0, 0, 2)T (a) and q = 2π/L(0, 0, 5)T (b).
Generally, the PIMC results for the absolute change in the
density follow the same trend as in Fig. 11. In addition,
they are qualitatively reproduced, but generally somewhat

overestimated, by the gray curve computed from the locally
density-weighted UEG model (5) for both values of q. Re-
garding the relative change in the density (yellow triangles),
we find the largest difference to the x-y averaged curve
(solid red) for q = 2π/L(0, 0, 2)T . This can be understood
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FIG. 11. Induced density change due to an external harmonic
perturbation with N = 14, q = 2π/L(0, 0, 1)T , A = 0.1, P = 500.
(a) [(b)] Scan line 1 (2) (see Fig. 9). Green crosses: 
nx,y(z) in
units of n0; yellow triangles: 
nx,y(z) in units of nx,y(z); solid red:
relative change in the density along the z direction averaged over x
and y; dashed black: LRT fit; dotted blue: LRT result for the UEG;
solid gray: local UEG model (5); dashed-dotted purple: local density
response model (6).

intuitively by considering the involved length scales. Specif-
ically, a cosinusoidal perturbation of wave vector q is
associated with the wave length λ = 2π/q. For large q, λ

is substantially smaller than the average interparticle dis-
tance, and the density response is thus dominated by the
single-electron limit [60,115]; the latter is comparably insen-
sitive to the local ionic structure. Indeed, Böhme et al. [53]
have found close agreement between the density response
of hydrogen and the UEG model for q � 4qF, and the close
agreement between the dashed black and dotted blue curves in
Fig. 12(b) further corroborate this observation. For the q value
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FIG. 12. Induced density change due to an external har-
monic perturbation with N = 14, and A = 0.1, P = 500. (a) q =
2π/L(0, 0, 2)T ; (b) q = 2π/L(0, 0, 5)T . Green crosses: 
nx,y(z) in
units of n0; yellow triangles: 
nx,y(z) in units of nx,y(z); solid red:
relative change in the density along the z direction averaged of x
and y; dashed black: LRT fit; solid grey: local UEG model (5);
dashed-dotted purple: local density response model (6).

investigated in Fig. 12(a), on the other hand, the wavelength is
comparable to the average interparticle distance, which means
that the sensitivity to the local structure is most pronounced.
This explains (1) the observed large difference between the
yellow triangles and the x-y averaged (solid red) curve and
(2) the comparably larger deviation between the averaged
hydrogen results and the pure UEG model.

A further interesting observation is the dependence of
the local density response function model [Eq. (6)] on the
wave vector q. While it was not able to reproduce the large
local variations in the induced density profile in the long
wavelength limit, this situation substantially changes with
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increasing q. For q = 2π/L(0, 0, 2)T , the corresponding pur-
ple dashed-dotted curve strongly deviates from the purely
cosinusoidal UEG model and qualitatively reproduces the
PIMC results for the absolute change in the density (green
crosses), except in the nearest vicinity of the proton. For q =
2π/L(0, 0, 5)T , the deviations from the UEG are even more
pronounced and again reproduce the green crosses, except for
z ≈ 0.6L.

C. Dependence on the density

A further important question is the interplay between the
ionic structure, the electronic density response, and the den-
sity parameter rs. In Fig. 13, we show PIMC results for the
density in the x-y plane (cf. the yellow surface in Fig. 8) for
the same configuration of protons and rs = 4 (top), rs = 2
(center), and rs = 1 (bottom). To isolate the impact of the
density, we keep the degeneracy temperature, rather than T
itself, constant as � = 1. From a physical perspective, rs = 2
corresponds to a metallic density, and rs = 1 constitutes a
strongly compressed state that can be probed for example at
ICF experiments at the National Ignition Facility [131].

With decreasing the Wigner-Seitz radius (i.e., increasing
the average electronic number density), the electrons become
substantially less localized. The electron density is increased
by a factor of less than 3 around the protons for rs = 1,
compared to the 40-fold increase at rs = 4. Indeed, Böhme
et al. [53] have reported that the density response of hydrogen
strongly resembles the behavior of a UEG for rs = 2 and
� = 1.

This can also be seen very clearly in Fig. 14(a), where
we show the x-y averaged density along the z direction for
the three considered values of the density. Only the PIMC
results for rs = 4 (blue diamonds) exhibit a pronounced struc-
ture, whereas the data sets for rs = 2 (red circles) and in
particular rs = 1 (green crosses) are comparably featureless.
In Figs. 14(b) and 14(c), we show scan lines over the x-y plane
(cf. the dashed red lines in Fig. 13). Figure 14(b) corresponds
to scan line 1 that includes a proton at z ≈ 0.6L; it again
nicely illustrates the drastic decrease of the electronic local-
ization with increasing density in this regime. Figure 14(c)
corresponds to a region without a proton, such that the density
is depleted for rs = 4 over the entire z range. This is not true
for rs = 2 and rs = 1, for which nx,y(z) fluctuates around the
average value of n0.

