
PHYSICAL REVIEW E 108, 035203 (2023)

Stability of perpendicular magnetohydrodynamic shocks in materials
with ideal and nonideal equations of state
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Magnetized target fusion approach to inertial confinement fusion involves the formation of strong shocks that
travel along a magnetized plasma. Shocks, which play a dominant role in thermalizing the upstream kinetic
energy generated in the implosion stage, are seldom free from perturbations, and they wrinkle in response to
upstream or downstream disturbances. In Z-pinch experiments, significant plasma instability mitigation was
observed with pre-embedded axial magnetic fields. To isolate effects, in this work we theoretically study the
impact of perpendicular magnetic fields on the planar shock dynamics for different equations of state. For
fast magnetosonic shocks in ideal gases, it was found that the magnetic field amplifies the intensity of the
perturbations when γ > 2 or it weakens them when γ < 2. Weak shocks have been found to be stable regardless
of the magnetic plasma intensity and gas compressibility; however, for sufficiently strong shocks the magnetic
fields can promote a neutral stability/SAE at the shock if the adiabatic index is higher than 1 + √

2. Results have
been validated with numerical simulations performed with the FLASH code.

DOI: 10.1103/PhysRevE.108.035203

I. INTRODUCTION

The recent remarkable breakthrough of the inertial confine-
ment fusion (ICF) ignition on the National Ignition Facility
(NIF) laser facility at Lawrence Livermore National Labora-
tory [1,2] puts to rest questions about the capability of lasers
to ignite thermonuclear fuel [2]. This achievement sheds new
light on the benefits of magnetizing ICF targets for achieving
magnetoinertial fusion [3–9], a concept that stems from the
well-established research field of magnetized target fusion,
which first introduced the principle of inertial confinement
of fusion plasma. More recent incarnations of the original
Linhart’s cylindrical-liner-on-magnetized plasma scheme [10]
promise high fusion energy gains and multi-MJ yields in next-
generation pulsed power facilities. This refers in particular to

*andcalvo@ing.uc3m.es

the magnetized liner inertial fusion (MagLIF) concept, which
is now actively developed in the U.S.; see Refs. [11–15]
and references therein. Among its alternatives, we note the
staged Z-pinch (SZP) approach [16–22] that generated in-
terest and some controversy [23–27]. Following Jones and
Mead [28], the magnetization of ICF targets spherically im-
ploded by x-rays or direct laser irradiation has also attracted
considerable interest, particularly for the indirect drive [29].
It has already been demonstrated in the National Ignition
Facility (NIF) experiments that target magnetization increases
the ion temperature at stagnation and the fusion neutron yield
[30]. Simulations for ignition-scale layered cryogenic targets
predict that magnetization can make the NIF indirect-drive
ignition more robust and increase the fusion energy gain
[31,32].

In indirect- [1,2,33] and direct-drive [34] laser fusion,
the propagation of shock waves in the early stages of
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implosion plays an essential role in determining its outcome.
Similarly, for magnetically assisted indirect-drive laser fu-
sion [28–32], the shock waves conventionally set the shell
to the desired adiabat and preheat the hot spot while seed-
ing some of the target perturbations/nonuniformities to be
later amplified by the Rayleigh-Taylor instability [35–37]. In
MagLIF [11–15], a blast wave launched by the laser preheat
of the cold gaseous fuel determines the initial temperature
and density profiles, as well as the uniformity of the DT
plasma compressed by the liner. It has been observed that the
unstable flute modes related to the magnetic Rayleigh-Taylor
instability diminished, but a different helical-type instability
may rise due to the effect of the magnetic field [38]. In SZP
[16–27] converging shocks play an even more significant role
in shaping the converging plasma and ensuring compression
stability. In all these examples, the early shock waves propa-
gate through magnetized gases or plasmas with β = 8π p/B2

of order unity, which makes them magnetohydrodynamic
(MHD) rather than gasdynamic shocks. Since the uniformity
of compression is the key to success for all kinds of ICF,
achieving a clear understanding of the stability of these MHD
shocks and confident modeling of their response to small per-
turbations is very important. This is the subject of the present
article.

The theory of stability of gasdynamic shock fronts de-
veloped from the 1940s–’50s [39–41] is now a mature field
of compressible fluid dynamics whose main results are sum-
marized in monographs and textbooks [42–44]. Planar shock
fronts in most materials, including ideal gases with any adi-
abatic exponent γ , are superstable for any shock strength,
which means that their shape perturbations decay as a power
of time t , specifically, as t−3/2 for moderate-strength shocks
and t−1/2 in the strong-shock limit [45–48]. For some non-
ideal equations of state (EoS), in specific ranges of shock
strengths, neutral stability is possible under conditions eluci-
dated by D’yakov [40] and Kontorovich [41] (DK), with the
perturbed shock front exhibiting nondecaying oscillations that
produce spontaneous acoustic emission (SAE) downstream.
Planar shock fronts can be exponentially unstable [41–44]
when a single-shock solution of the Riemann/piston problem
is not unique. In this case, the theory [49,50] predicts that an
unstable shock splits into a multiwave flow; see a numerical
example in Ref. [51]. The presence of a rigid piston as the
boundary condition driving the planar shock does not change
the character of the solution [52,53] yet additional frequencies
may emerge due to the reflection of sonic waves on the piston
surface, subsequently reaching the shock. If the shock driving
mechanism is not steady and the associated external excitation
frequency aligns with the self-induced oscillation frequency in
the SAE regime, then the shock can exhibit unstable behavior
[53].

Gardner and Kruskal [54], who extended the formalism
developed by Erpenbeck [55] for gasdynamic shocks, started
stability studies of MHD shock waves in the 1960s. For fast
MHD shocks propagating in parallel and perpendicular di-
rections to the shock front, they demonstrated the absence
of exponential instability for an ideal-gas conducting fluid
(plasma) with γ < 3. Later studies, mostly reported in the
mathematical literature (cf. Ref. [56] and references therein),
were performed exclusively for ideal-gas EoS. They found

the DK ranges of neutral stability and SAE for fast MHD
shocks. In Ref. [57] the propagation of fast magnetosonic
waves in an inhomogeneous medium with planar flow is in-
vestigated. In addition, the study explores the existence of
eigenmodes in a steady flow containing a shock. The eigen-
modes are used to derive the reflection coefficient of a fast
magnetosonic wave from the shock. Recently, particle-in-cell
(PIC) simulations have been used to model high-frequency
processes in fast magnetosonic shocks, with a particular
emphasis on electron dynamics. However, the long-time
shock dynamics remain inaccessible due to computational
constraints [58].

In this paper, we revisit the MHD shock-front stability
problem and construct an analytical model to solve the initial-
value problem (IVP) for isolated-shock boundary conditions.
Besides, a numerical analysis of perpendicular MHD shocks
is carried out. We focus on the perpendicular shocks, which
can only be of the fast variety, [59] the kind of particular prac-
tical importance for all the above ICF applications. Moreover,
we limit ourselves to the usually most unstable interchange
instability modes, which do not bend the magnetic force lines.
Then, the presence of the frozen-in magnetic field in the
shock-compressed fluid translates into a modification of its
EoS (cf. Ref. [59], Sec. 52), which makes possible a direct
application of the gasdynamic theoretical techniques and sta-
bility criteria [40–42]. Our stability analysis is carried out for
three equations of state: (1) ideal gas, with the adiabatic expo-
nent γ varied in a broad range; (2) van der Waals (vdW) fluid;
(3) a model EoS for simple metals, such as aluminium, used in
Ref. [60] to analyze the stability of spherical and cylindrical
expanding shock waves. Our results can be summarized as fol-
lows. We found a DK range of neutral stability for sufficiently
strong shocks in a low-β ideal plasma with γ > 1 + √

2,
the magnetic field thereby acting as a destabilizing factor,
enabling the SAE. A similar high-γ , low-β neutral stability
range is also found for a vdW fluid, which also manifests
SAE at low γ , as discovered in Ref. [61]. In the latter case,
however, the magnetic field acts as a stabilizer, suppressing
the SAE unless β is small enough. The model EoS for simple
metals offers a realistic case of high effective γ : metals are
nearly incompressible at low shock pressures. However, the
DK neutral stability conditions require a finite shock strength,
which results in γ decreasing to low values, insufficient to
satisfy the DK conditions for neutral stability. This is why
the perpendicular MHD shocks in aluminium were found to
be stable across the entire range of parameters explored. Our
analytical predictions for the perturbation evolution for the
ideal-gas EoS were cross-checked with MHD fluid simula-
tions done with the FLASH code [62]. (For more information
on the FLASH code, see Ref. [63]). The paper is structured
as follows. The mathematical formulation of the fast MHD
shock, both base-flow conditions and perturbation variables,
is given in Sec. II. The stability limits are presented and
discussed in Sec. III for different EoS and shock B intensities.
The transient evolution of the shock front and the perturbed
variables downstream are described in Sec. IV for an ideal
gas EoS, with the former being contrasted against numerical
simulations in Sec. V. This section also presents snapshots
for the simulated pressure and density fields. Finally, the main
conclusions are summarized in Sec. VI.
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II. PROBLEM DESCRIPTION

