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Motion of a current-vortex sheet in the magnetic Kelvin-Helmholtz instability
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In this paper, we consider the Kelvin-Helmholtz instability in the magnetohydrodynamic flow. The motion
of the interface is described by a current-vortex sheet. We examine the linear stability of the current-vortex
sheet model and determine the growth rate of the interface. The interface is linearly stable for MA < 2 where
MA represents the Alfvén Mach number. It is found that the interface is linearly unstable in the limit of the
critical Alfvén Mach number MA = 2, due to resonance of eigenvalues. We perform numerical simulations for
the current-vortex sheet for both regimes of MA < 2 and MA > 2. The numerical results show the stabilizing
effects of the magnetic field on the evolution of the current-vortex sheet when the magnetic field is sufficiently
large. For the regime MA < 2, the sheet oscillates both longitudinally and transversely and the transverse surface
wave is pronounced for a large MA. Remarkably, the interface is nonlinearly unstable for MA ≈ 2, for MA < 2,
which may be due to the propagation of surface waves. For the regime MA > 2, the roll-up of the spiral is
weakened and the spiral is more pinched and stretched for smaller MA. A comparison of the unstable evolutions
of large and small values of MA shows significant differences of the magnetic field and vortex sheet strength.
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I. INTRODUCTION

The Kelvin-Helmholtz instability (KHI) is a basic phys-
ical process and arises in a velocity shear flow. Strong
roll-ups usually evolve on the interface and result in a
small-scale structure and eventually turbulent mixing of the
fluid [1–3]. The KHI is widely found in natural or astrophysi-
cal environments, such as billowing clouds, internal stratified
ocean [4], astrophysical jets [5], solar wind-magnetopause
interaction [6,7], and supernova explosions [8]. While the
phenomenon is well understood in fluid dynamics, it is much
more challenging in magnetohydrodynamic (MHD) flows.

The KHI in magnetic fields has been studied extensively.
Theoretical studies of the KHI in MHD flows started from
the linear stability analysis by Chandrasekhar [9], for incom-
pressible inviscid cases. Miura and Pritchett [10] extended the
linear analysis to compressible MHD flows. The stability of
steady MHD flows with current-vortex sheets was investigated
by Ilin et al. [11]. Hunter and Thoo [12] presented a weakly
nonlinear analysis for the MHD KHI and discussed the ill-
posedness of the solution from the propagation of nonlinear
surface waves.
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The nonlinear evolution of the MHD KHI has been studied
through numerical simulations. Malagoli et al. [13] examined
the effects of the Mach number, the ratio of the Alfvén speed
to the sound speed, and the effective diffusivity upon the evo-
lution and saturation of the KHI. Dahlbug et al. [14] reported
that the character of the instability changes depending on the
width of the current-vortex sheet. The growth and saturation
of the KHI with parallel and anti-parallel magnetic fields was
considered by Keppens et al. [15]. They showed that the
magnetic tension force can stabilize the instability and reduces
the growth rate. The formation of surface waves in the KHI
in a compressible plasma was discussed in Lai and Lyu [16].
More recently, Liu et al. [17] explored the physical effects of
the transverse magnetic pressure and magnetic tension on the
instability and showed that both have effects on the suppres-
sion process.

Despite the significance of vortex sheets in the MHD
flows, a few theoretical models have been proposed to in-
vestigate the nonlinear motion of fluid instabilities. Matsuoka
et al. [18,19] proposed a vortex sheet model to describe
the Richtmyer-Meshkov instability, which is an interfacial
instability driven by a shock wave, in a MHD flow. The
density jump in the Richtmyer-Meshkov instability induces
two different magnetic fields across the interface, and the tan-
gential discontinuities of magnetic fields induce a nonuniform
current-vortex sheet. They also applied the current-vortex
sheet model to study the nonlinear evolution of the MHD
KHI [20]. However, they considered only the regime of weak
magnetic fields, where the nonlinear evolution of the interface
does not significantly differ from that in the pure hydro-
dynamic flows [21,22]. Moreover, they presented the linear
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stability analysis for the Richtmyer-Meshkov instability and
obtained the dispersion relation for standing waves, in the
stable case. Their analysis is based essentially on the MHD
equations, not directly using the integral equation of the vortex
sheet model.

In this paper, we consider the current-vortex sheet model
for a parallel magnetic field. We present the linear stability
analysis from the current-vortex sheet model and determine
the growth rate to identify linearly stable and unstable regimes
of the MHD KHI. We also investigate the nonlinear evolution
of the MHD KHI for a wide range of magnetic fields, for both
unstable and stable regimes. For this purpose, we perform
numerical simulations using the vortex blob method [21,23].

An important question is whether the KHI in the MHD
flow is nonlinearly stable in the linearly stable regime. In the
hydrodynamic flows, the interface in the linearly stable regime
either does not grow or merely oscillates with an initial mode,
when surface tension is strong enough, or the density ratio of
upper and lower fluids is infinite in the absence of surface ten-
sion [24,25]. Therefore, the KHI in the hydrodynamic flows is
always stable when it is linearly stable. However, there have
been only a few literatures on the nonlinear stability of the
MHD KHI, with a sharp velocity jump. In this paper, we will
address the issue of the nonlinear stability of the MHD KHI.