Let us conclude this analysis by considering the induced
density along scan line 1 due to an external harmonic pertur-
bation of wave vector q = 2π/L(0, 0, 1)T shown in Fig. 15
for rs = 2 (top) and rs = 1 (bottom). The most important
trend is that the absolute response (green crosses) increasingly
resembles the relative response (yellow triangles); this is a
direct consequence of n(r) → n0 with increasing density. Fur-
thermore, all data sets increasingly resemble the UEG model
for the same reason. In fact, even the absolute density response
is almost undistinguishable from the UEG model at rs = 1.

IV. SUMMARY AND OUTLOOK

In this work, we have presented extensive ab initio PIMC
results for the electronic density response of warm dense
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FIG. 13. PIMC results for the electronic density in the z-y plane
(cf. the yellow surface in Fig. 8) for N = 14, � = 1, and P = 500.
(a) rs = 4; (b) rs = 2; (c) rs = 1.

hydrogen on the nanoscale. This has been achieved by tak-
ing a snapshot with fixed proton positions from a DFT-MD
simulation, and solving the electronic problem in this external
potential with PIMC. We note that we use the direct PIMC
method without any restrictions on the nodal surface of the
density matrix, which makes our simulations computationally
expensive, but exact within the given Monte Carlo error bars.

To demonstrate the quality of our simulations, we have
carried out an in-depth analysis of the convergence with the
number of high-temperature factors P. By utilizing the exact
solution for the thermal density matrix of the electron-ion
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FIG. 14. (a) x-y averaged density along the z direction; (b) [(c)]
density along scan line 1 (scan line 2) (cf. Fig. 13) without external
perturbation.

two-body problem (pair approximation), we attain an accu-
racy of ∼0.1% with P = 500 high-temperature factors even
in the direct vicinity of the protons, where the density gra-
dients are most pronounced. The diagonal Kelbg potential,
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FIG. 15. Induced density change due to an external harmonic
perturbation with N = 14, q = 2π/L(0, 0, 1)T , and P = 500. (a)
rs = 2 (A = 0.15); (b) rs = 1 (A = 0.2). Green crosses: 
nx,y(z) in
units of n0; yellow triangles: 
nx,y(z) in units of nx,y(z); solid red:
relative change in the density along the z direction averaged of x
and y; dashed black: LRT fit; solid gray: local UEG model (5);
dashed-dotted purple: local density response model (6).

too, converges towards the exact result with increasing P,
albeit substantially slower; this is consistent with previous
investigations [54,91].

From a physical perspective, our study has given us impor-
tant insights into two important trends. First, we have studied
in detail the localization of the electrons around the protons
on the nanoscale, without any assumptions about bound or
free electrons. For rs = 4, the electrons are strongly localized,
whereas hydrogen more closely resembles the well-known
UEG model for rs = 2 and especially for rs = 1. Second,
we have studied the interplay between the electronic density
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response to an external static harmonic perturbation and the
presence of the protons. Here, our main findings include the
fact that the absolute density response positively correlates
with the electron density n(r), whereas the opposite holds for
the relative density response. Moreover, the spatially resolved
density response of hydrogen can be modeled qualitatively by
the behavior of a local UEG model, but this assumption does
not capture the reduction of the averaged density response
compared to a pure UEG due to the presence of the protons.

Our findings are of direct consequence for upcoming ex-
periments at different facilities. For example, modeling XRTS
measurements of hydrogen jets [112] is likely challenging
due to the expected low densities; it will be necessary to
accurately capture the complicated interplay between the
electrons and the ions, and to incorporate the strong degree
of electronic localization. In contrast, ICF experiments with
hydrogen isotopes at the National Ignition Facility might po-
tentially already be reproduced by a UEG model, although this
has to be carefully checked in practice.

In addition to being interesting in their own right, we
expect our setup to be of high value for the benchmarking
of less accurate methods for the simulation of WDM. This
includes, but is not limited to, a rigorous assessment of com-
monly used exchange-correlation functionals for DFT, and
the fixed-node approximation in restricted PIMC simulations.

Other future works will include full PIMC simulations of
warm dense hydrogen, where, instead of being kept fixed, the
ions are treated on the same level of the electrons. This will
allow for extensive studies of a gamut of density response
properties, including the linear and nonlinear regimes, as well
as dynamic properties based either on an analytic continua-
tion [114,132,133] or directly in the imaginary-time domain
[60,134–136].
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