A. Base-flow MHD shock

Let a planar shock front move with velocity �u1 = u1êx in
a uniform medium with known pressure p1, density ρ1, and
internal energy E1. Let us consider a magnetic field ahead
of the shock �B1 = B1êz that is perpendicular to the shock
propagation direction. In a reference frame attached to the
shock front, the conservation equations across the shock dis-
continuity read as

[ρu] = 0, (1a)[
p + ρu2 + B2

t

8π

]
= 0, (1b)

[Bt u] = 0, (1c)[
ρu

(
e + p

ρ
+ u2

2

)
+ u

B2
t

4π

]
= 0, (1d)

provided that the normal component of the magnetic field,
which must be continuous across the shock front, is zero:
Bx1 = Bx2 = 0. In what follows we identify postshock flow
variables with the subscript 2.

The formulation benefits from the introduction of the
dimensionless functions P = p2/p1 and R = ρ2/ρ1, which
measure the pressure and density jumps across the shock,
respectively. Likewise, the characteristic Mach numbers are
defined in relation to the characteristic velocities of the linear
MHD waves, namely,

c2
A = B2

4πρ
, (2a)

c2
T = ∂ p

∂ρ

∣∣∣∣
s

(2b)

for the Alfvén (magnetic) and sonic (thermal) velocities, re-
spectively, with c2

F = c2
T + c2

A being used to define the fast
magnetosonic velocity. As derived in the following, only the
fast magnetosonic velocity is allowed (see Sec. II B for further
details), thereby being the characteristic speed to define the
shock Mach number. Then, a fast and evolutionary MHD
shock is determined by the conditions MF1 = u1/cF1 > 1
and MF2 = u2/cF2 < 1 on the fast magnetosonic Mach num-
bers. It is convenient, however, to define the Alfvén Mach
numbers as MA1 = u1/cA1 and MA2 = u2/cA2, where the
former can be written, with the aid of Eqs. (1a)–(1c), as

M2
A1 = β(P − 1) + R2 − 1

2(1 − R−1)
, (3)

where β = 8π p1/B2
1 stands for the preshock plasma β pa-

rameter, which measures the thermal pressure relative to the
magnetic pressure.

With use made of Eq. (1d), the Hugoniot adiabat reads as
H = 0, where

H = E − (P + 1)(R − 1)

2R − 1

β

(R − 1)3

2R , (4)

and where E = ρ1(E2 − E1)/p1 is appropriately introduced
to represent the dimensionless variation of the internal en-
ergy across the shock. Therefore, the RH adiabat H = 0 is
closed upon determination of the internal energy function,

E = E (R,P ), which ultimately renders the RH curve in the
form P = P (R).

Anticipating that MF2 is a needed function to describe the
shock dynamics, an explicit definition is given:

M2
F2 = M2

A1

R2

c2
A1

c2
F2

= β(P − 1) + R2 − 1

2R(R − 1)

(
γT β

P
2R + R

)−1

, (5)

where the polytropic index is conveniently introduced for an
arbitrary EoS p = (ρ, T ) and internal energy function of state
E = (ρ, T ):

γT = ρ2c2
T 2

p2

= ρ2

p2

∂ p2

∂ρ2

∣∣∣∣∣
T

+ 1

ρ2

∂ p2

∂T2

∣∣∣∣∣
ρ

∂E2

∂T2

∣∣∣∣∣
−1

ρ

(
1 − ρ2

2

p2

∂E2

∂ρ2

∣∣∣∣∣
T

)
. (6)

B. Linear perturbation analysis

The problem continues with the formulation of the lin-
earized ideal MHD equations that govern the unsteady
postshock flow, namely,

∂δρ

∂t
+ ρ2∇ · δ�v = 0, (7a)

ρ2
∂δ�v
∂t

+ ∇δp − (∇ × δ �B) × �B2

4π
= 0, (7b)

∂δp

∂t
− c2

T 2
∂δρ

∂t
= 0, (7c)

∂δ �B
∂t

− ∇ × (δ�v × �B2) = 0, (7d)

written in a reference frame comoving with the fluid particles.
They correspond to the equation of continuity, the conser-
vation of linear momentum, the conservation of energy for
an isentropic and adiabatic flow, and the magnetic induction
equation. The parameter cT 2 corresponds to the speed of
sound in the shocked gas. The formulation assumes that the
base-flow is uniform, that the medium is a perfect conductor,
and that all perturbations are of the same order,

δρ

ρ2
= |δ �B|

| �B2|
∼ δp

p2
∼ |δ�v|

cT 2
∼ ε � 1, (8)

with ε being the small parameter that identifies the amplitude
of the perturbations. In our case, it is determined by the ini-
tial small shock corrugation amplitude ελ = ψs(t = 0) = ψs0

scaled with the corrugation wavelength (see sketch depicted
in Fig. 1).

For the particular case considered in this work, the mag-
netic field points in the direction perpendicular to the plane
δ �B/|δ �B| = �B2/| �B2| = êz, while velocity perturbations sit on
the plane {êx, êy}. Then, with use made of δ�v(x, y) · �B2(x, y) =
0, the governing equation for the perturbed velocity field reads
as

∂2δ�v
∂t2

= c2
F2(∇2δ�v + ∇ × ∇ × δ�v), (9)
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FIG. 1. Sketch of the corrugated perpendicular shock moving
through the magnetized medium whose magnetic field points per-
pendicular to the shock propagation direction and to the velocity
disturbances. Velocities are measured in the postshock gas reference
frame (�v2 = 0).

where δ�v(x, y, t ) accounts for both fast magnetoacoustic δ�vF

and rotational δ�vr contributions, which satisfy ∇ × δ�vF = 0
and (∂�vr )/(∂t ) = 0, respectively. Note that Eq. (9) can be
written for each velocity component (longitudinal and trans-
verse) independently, a simplification that is not possible
when δ�v(x, y) · �B2(x, y) �= 0 because the three modes of prop-
agation (Alfvén, slow and fast magnetosonic waves) involve
coupled information of the three dimensions.

Simple manipulation allows us to write Eq. (9) in terms
of the total pressure p∗

2 = p2 + B2
2/(8π ), which accounts for

the thermal plus the magnetic contributions, in the following
form:

∂2δp∗

∂t2
= c2

F2∇2δp∗, (10)

where

δp∗ = δp + B2

4π
δB (11)

indicates the total pressure perturbation. It is readily seen that
Eq. (10) corresponds to a conventional sound wave equation,
with the distinctiveness that information travels at the so-
called fast magnetosonic velocity in the compressed medium,
namely, cF2. Therefore, owing to the relative orientation be-
tween the shock and the magnetic field, our linearized MHD
equations only involve the characteristic velocity cF2, which is
used to nondimensinalize the spatiotemporal variables in the
form τ = kcF2t and (x̄, ȳ) = k(x, y), where k = 2π/λ is the
wave-number frequency. Likewise, the dimensionless order-
of-unity shock ripple amplitude is defined, along with the
corresponding postshock perturbation variables, as follows:

1

ε

ψ (x̄, ȳ, τ )

ψs0
= ξ̄ (x̄, τ ) cos(ȳ), (12a)

1

ε

δp∗(x̄, ȳ, τ )

ρ2c2
F2

= p̄∗(x̄, t ) cos(ȳ), (12b)

1

ε

δu(x̄, ȳ, τ )

cF2
= ū(x̄, τ ) cos(ȳ), (12c)

1

ε

δv(x̄, ȳ, τ )

cF2
= v̄(x̄, τ ) sin(ȳ), (12d)

1

ε

δρ(x̄, ȳ, τ )

ρ2
= ρ̄(x̄, τ ) cos(ȳ), (12e)

1

ε

δB(x̄, ȳ, τ )

B2
= B̄(x̄, τ ) cos(ȳ), (12f)

to be used, along with Eq. (7) or Eq. (10), to write

∂2 p̄∗

∂τ 2
= ∂2 p̄∗

∂ x̄2
− p̄∗ (13)

as a parameter-free transverse-periodic sound wave equa-
tion that calls for two initial conditions and two boundary
conditions in the streamwise direction.

One boundary condition is determined by the linearized
shock conservation equations, written in dimensionless form
as

dξs

dτ
= 1 + h∗

2MF2

R
R − 1

p̄∗
s , (14a)

ūs = 1 − h∗

2MF2
p̄∗

s , (14b)

v̄s = −MF2(R − 1)
∂ξs

∂ ȳ
, (14c)

where

h∗ = p∗
2 − p∗

1

V1 − V2

(
d p∗

2

dV2

)−1

H

(15)

corresponds to the redefined DK parameter, which measures
the slope of the RH curve as relative to the Rayleigh-
Michelson line in the {p∗,V = 1/ρ} plane. Note that, as
with regular nonmagnetized shocks, the formulation of the
linear problem is described in terms of three dimensionless
parameters: the shock compression ratio R, the postshock
Mach number MF2, and the RH slope parameter h∗. The
perturbation in the magnetic field intensity is dictated by the
conservation of the magnetic flux across the shock B1u1 =
B2u2 to yield ρ̄s = B̄s, where density perturbations behind the
shock follows:

ρ̄s = − h∗

M2
F2

p̄∗
s , (16)

as dictated by the perturbation of the RH curve. The other
boundary condition is determined by the supporting mech-
anism. For the isolated-shock condition considered in this
work, the condition reduces to omitting the effect of the mag-
netosonic waves reaching the shock from behind, which is a
valid assumption when the shock is sufficiently far from the
supporting mechanism. As for the initial conditions, we can
assume that the shock is initially distorted: ξs0 − 1 = p̄∗

s0 = 0.
Note that for our perpendicular shock geometry, as noted

in Sec. 52 of Ref. [59] citing Ref. [64] (see also Ref. [65]), the
one-dimensional MHD equations reduce to the equations of
the ordinary fluid dynamics, with a modified equation of state
in which the thermal pressure p is replaced by p∗ = p +
B2/(8π ) = p + const ρ2. This simplification remains valid
in our two-dimensional MHD stability problem for the in-
terchange perturbation modes that do not bend the magnetic
force lines. In the following, we demonstrate how the above
modification of the equation of state due to the frozen-in
magnetic field affects the stability of the shock front.
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III. STABILITY LIMITS

A shock wave is said to be stable if any perturbation at the
shock front decays with time. The condition for stability is
typically written in terms of the DK parameter h through the
inequality −1 < h < hc, where hc corresponds to its critical
value [59]. The stability condition can be easily extrapolated
from nonconducting shocks to fast magnetosonic shocks, with
the magnetic field being parallel to the shock front, by just
redefining the parameters h = h∗ and

h∗
c = 1 − M2

F2(1 + R)

1 − M2
F2(1 − R)

. (17)

The DK parameter is conveniently rewritten as a function of
dimensionless variables as

h∗ = − (P − 1)β + R2 − 1

(β + 1)R(R − 1)

(
dP∗

dR

)−1

(18)

= − (P − 1)β + R2 − 1

βR(R − 1)

(
dP
dR + 2R

β

)−1

,

where

P∗ = p∗
2

p∗
1

= βP + R2

β + 1
(19)

represents the ratio of the total pressures across the shock. The
slope of the dimensionless thermal pressure with respect to the
density compression ratio can be obtained using the Hugoniot
expression (4), namely,

dP
dR = −∂H

∂R

(
∂H
∂P

)−1

(20)

= 1 + 2R3 + β + Pβ − R2(3 + 2ERβ )

Rβ + (−1 + 2EPRβ )
,

where ER = ∂E/∂R|P and EP = ∂E/∂P|R correspond to the
partial derivatives of the internal energy variation function.
Equation (20), and therefore the DK parameter h∗, requires the
information about the internal energy function of state. How-
ever, the function h∗

c calls for information on the equation of
state through the definition of the postshock magnetosonic
Mach number.

In the stable regime, −1 < h∗ < h∗
c , perturbations at the

shock front experience a decay that follows a τ−3/2 pattern
in the long-time τ 	 1. However, there exists a subregime
where perturbations experience an exponential decay in the
early-time stages τ � 1, although the long-time is still being
dominated by the power law τ−3/2; see Refs. [66,67]. This is
given by the condition −1 < h∗ < h∗

d , where

h∗
d =

(
1 − M2

F2

)3/2√
1 − R−1 − RM2

F2

1 + M2
F2(R − 1)

. (21)

In the context of this study, it is important to investigate
whether the magnetic field can be used to induce an ini-
tial strong damping of perturbations in the shock, h∗ < h∗

d ,

placing it in the regime where perturbations are subsequently
effectively suppressed. Recall that such strong damping is
impossible in a nonmagnetized ideal gas EoS for any γ . In
the following, the parameters defined above are evaluated with
different EoS associated with an ideal gas, a vdW gas and an
aluminium three-term EoS.

A. Ideal gas equation of state

The particularization to an ideal gas is relatively simple.
The corresponding constitutive equations for pressure and
internal energy (assumed to be calorically perfect) are p =
RgρT and E = cvT , respectively, where Rg = cp − cv is the
gas constant and γ = cp/cv is the specific heats ratio. Simple
manipulation renders

E = 1

γ − 1

(P
R − 1

)
and γT = γ , (22)

which allows us to write the RH curve in explicit form

P = R(γ + 1) − (γ − 1)

(γ + 1) − R(γ − 1)
+ 1

β

(R − 1)3(γ − 1)

(γ + 1) − R(γ − 1)
, (23)

where the first term on the right-hand side is easily recogniz-
able as the adiabatic nonmagnetized pressure jump across the
shock. The second term accounts for the magnetic contribu-
tion that drops to zero when β → ∞.

The effect of the magnetic field in the pressure jump
is better analyzed with the aid of Fig. 2, which shows the
Rankine-Hugoniot curves for a MHD shock with different
values of the transverse magnetic field intensities. Both ther-
mal P (a) and thermal-plus-magnetic P∗ (b) pressure ratios
are represented on the left and right panels, respectively. Note
that Rmax = (γ + 1)/(γ − 1) does not depend on the plasma
parameter β and it yields (R−1)min = 1/4 for γ = 5/3. It
is also observed that the thermal contribution dominates for
sufficiently strong shocks as a result of the bounded limit
of the magnetic contribution, given by the maximum density
compression ratio (B2

2/B2
1)max = (R2)max = 16 for γ = 5/3.

From a simple inspection of Fig. 2, it is difficult to antici-
pate the possibility of DK instability since the slope of the RH
curve for P∗ does not exhibit any peculiar behavior: the curve
monotonically approaches the asymptote predicted by the the
maximum density compression ratio. Similar computations
for lower and higher values of γ do not change this qualitative
behavior. To compute the DK parameter h∗ that ultimately
determines the stability we must specify the value of the
partial derivatives of the internal energy function, namely,

ER = ∂E
∂R

∣∣∣∣
P

= − P
R2(γ − 1)

, (24a)

EP = ∂E
∂P

∣∣∣∣
R

= 1

R(γ − 1)
, (24b)

to provide

h∗ = − [−1 + R(−1 + γ ) − γ ][R(−2 + γ ) − (1 + β ) γ ]

R[−2 + 2R(2 + R) + γ + (2 − 3R)Rγ + 2βγ + (−1 + R)2γ 2)]
(25)
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FIG. 2. Rankine-Hugoniot curves for an MHD shock in an ideal gas with different values of transverse magnetic field intensities. The
adiabatic index is γ = 5/3.

as an explicit function of γ , β, and R. The critical parameter h∗
c , however, calls for the determination of the fast magnetosonic

Mach number

M2
F2 = 2(2R + γ − Rγ + βγ )

2R2(1 + R) + γ + 3γR[(5/3 − R)R − 1] + (R − 1)3γ 2 + β[γ + Rγ + (R − 1)γ 2]
, (26)

to be used in Eq. (17) to yield

h∗
c = [R(γ − 1) − (γ + 1)][γ (R − 1)2 + βγ − 2(R − 2)R]

2R[R(3 + R) − 2] + [R(1 − 3(R − 1)R + 3β ) − (β + 1)]γ + (R − 1)[(R − 1)2 + β]γ 2
. (27)

The DK stability can be determined by evaluating the func-
tion h∗ − h∗

c , which depends on γ , β, and R. When h∗ − h∗
c >

0, the shock front, assumed to be isolated, will oscillate with
constant amplitude and constant frequency in the long time
regime. Figure 3 shows h∗ − h∗

c as a function of the inverse
of the density compression ratio R−1 for different values of
the adiabatic exponent γ and the preshock plasma parameter
β. We vary γ from a low value of γ = 4/3, which in the
shock stability studies is physically associated with strongly
radiating gases [68,69] to the high value of γ = 4 indicating
low shock compressibility; γ ′s in this range are used for a
simplified theoretical description of shocks in condensed ma-
terials, from γ = 3 in Refs. [39,70] to γ = 7 in Ref. [71]. The
plasma parameter is varied between β = 103 and β = 10−3,
which correspond to the limits of negligible and dominant,
respectively, contributions of the magnetic pressure to the
preshock value of p∗.

The stability properties of nonmagnetized shock fronts in
ideal gases are independent of the adiabatic exponent γ . In
particular, ideal-gas shock fronts do not exhibit the DK insta-
bility, which produces spontaneous acoustic emission (SAE),

at any γ . Similarly, the time evolution of shock ripples does
not include the early phase of fast exponential decay, as pre-
dicted by Ref. [66] for the DK parameter sufficiently close
to −1; see in the following. Here we demonstrate that the
effective modification of the EoS of the shocked material by
the frozen-in magnetic field changes this. Depending on the
values of γ , β and the shock strength, the magnetization can
act either as a destabilizing factor, enabling the SAE, or as a
stabilizing factor, producing the early-time exponential decay
of the shock-front ripples.

The DK instability condition h∗ > h∗
c is found to occur in

low compressible, highly magnetized plasma. Note that, for
γ = 2, the magnetic field does not influence the shock con-
ditions for any compression ratio. In particular, h∗(γ = 2) =
(R − 3)/(2R) and h∗

c (γ = 2) = (R − 3)/(5R − 3). This is
indeed indicative of a change in the character of the solution,
since for γ > 2 the curve with lower β takes higher positions,
as opposed to cases where γ < 2. However, γ > 2 is not a suf-
ficient condition for instability, as shown in Fig. 3. Although
the magnetic effect toward instability changes its character for
γ > 2, its contribution must overcome the stabilizing acoustic
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FIG. 3. Function h∗ − h∗
c as a function of R−1 for different val-

ues of the transverse magnetic intensity β and the adiabatic index
γ .

counterpart. This is better analyzed by evaluating the slope of
the function h∗ − h∗

c in the strong-shock limit, namely,

h̄∗
R = d (h∗ − h∗

c )

d (R−1)

∣∣∣∣
R= γ+1

γ−1

(28)

= − (1 + γ )

4(γ − 1)

2 + [4 + β(γ − 1)2 − 2γ ]γ

2 + β(γ − 1)γ
,

which is found to approach zero in a strongly magnetized
plasma β � 1 when γ = 1 + √

2. Since the slope h̄∗
R is a

monotonic function of β, the stability regimes are easily iden-
tified in an ideal gas: for γ > 1 + √

2, a sufficiently small

value of β will render SAE in the strong-shock limit, while
stability is ensured for γ < 1 + √

2.
Akin to h∗

c in Eq. (27), the DK parameter value that
distinguishes the regime in which perturbations may decay
exponentially in the early time, h∗

d , can be easily expressed
in terms of the parameters R, γ , and β by direct substitution
of Eq. (26) into Eq. (21). However, since this expression is
objectively long, we omit writing the explicit relationship of
h∗

d for an ideal gas EoS.
The distinguished regimes that characterize the long-time

response of the perturbed shock are better analyzed by look-
ing at Fig. 4, which shows the isocontours h∗ = h∗

d (a) and
h∗ = h∗

c (b) as a function of the shock compression ratio R
and the parameter β for different values of the adiabatic index
γ . Observing first the isocurves h∗ = h∗

d , the state in which
a perturbed shock initially develops with rapid exponential
damping (h∗ < h∗

d ) is characterized by the region below the
inverted U-shaped curve, namely for any shock strength below
Rmax when the magnetic field is sufficiently strong. We recall
that the magnetic field has a stabilizing effect only for values
of γ that are less than 2. Examining Fig. 4(b) and focusing
on the isocurves where h∗ = h∗

c instead, it is evident that the
region of neutral stability/SAE regime (h∗ > h∗

c ) is located
beneath the L-shaped curve associated with magnetic fields
of significant strength within a limited range of shock com-
pression ratios. Note that this phenomenon occurs in cases
where the adiabatic indices are high, as the magnetic field only
has a destabilizing effect for values of γ greater than 2. For
clarity purposes, Fig. 4 also displays, with the diamond and
star symbols, the conditions under which Figs. 8 and 11 are
computed.

(a) (b)

FIG. 4. Isocurves for h∗ = h∗
d (a) and h∗ = h∗

c (b) as a function of shock compression ratio R and the parameter β for different values of
the adiabatic index.
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B. Van der Waals equation of state

The vdW EoS provides a more accurate description of
real fluid behavior than the ideal gas law. It takes into ac-
count the effect associated with the noncontact interaction
between particles and the finite volume they occupy. This
EoS is particularly interesting because it is known to lead to
DK instability for sufficiently compressible flows, as found
in Refs. [60,61,72] for a regular gasdynamic shock. To study
the stability boundary of the vdW magnetized gas, we need to
explicitly define the corresponding EoS p(ρ, T ) and internal
energy relationship E (ρ, T ), namely,

p = ρRgT

1 − b′ρ
− a′ρ2, (29a)

E = RgT

γ − 1
− a′ρ, (29b)

respectively. With respect to the ideal gas EoS, the term
involving the constant a′ corrects for the intermolecular at-
traction, while b′ represents the volume occupied by the gas
particles (covolume). It is readily seen that Eq. (29) reduces
to the ideal gas model when a′ and b′ approach zero, namely
p = ρRgT and E = RgT/(γ − 1).

To solve the RH equations, it proves convenient to write the
internal energy and the speed of sound as functions of p and ρ

by direct combination of the two relationships in Eq. (29) and
the definition of the speed of sound, resulting in

E = (p + ρ2a′)(1 − b′ρ)

ρ(γ − 1)
− a′ρ, (30a)

c2 = γ (p + ρ2a′)
ρ(1 − b′ρ)

− 2a′ρ, (30b)

respectively. Simple manipulation of Eq. (30) provides c2 =
γ RgT = γ p/ρ as the square of the speed of sound for an ideal
gas EoS, i.e., a′ = b′ = 0. In dimensionless form, the gain of
internal energy reads as

E = (P + R2a)(1 − bR) − R(1 + a)(1 − b)

R(γ − 1)
− a(R − 1),

(31)
and the polytropic index needed to define the postshock Mach
number MF2 in Eq. (5) is

γT = γ
P + R2a

P (1 − bR)
− 2a

R2

P , (32)

where a = a′ρ2
1/p1 and b = b′ρ1 are dimensionless parame-

ters of the vdW EoS.
The RH relationship for a magnetized vdW gas can be

expressed explicitly using the dimensionless internal energy
gain factor E , as follows:

P = R[γ + 1 − 2b(a + 1) − 2a(γ − 2)] − (γ − 1) + 2aR2(γ − 2 + bR)

(γ + 1) − R(γ − 1 + 2b)
+ 1

β

(R − 1)3(γ − 1)

(γ + 1) − R(γ − 1 + 2b)
, (33)

which is appropriately expressed as the sum of the nonmag-
netic and magnetic contributions.

Figure 5 shows the Rankine-Hugoniot curves for an MHD
shock in a vdW gas with different values of transverse mag-
netic field intensity. The selected values for the preshock
and vdW EoS parameters correspond to those used in
Refs. [60,61] for nonmagnetic shocks associated with high gas
compressibility γ = 31/30, nonnegligible vdW parameters,
a = 1/2 and b = 1/9, since they render the DK instability
h > hc within an interval of shock strengths corresponding
to 2.2586 < R < 3.1482. Both thermal P (a) and thermal-
plus-magnetic P∗ (b) pressure ratios are represented in the
left and right panels, respectively. The effect of the magnetic
field is qualitatively similar to that observed in Fig. 2 for an
ideal gas: the thermal contribution dominates for sufficiently
strong shocks, since the magnetic contribution is bounded
by the maximum density compression ratio (B2

2/B2
1)max =

(R2)max ∼ 63, although this contribution is now higher than
that found in the previous case due to the high compressibility
of the gas chosen for the computation.

The two partial derivatives required to define the DK pa-
rameter h∗, according to Eq. (18), take the form

ER = P + R2a(2Rb + γ − 2)

R2(1 − γ )
, (34a)

EP = 1 − Rb

R(γ − 1)
, (34b)

for the isochoric and isobaric derivatives, respectively. The
functions P , E , γT , ER, and EP are used to define h∗ and
h∗

c as a function of the density compression ratio R and the
constitutive gas parameters γ , a, and b, and the preshock β

parameter. For example, Fig. 6 shows the difference h∗ − h∗
c

as a function of R−1 for different values of the transverse
magnetic intensity β and the adiabatic index γ . The vdW
parameters are fixed at a = 1/2 and b = 1/9, respectively. For
these particular conditions, the perturbed shock can lead to
DK instability for two different reasons: purely acoustic insta-
bility (solid orange curve), previously found in Refs. [60,61],
and magnetosonic instability (dashed green curve).

As shown previously when studying the ideal gas case,
the effect of the magnetic field is stabilizing for sufficiently
low values of γ . In the case shown in Fig. 6 for γ = 31/30,
order of unity values of β make the shock stable. Further
computations show that β must be less than 63.88 for the
shock to be stable for any shock intensity, which was neutrally
stable in a nonmagnetized vdW gas with γ = 31/30, a = 1/2,
and b = 1/9. The effect of the magnetic field is reversed for
higher values of γ . Qualitatively similar to what is found in
ideal gases, the magnetic field promotes instability in gases
with high adiabatic index; see the case with γ = 7/2 in Fig. 6.
One evident distinction is that, for a vdW gas, there is no pos-
sibility to get a β-independent configuration, as occurred for
γ = 2 in an ideal gas. Another marked difference is that, since
h∗ − h∗

c is not zero in the strong-shock limit, the instability
prerequisite obtained for ideal gases, h̄∗

R > 0, does not apply
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FIG. 5. Rankine-Hugoniot curves for an MHD shock in a vdW gas with different values of transverse magnetic field intensities. The vdW
gas parameters are γ = 31/30, a = 1/2, and b = 1/9.

in this case, since h̄R > 0 and h∗ − h∗
c < 0 is still possible for

1 � R � Rmax.

C. Three-term equation of state for simple metals

In the previous section it was shown that magnetic fields
can promote instability under strong-shock conditions for
gases whose adiabatic index is sufficiently high, γ > 1 + √

2
for an ideal gas EoS. It corresponds to characteristic values
for metallic materials, so it is advisable to compute now the
stability limits with a more accurate description of the EoS.
Recall that ideal-gas equations of state with high γ are often
used to approximate the realistic EoS of condensed materials
[39,70,71] whose shock compression is low compared to ideal

FIG. 6. Function h∗ − h∗
c as a function of R−1 for different val-

ues of the transverse magnetic intensity β and the adiabatic index γ .
The parameters of the van der Waals EoS are a = 1/2 and b = 1/9.

gases. However, the assumption of a constant γ independent
of the shock strength may be an oversimplification for our
shock-front stability studies. In reality, the effective γ defined
by Eq. (6) as γ = ∂ln p/∂ln ρ|s in condensed materials can
be large, indicating near-incompressibility for relatively low
shock pressures, see the inset in Fig. 7. However, it decreases
rapidly with increasing shock compression. Since the DK
instability is only possible for finite shock strengths, in this
Section we check if the high γ required for the DK instability
range in a magnetized material can be produced in shock-
compressed solid materials.

For this purpose, we use, as an example, a convenient, an-
alytically tractable three-term EoS based on the cold-pressure
approximation developed by Ref. [73]. This model is reason-
ably accurate in describing the shock compression of simple
metals, such as Al and Cu (in this example, we use the param-
eters for Al, see the Appendix), for shock compressions up to
∼2.5 and pressures up to ∼5 Mbar. We do not seek higher EoS
model accuracy, which can be achieved with more elaborate
approximations, such as the seven-parameter model used by
Ref. [74]. The reason is that the magnetic fields required to
affect the shock compression significantly are too large to
be practically compatible with a uniform magnetization of
a material in a cold-metal state. The Mbar shock pressure
range required for substantial shock compression corresponds
to magnetic fields above 5MG, only produced in the labora-
tory with magnetocumulative generators [75,76]. Interaction
of a conducting metal sample with a magnetic field rapidly
increased to a multi-MG level results in the explosion of the
skin layer, converting the metal into a plasma. Our goal is
more straightforward: to check if the increase in effective
γ compatible with a realistic EoS of metal can enable SAE
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FIG. 7. Function h∗ − h∗
c as a function of R−1 for different

values of the transverse magnetic intensity β and the upstream
temperature (in eV). The scaled upstream density is z1 = 1, cor-
responding to ρ1 = ρ0m. The inset shows the effective postshock
polytropic index as a function of the shock compression ratio.

in magnetized but otherwise DK-stable materials [60]. We
demonstrate in the following that this is not the case.

In condensed materials, the equation of state and the inter-
nal energy function are typically written in terms of density ρ

and temperature T , as described in Eq. (A2) in the Appendix.
Then the definition of the parameter h∗ through the RH slope
dP/dR is conveniently expressed in the form

dP
dR = −∂H

∂R

(
∂H
∂P

)−1

= P ′
R − ∂H

∂R

∣∣∣∣
T

∂H
∂T

∣∣∣∣
−1

T
P ′
T , (35)

where T = T2/T1 is the temperature ratio across the shock
and the functions of the partial derivatives for the EoS and
the internal energy are

P ′
R = ∂P

∂R

∣∣∣∣
T

, P ′
T = ∂P

∂T

∣∣∣∣
R

, (36a)

E ′
R = ∂E

∂R

∣∣∣∣
T

, E ′
T = ∂E

∂T

∣∣∣∣
R

, (36b)

respectively, with the latter two being used to define the partial
derivatives along the Hugoniot, namely,

∂H
∂R

∣∣∣∣
T

= 2RE ′
R − (R − 1)P ′

R
2R

+ 1 + β − 3βP − 3R2 + 2R3

2βR2
, (37a)

∂H
∂T

∣∣∣∣
R

= 2RE ′
T − (R − 1)P ′

T
2R . (37b)

The prime symbols are used here to distinguish E ′
R, applied

along the isothermal condition, from the one previously de-
fined, ER, applied along the isobar. The rest of the primed

symbols are kept for consistency. To compute the fast mag-
netosonic Mach number MF2 needed for the definition of h∗

c ,
the polytropic index must be provided. It can be computed
with the aid of

γT = γc pc + γl pl + γe pe

pc + pl + pe
, (38)

which accounts for the cold, lattice, and electronic contri-
butions: γc, γl , and γe, respectively. They are provided in
Eq. (A11). Note that γT diverges in cold conditions, but it
tends to 5/3 if temperature is sufficiently high, as occurs in
the gas behind high-intensity shocks.

Figure 7 shows that the shock is stable for all conditions
considered: from weak to intense magnetic fields, from low
to high compression factors, and for different upstream tem-
peratures. Although the effect of the magnetic field seems to
increase the function h∗ − h∗

c in the least cold conditions, its
effect is not sufficiently strong to lead to SAE. The appar-
ent contradiction with the ideal gas is resolved if we take
into account that γ is a variable function. In weak-shock
conditions, the value of γ is high, but ideal gas theory dic-
tates that stability is ensured for any magnetic intensity and
any adiabatic index for sufficiently weak shocks. In strong-
shock conditions, where ideal gas theory predicted instability
for the high γ and low β, the adiabatic index of the com-
pressed material is lowered below 1 + √

2, thereby indicating
stability. We refer to the inset in Fig. 7, where the rapid
approach of γT towards the asymptotic value 5/3 < 1 + √

2 is
observed.

IV. SPATIOTEMPORAL EVOLUTION
OF THE PERTURBED FLOW

The previous section has been devoted to the specification
of the DK stability limits that distinguish the absolutely stable
regimes from the neutrally stable regime, the latter being
associated with constant-amplitude oscillations of the shock
ripples at late time and SAE. The analysis then provides no
information on the transient evolution nor on the long-time
perturbation amplitudes. To properly describe the effect of
the magnetic field intensity in the shocked gas perturbations,
which is a problem of great importance in MagLIF schemes,
we theoretically calculate the transient evolution of the shock
ripple and the postshock variables.

A. Shock ripple amplitude

Since the evolution of the isolated planar shock, either in
the DK neutrally stable regime or not, has been extensively
studied in previous works [77–79], we do not reproduce the
derivations here, but only present the final results. For the
decaying-amplitude case h∗ < h∗

c , the evolution of the shock
ripple amplitude is given by

ξs

∣∣
h�hc

(τ ) = 2

π

∫ 1

0

√
1 − z2σc

(σc − σbz2)2 + z2(1 − z2)

× cos
(
z
√

1 − M2
F2τ

)
dz, (39)
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which involves the parameters

σb = 1 − h∗

2MF2
, (40a)

σc = RMF2

1 − M2
F2

1 + h∗

2
. (40b)

The asymptotic behavior is ξs(τ ) ∼ τ−3/2 for τ 	 1. When
σb > σc + 1/(4σc) (or h∗ < h∗

d ), the mathematical expression
governing the evolution of the shock ripple remains the same,
although the initial exponential damping serves as a clear
distinguishing factor for this regime.

When h∗ = h∗
c , the parameters σb = σc, and then ξs(τ ) ∼

τ−1/2. For the case h∗ > h∗
c the shock ripple evolution must

include the nondecaying contribution, so that

ξs

∣∣
h>hc

(τ ) = ξs

∣∣
h�hc

(τ ) + ξ∞
s sin

(
ζ

√
1 − M2

F2τ
)
, (41)

where the normalized frequency is

ζ =
[

2σbσc − 1 − √
1 + 4σc(σc − σb)

2
(
σ 2

b − 1
)

]1/2

, (42)

satisfying ζ � 1, and the asymptotic amplitude

ξ∞
s = σc

ζ 2

σc − σbζ
2 + ζ

√
ζ 2 − 1√

1 + 4σc(σc − σb)
. (43)

It can be easily demonstrated that ξ∞
s is a monotonic func-

tion of h∗ bounded by ξ∞
s = 0 and ξ∞

s = R/(1 + 2RMF2 −
MF2), corresponding to the limits h∗ = h∗

c and h∗ = 1 +
2MF2, respectively. Note that, for h∗ = h∗

c , the frequency
agrees with the shock fundamental frequency ζ = 1, while it
diverges for h∗ = 1 + 2MF2.

It is of interest to evaluate these functions in the context
of MHD shocks. To simplify the analysis, this section is re-
stricted to the ideal gas EoS, so that the parametric domain
is reduced to γ (gas compressibility), β (magnetic field in-
tensity), and R (shock strength). For example, Fig. 8 shows
the temporal evolution of the shock ripple as a function of the
dimensionless temporal variable τ . Figure 8(a) is computed
for an ideal gas with γ = 1.1, with density compression ratio
R = 10 and two different magnetic field intensities β = 10−3

(blue curve) and β = 103 (red curve). As expected, the two
cases decay in time with the power law τ−3/2 since h∗ < h∗

c .
Given that γ < 2, the magnetic field exerts a stabilizing effect,
promoting the damping of the oscillations. There is an impor-
tant difference between the two chosen cases, with this γ and
R the strong magnetic field causes the case in blue to have
h∗ < h∗

d . These cases are marked in red in Fig. 4(a), where the
h∗

d behavior is best seen. Comparing both oscillations, we can
see how, although they have the same decay characterizing
their asymptotic behavior, the blue curve (h∗ < h∗

d ) undergoes
an initial exponential damping. This reduces the order of mag-
nitude of the amplitude substantially in the first oscillations in
comparison to the case with h∗ > h∗

d .
However, Fig. 8(b) shows the case for a high value of the

polytropic index γ = 3 > 1 + √
2 for R = 1.8 and the same

dimensionless magnetic intensities. In this case, the magnetic
field plays an amplifying role, with the case β = 10−3 (green

(b)

(a)

FIG. 8. Long-term shock ripple amplitude for two different gases
(γ = 1.1 and γ = 3) and shock strengths (for R = 10 and R = 1.8),
with the magnetic field being stabilizing (a) and destabilizing (b),
respectively. The dimensionless shock position coordinate is xs/λ =
M2/(2π )τ .

curve) displaying a DK neutrally stable shock, and therefore
asymptotically approaching a constant nonzero amplitude.

A switch in the stabilizing role of the magnetic field has
also been reported for other instabilities of interest for high-
energy density systems, such as the ablative Rayleigh-Taylor
instability, by García-Rubio et al. [80,81]. Returning to Fig. 8,
it is found that it takes several wavelengths for the shock to
travel to reach the constant-amplitude asymptotic state, where
the amplitude of the nondecaying contribution is much larger
than the amplitude of the oscillations associated with the de-
caying counterpart. This characteristic distance will therefore
depend on the shock value of ξ∞

s . Figure 9 shows the asymp-
totic shock ripple amplitude ξ∞

s as a function of R and β

for γ = 3 (orange-yellow) and γ = 7/2 (blue-yellow), corre-
sponding to sufficiently high adiabatic indices: γ > 1 + √

2.
It is observed a region where ξ∞

s is maximum, corresponding
to the conditions at which h∗ − h∗

c > 0 peaks, given in Fig. 3
for an ideal gas. It is also noteworthy that, for the parametric
domain considered, which includes relatively high magnetic
intensities (β � 10−3), the maximum asymptotic amplitude
ξ∞

s � 10−1 is one order of magnitude smaller than the initial
shock perturbation amplitude.
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FIG. 9. Isocontours of the asymptotic shock ripple amplitude ξ∞
s

for the DK neutrally stable conditions associated with highly magne-
tized shocked ideal gases with γ = 3 (orange-yellow) and γ = 7/2
(blue-yellow).

B. Magnetosonic, magnetoentropic,
and vortical perturbation field

In the context of the MHD linear waves studied in this
problem, Kovasznay’s decomposition [82] can effectively
segregate downstream perturbations, considering the specific
magnetic field orientation that renders no magnetic lines bend-
ing. Then the downstream perturbations split into vortical,
magnetoentropic, and fast magnetoacoustic modes. In this
case, the divergence-free vorticity perturbations generated at
the shock are decoupled from the density and magnetic field
perturbations. In addition, the alteration in density caused
by magnetosonic and entropic perturbations is directly pro-
portional to the perturbations in magnetic field intensity, as
represented by the relationship δρ/ρ2 = |δ �B|/| �B2|. It is im-
portant to note that only the latter perturbation corresponds to
steady disturbances that would persist in the shocked gas in
the absence of dissipation effects.

However, since the change in density associated with the
magnetosonic and entropic perturbations is proportional to
the perturbations in the magnetic field intensity, where only
the latter correspond to steady disturbances that would remain
in the shocked gas in the absence of dissipation effects. In
what follows, the amplitude of the steady perturbations is
analyzed. In what concerns the fast magnetosonic mode, the
perturbations induced by the shock ripple dynamics are

p̄∗(x̄ 	 1) = p̄∗
F cos(kF x̄ − ωF τ ), (44)

where the dispersion relationship of the fast magnetosonic
wave equation ω2

F = k2
F + 1 and the compatibility condition

at the shock ζ
√

1 − M2
F2 = (ωF − MF2kF ) allow us to write

kF = ζMF2 −
√

ζ 2 − 1√
1 − M2

F2

, (45a)

ωF = ζ − MF2

√
ζ 2 − 1√

1 − M2
F2

, (45b)

that correspond to the longitudinal wave number and fre-
quency in the shocked gas reference frame. The asymptotic
magnetosonic amplitude is readily given by the linearized RH
equation (14a):

p̄∗
F = σd

ζ

σbζ
2 − σc − ζ

√
ζ 2 − 1√

1 + 4σc(σc − σb)
, (46)

where σd is defined as

σd = −M2
F2(R − 1)√
1 − M2

F2

(47)

for conciseness.
Akin to the previous asymptotic expression for the shock

ripple ξ∞
s , the asymptotic shock pressure amplitude in

Eq. (46) is zero when h∗ = h∗
c , yet it grows unbounded as

h∗ → 1 + 2MF2. The propagating fast magnetosonic waves
involve changes in the velocity perturbations. In partic-
ular, they correspond to potential flow disturbances that
can be derived with the aid of Eq. (9) by imposing ∇ ×
δ�vF = 0. However, it is simpler to withdraw the acoustic
velocity perturbations (both longitudinal and transverse com-
ponents) from the Euler momentum conservation equations to
yield

ū∗
F (x̄ 	 1) = kF

ωF
p̄∗

F cos(kF x̄ − ωF τ ), (48a)

v̄∗
F (x̄ 	 1) = 1

ωF
p̄∗

F sin(kF x̄ − ωF τ ). (48b)

The postshock perturbation variables of interest also in-
clude the vorticity and the magnetoentropic field, since they
remain frozen to the fluid particles in the absence of dissipa-
tion effects. For example, the steady-rotational perturbations,
which are isobaric in the linear limit, are governed by

∂2ūr

∂ x̄2
− ūr = �, (49a)

∂2v̄r

∂ x̄2
− v̄r = −∂�

∂ x̄
, (49b)

where the function

�(x̄ 	 1) = ∂ v̄r

∂ x̄
+ ūr

= (1 + h∗)(R − 1)

2MF2
p̄∗

F sin
(√

M−2
F2 − 1 ζ x̄

)
(50)

represents the dimensionless vorticity field. When dissipation
effects are not present, and the Alfven mode is absent, the
generation of vorticity-entropy perturbations in the shocked
gas is exclusively confined to the distorted shock front. Along
with the vorticity perturbations, the oscillating shock gen-
erates density-entropic perturbations that are not related to
the fast magnetosonic disturbances. These steady disturbances
come along with a change in the magnetic field, so that
the postshock gas leaves behind a modulated magnetodensity
field in the form

ρ̄e(x̄ 	 1) = −h∗(l + 1) + M2
F2

h∗l + M2
F2

p̄∗
F cos

(√
M−2

F2 − 1 ζ x̄
)
,

(51)
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with the auxiliary parameter l defined as

l = 2RM2
F2

M2
F1(2 + βγ )

(52)

for conciseness. The density field is composed by the sum
of the acoustic and entropic modes. The acoustic component
is equal to the pressure component through Eq. (7c), and the
entropic one is imprinted in space with the equally perturbed
magnetic field.

V. NUMERICAL SIMULATIONS

To study a numerical application of the DK instability
we utilize the FLASH code [83,84]. FLASH is a publicly
available, high-performance computing, multiphysics, adap-
tive mesh refinement (AMR), finite-volume (FV) Eulerian
hydrodynamics, and magnetohydrodynamics (MHD) code,
developed at the University of Rochester by the Flash Cen-
ter for Computational Science [63]. The code scales well to
over 100 000 processors and uses a variety of parallelization
techniques to optimally utilize hardware resources. FLASH’s
modularity provides users with a significant degree of flex-
ibility and control that enables the modeling of problems
in a wide range of disciplines, including fluid dynamics,
hydrodynamic and MHD turbulence, astrophysics, cosmol-
ogy, combustion, fusion, and high-energy density physics
(HEDP). Over the past decade, FLASH has been augmented
with extensive HEDP and extended-MHD capabilities [84] as
part of the U.S. DOE NNSA-funded FLASH HEDP Initia-
tive and through direct support by the Los Alamos National
Laboratory (LANL), the Lawrence Livermore National Lab-
oratory (LLNL), and the Laboratory for Laser Energetics
(LLE). These include multiple state-of-the-art hydrodynamic
and MHD shock-capturing solvers [85]; three-temperature ex-
tensions with anisotropic thermal conduction, heat exchange,
multigroup radiation diffusion, tabulated multimaterial equa-
tions of state and opacities, laser energy deposition, and
numerous simulated diagnostics [84,86]. The FLASH code
and its capabilities have been verified through extensive
benchmarks and code-to-code comparisons and have been
validated through direct application to scores of laser-driven
and pulsed power-driven laboratory experiments, in premier
facilities around the world.

The nature of the DK instability discussed in this arti-
cle presents several difficulties for its predictability through
numerical simulations. Shocks, which are fronts without
thickness, can cause significant changes in flow variables by
several orders of magnitude. Small-amplitude perturbations
occurring at the shock front, which do not grow in the neutral
stability/SAE regime, are challenging to accurately capture
and track over time using numerical simulations. FLASH
includes multiple state-of-the-art hydrodynamic and MHD
shock capture schemes, among which the HLL solver (Harten,
Lax, and van Leer [87]) was found to be the best option for this
study. FLASH’s other, more accurate, solvers generated noise
that was comparable in magnitude to the disturbances being
studied. HLL-type solvers, however, are a class of more dif-
fusive approximate Riemann solvers that possess high levels
of robustness [88,89]. These solvers have an essential fea-
ture that makes them particularly suitable for handling small

FIG. 10. Sketch of the numerical setup that includes the domain
limits and the perturbation wavelength and amplitude

amplitude perturbations at shock fronts: They do not require
the use of added artificial viscosity, which could dampen the
oscillations that are being investigated. The simulations used
in this study employ a nonuniform square-box mesh, where
the size of the cells at the front is 1.625 × 10−4 cm. The mesh
is used to compute a shock that is initially distorted with
a half-wavelength of 0.5 cm and an amplitude of 0.01 cm.
Additionally, an AMR approach is employed to evaluate any
displacement of the shock front as the amplitude decreases, if
required.

The computational domain is depicted in Fig. 10. The
simulation begins with an initial solution that is prescribed
by the Rankine-Hugoniot equations for a fast MHD shock.
The inlet and outlet boundary conditions are designed to
maintain the average shock position static and are consistent
with each other. Symmetric boundary conditions define the
upper and lower limits of the domain, while outflow (zero
gradient) boundary conditions are used for the inlet and outlet
limits. These boundary conditions are a suitable approxima-
tion to nonreflective conditions, provided that a sufficiently
large downstream domain is defined, as per the isolated-shock
boundary condition specified in the linear analysis. Since
shock perturbations do not affect the upstream flow, the cor-
responding domain ahead of the shock is reduced to optimize
computational efficiency.

The evolution of the shock ripple amplitude is shown
in Fig. 11(a) for a fast MHD shock in an ideal gas, with
adiabatic index γ = 1.2, mass-compression ratio R = 6 and
two distinguished cases: low-magnetized (β = 103) and high-
magnetized (β = 10−3) gas flow. The former, plotted in red,
corresponds to a regular decaying solution (h∗

d < h∗ < h∗
c );

while the latter, in blue, corresponds to an initially exponen-
tially damped regime (−1 < h∗ < h∗

d ). The plot also displays
both the theoretical solution given by Eq. (39), plotted as a
solid line, and the numerical solution with FLASH (empty
circles). Figure 11(b) also provides the evolution of the shock
ripple amplitude, but this case is computed for γ = 4 and
R = 1.5594 with the same magnetic field intensities as in
Fig. 11(a): β = 103 and β = 10−3. The former, plotted in red,
corresponds to a regular decaying solution (h∗ < h∗

c ); while
the latter, in green, corresponds to a long-time nondecaying
condition (h∗ > h∗

c ), whose theoretical solution is given by
Eq. (41). Stable low magnetized solutions have been calcu-
lated in FLASH with zero magnetic field, but they are very
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(a)

(b)

FIG. 11. Evolution of the shock ripple amplitude for very low
(β = 103) and very high (β = 10−3) magnetic field intensities in an
ideal gas EoS. (a) γ = 1.2 and R = 6; (b) γ = 4 and R = 1.5594.
Solid black lines correspond to linear-theory results and empty cir-
cles to FLASH computations.

close to β = 103. Both comparisons shown in Fig. 11 are
detailed for better understanding in Fig. 4 (orange), and make
use of the same color code as in Fig. 8.

Along with the shock-corrugation evolution, it is of interest
to numerically investigate the postshock perturbation flow.
With this motivation, Fig. 12 displays the pressure and density
fields associated with the case h∗ > h∗

c in Fig. 11(a), orange
curve: γ = 4, R = 1.5594, and β = 10−3. The color scheme
is deliberately saturated to better highlight the disturbed field.
It is readily noted that pressure and density exhibit two dif-
ferent spatial frequencies. In the case of the pressure field, the
only source of perturbations corresponds to the traveling mag-
netosonic waves that are radiated downstream from the shock.
The wavelength of these waves can be determined directly
from Eq. (45), which predicts a wavelength of 0.59 cm. This
value is in good agreement with the results of the simulation.
As per the density field, the numerical solution displays both
acoustic plus entropic contributions simultaneously. However,
since the theoretical prediction for the entropic wave num-
ber is

√
M−2

F2 − 1 × ζ , giving 0.48 cm for the simulation
conditions, we can conclude that the acoustic contribution
is relatively weak. Besides, while the numerical simulations
exhibit a perfectly sinusoidal downstream lobular pattern, as
predicted by the theoretical analysis, the characteristic lengths
are accurately reproduced.

To further assess the accuracy of the simulations or the va-
lidity of the theoretical model, we will now turn our attention
to the amplitude of the perturbations. By simple inspection of
the color scale, we find that δp/p2 ∼ 2.4 × 10−2 and δρ/ρ2 ∼
9.6 × 10−3. These values can be used to calculate the am-
plitude of the total pressure field perturbation (thermal plus
magnetic contributions) with use made of the expression

p̄∗
num = 1

ε

[
δp2

p2
+ 2R2

s

Psβ

δB2

B2

] PsRsM2
F2

M2
F1(γ + 2/β )

, (53)

which yields p̄∗
num = 0.0614 for the conditions simulated in

Fig. 12. The theoretical prediction for the asymptotic value
of the pressure perturbation amplitudes (the lowest value
reached in the long-time regime) is p̄∗

∞ = 0.0547, which is
only slightly lower than the value observed in the simulations.
This is consistent with the fact that the downstream mag-
netosonic perturbations decay as the amplitude of the shock
ripple oscillations decreases, as shown in Fig. 11. It should be

FIG. 12. Downstream pressure (a) and density (b) fields for t = 1.32 × 10−2 s (τ = 7.11), and annotations for comparison with the
analytical downstream wavelength, in an ideal gas γ = 4 with a mass-compression ratio R = 1.5594 and a magnetic field of β = 10−3
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noted that this statement applies to isolated-shock conditions,
as the inclusion of a supporting mechanism would increase
the amplitude of the downstream pressure perturbations com-
pared to those generated at the shock [53].

VI. CONCLUSIONS

We have presented a linear theoretical analysis of the sta-
bility of fast magnetosonic shocks whose perturbation field
plane is perpendicular to the magnetic field lines. In this
setup, the mathematical description is similar to that used in a
gas-dynamics problem, with the total pressure (magnetic plus
thermal) playing the role of the thermal pressure field, and
the fast magnetosonic speed being equivalent to the acoustic
sound speed in the gas-dynamics problem. Therefore, by ap-
plying the convenient definitions, the stability limits in terms
of the classic DK parameter h (here conveniently redefined as
h∗) agree with those associated with conventional shocks and
initially presented in Refs. [40,41].

A theoretical model has been developed for any type of
equation of state (EoS) and then applied to three different
cases, namely ideal gases, van der Waals gases, and condensed
materials related to simple metals (specifically aluminium in
this case) through a three-term EoS. In addition, numerical
simulations have been conducted using the FLASH code for
ideal gases. The agreement between the theoretical model and
the numerical simulations is excellent, as can be seen from the
comparison of the oscillation frequencies and the prediction of
the transient evolution of the shock-ripple behavior. The main
conclusions drawn from this study are listed in the following.

(i) For an ideal gas EoS, when γ < 2, the effect of the
magnetic field is to decrease the amplitude of the shock rip-
ple oscillations, with the possibility of exerting an initially
exponential damping for sufficiently strong magnetic fields
h∗ < h∗

d . The effect of the magnetic field reverses for γ > 2.
Moreover, when the adiabatic index γ > 1 + √

2, the shock
can enter the DK neutrally stable regime h∗ > h∗

c , or SAE, if
the magnetic field intensity is sufficiently large and the shock
is sufficiently strong. Weak shocks are found to be always
stable regardless of the adiabatic index and the magnetic in-
tensity (h∗ < h∗

c ).
(ii) The stability conditions for a van der Waals EoS are af-

fected by additional factors related to intermolecular attraction
and covolume. In addition to the magnetic-induced neutral
stability/SAE observed in ideal gases for strong shocks and
high adiabatic indices, a purely acoustic instability exists for
weak magnetic fields and low values of γ . This is equivalent to
that found by Bates and Montgomery [61] and later on studied
in similar shock configurations [52,60].

(iii) We have found that for a three-term EoS describing
aluminium, the shock remains stable over the whole range
of parameters explored. Although neutral stability/SAE has
been predicted for strong shocks in low-compressible, highly
magnetized media [see point (i) for ideal gases], the compres-
sion of the shock causes a reduction in the adiabatic index
that keeps it below the instability threshold of 1 + √

2. We
suggest that additional examples with different metals could
be studied to further explore this phenomenon.

Several future works are planned to extend the current
study. One of them is to examine the effect of magnetic

fields oriented in a direction other than perpendicular to the
perturbation field. This orientation will introduce additional
modes downstream, namely the Alfvén and slow magne-
tosonic modes. Another future work aims to enhance the
analysis by utilizing more realistic boundary conditions that
accurately represent high-energy-density experiments. In ad-
dition, nonlinear perturbations will be explored using FLASH
simulations in this study.

Another essential extension of the present work involving
FLASH is its generalization for convergent cylindrical geom-
etry appropriate for ICF and HEDP applications, including
MagLIF and SZP. We cannot simply modify the analytical
stability study [90] of the baseline Guderley’s converging-
shock self-similar solution [91] because such solutions do not
exist with nonideal EoS permitting the DK instability; cf. the
discussion in Refs. [60,92–94] and references therein. We will
have to do the stability analysis numerically, the present work
serving as the necessary step of the FLASH code verification
for modeling the evolution of small-amplitude shock-front
perturbations.

ACKNOWLEDGMENTS

The work of A.C.R. and C.H. was supported by Project
No. TED2021-129446B-C41 (MICINN/FEDER, UE). C.H.
also received support from the Madrid Government (Comu-
nidad de Madrid-Spain) under the Multiannual Agreement
with UC3M (H2SFE-CM-UC3M). F.G.R. was supported by
the U.S. DOE, Office of Science, Fusion Energy Sciences
program, Grant No. DE-SC0014318. A.L.V. was supported
by the National Nuclear Security Administration of the U.S.
Department of Energy.). The Flash Center for Computa-
tional Science acknowledges support by the U.S. DOE NNSA
under Awards No. DE-NA0002724, No. DE-NA0003605,
No. DE-NA0003842, No. DE-NA0003934, and No. DE-
NA0003856, and Subcontract No. 630138 with LANL; the
NSF under Award No. PHY-2033925; the U.S. DOE Office
of Science Fusion Energy Sciences under Award No. DE-
SC0021990; and the U.S. DOE ARPA-E under Award No.
DE-AR0001272. The software used in this work was devel-
oped in part by the U.S. DOE NNSA- and U.S. DOE Office
of Science-supported Flash Center for Computational Science
at the University of Chicago and the University of Rochester.

APPENDIX: EOS FOR SIMPLE METALS

To describe the shock compression in condensed materials,
the three-term EoS is employed. The model, which corre-
sponds to that described in Chapter XI, Sec. 6, of Ref. [95]
and used as an example in Refs. [60,96], provides a reasonably
accurate description in the pressure range up to several Mbar.
The pressure and the specific internal energy are presented as
sums of three well-defined contributions,

p(ρ, T ) = pc(ρ) + pl (ρ, T ) + pe(ρ, T ), (A1)

E (ρ, T ) = Ec(ρ) + El (T ) + Ee(ρ, T ), (A2)

where the cold or elastic terms pc and Ec are related to the
interaction forces between the atoms of the material at T = 0
and therefore they depend only on the material density ρ. The
thermal ion (lattice) terms pl and El as well as the thermal
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electron terms pe and Ee are functions of both density and
temperature.

For the cold metal, we use Molodets’ analytical approx-
imation [73] for the density dependence of the Grüneisen
coefficient

� = 2

3
+ 2ρ0m

mρ − ρ0m
, (A3)

where ρ0m is the density extrapolated to zero temperature and
pressure and m is a dimensionless constitutive parameter.

With the aid of the Landau–Slater formula [97,98] and the
definition of cold energy pc = ρ2dEc/dρ,

pc(z) = 3K0m

(m − 1)4

(
1

5
m4z5/3 − 2m3z2/3 − 6m2z−1/3

+ mz−4/3 − 1

7
z−7/3 − 1

5
m4 + 2m3 + 6m2 − m + 1

7

)
,

(A4)

Ec(z) = 3K0m

ρ0m(m − 1)4

(
3

10
m4z2/3 − 6m3z−1/3

+7m4 − 70m3 − 210m2 + 35m − 5

35
z−1 + 9

2
m2z−4/3

− 3

7
mz−7/3 + 3

70
z−10/3

− 35m4 + 280m3 − 105m2 + 40m − 7

70

)
, (A5)

where K0m is the adiabatic bulk modulus extrapolated to zero
temperature and pressure and z = ρ/ρ0m is the normalized
density. For the ion lattice (thermal) contributions to the
pressure and internal energy are

pl (z, T ) = ρ0m
3

ma
z�(z)kBT, (A6)

El (T ) = 3

ma
kBT, (A7)

where ma is the atomic mass and kB is the Boltzmann constant.
The electron contributions are

pe(z, T ) = 1
3β0z1/3T 2, (A8)

Ee(z, T ) = 1
2β0z−2/3T 2, (A9)

where β0 is determined by the number of free electrons per
unit mass of the material at T = 0 and ρ = ρ0m. In deriving
Eq. (A9), if the electronic Grüneisen coefficient is taken to
be 2/3, then the density and temperature dependence would
correspond exactly to a free electron gas at a temperature well
below the Fermi energy.

The formulation calls for the definition of the speed of
sound which takes the form

c2 = γc pc + γl pl + γe pe

pc + pl + pe

p

ρ
, (A10)

where the term accompanying the factor p/ρ is the mean ef-
fective value of the adiabatic index. The corresponding values
of γc, γl , and γe associated with the cold, lattice, and electronic
contributions are, respectively,

γc = K0m

pc

(mz − 1)4

(m − 1)4z10/3
, (A11a)

γl = d ln �

d ln z
+ � + 1, (A11b)

γe = 5

3
. (A11c)
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