In Sec. II, we describe the model of the current-vortex
sheet. In Sec. III, we present the linear stability analysis of
the model and find the growth rate. In Sec. IV, the numerical
method is described briefly and numerical results for the evo-
lution of the MHD KHI are presented for both linearly stable
and unstable regimes. Section V gives conclusions.

II. VORTEX SHEET MODEL IN MHD FLOWS

We consider an inviscid and incompressible MHD fluid
in two-dimensions. The governing equations for the flow are
given by

∂u
∂t

+ u · ∇u − 1

ρμ
B · ∇B = − 1

ρ
∇

(
p + 1

2μ
B · B

)
, (1)

∂B
∂t

= ∇ × (u × B), (2)

∇ · u = 0, (3)

∇ · B = 0, (4)

μj = ∇ × B, (5)

where u denotes the fluid velocity, ρ the fluid density, μ the
permeability, B the magnetic field, and p the fluid pressure.

We consider an interface with tangential velocity jump.
The velocity jump induces two different magnetic fields
B1 and B2 between the interface. From the tangential dis-
continuities of the fluid velocity and magnetic field, the
interface becomes a current-vortex sheet. We assume that the
interface is periodic in the x direction with period L = 2π and
the free stream velocity is ∓U at y = ±∞. The interface can
be described by a parametric curve x(θ, t ) = (x(θ, t ), y(θ, t ))
for 0 � θ � 2π .

The evolution of the interface is given by

dx
dt

= q, (6)

where q is the interface velocity. By rewriting the location of
the interface z = x + iy and the interface velocity q = u + iv
in the complex form, the interface velocity is given by the
Birkhoff-Rott equation [1]:

q∗(θ, t ) = 1

4π i
P.V.

∫ 2π

0
γ (θ ′, t ) cot

(
z(θ, t ) − z(θ ′, t )

2

)

× sθ (θ ′)dθ ′, (7)

where P.V. represents the principal value integral and s is the
arclength. The subscript θ denotes the partial derivative with
respect to it. The vortex sheet strength is defined as

γ (θ, t ) = ∂�

∂s
(θ, t ), (8)

where � is the circulation at the sheet. The vortex sheet
strength gives the tangential velocity difference across the
interface by

γ (θ, t ) = (u1 − u2) · t, (9)

where u1 and u2 are the velocities below and above the inter-
face, and t is the unit tangent vector to the interface.

From the continuity of the total pressure P = p + μB ·
B/2 at the interface and Eq. (1), the evolution equation for
the circulation is obtained as

d�

dt
= 1

ρμ
〈B〉 · js, (10)

where 〈B〉 = (B1 + B2)/2, and js = B1 − B2 denotes the sur-
face current density. The current sheet strength is given by
js = js · t. Differentiating Eq. (10) with respect to s, we have
the evolution equation for the vortex sheet strength,

dγ

dt
= 1

ρμsθ

(〈B〉 · js)θ . (11)

It was shown for the normal component of the magnetic
field [18,19] that

d

dt
(Bi · n) = 0, for i = 1, 2, (12)

if Bi · n = 0 is satisfied at t = 0, where n is the unit normal
vector to the interface. This equation means that the magnetic
field does not have the normal component at the interface for
t > 0 if the magnetic field is applied parallel to the interface
initially, i.e., Bi = Bt

i t. We then consider only the tangential
component of the magnetic field. From the induction equa-
tion [18,19], we have

dBt
1

dt
= − 1

2sθ

γ
(
Bt

1

)
θ
+ Bt

1

sθ

(
qt

θ + γθ

2

)
, (13a)

dBt
2

dt
= 1

2sθ

γ
(
Bt

2

)
θ
+ Bt

2

sθ

(
qt

θ − γθ

2

)
, (13b)

where qt denotes the tangential component of the interface
velocity q. Equations (6), (7), (11), and (13) determine the
motion of a current-vortex sheet when the magnetic field is
applied parallel to the interface.
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III. LINEAR STABILITY ANALYSIS

In this section, we present the linear stability analysis of the current-vortex sheet model described in the previous section. The
flat interface x(θ, t ) = θ, y(θ, t ) = 0 with �(θ, t ) = 2Uθ , and Bi(θ, t ) = B0 is an equilibrium solution of the current-vortex
sheet model. We consider the solution of small perturbations for the equilibrium under the linear approximation of the model.

Let us write the solution with small perturbations as

�(θ, t ) = 2U (θ + ε�̂(θ, t )), (14a)

x(θ, t ) = θ + εx̂(θ, t ), (14b)

y(θ, t ) = εŷ(θ, t ), (14c)

Bi(θ, t ) = B0 + εB̂t
i (θ, t )t. (14d)

The linearized equations are obtained by expanding Eqs. (6), (7), (10), and (13), and retaining the first order terms in ε,

∂�̂

∂t
(θ, t ) = B0

2ρμU

(
B̂t

1 − B̂t
2

)
, (15a)

∂ x̂

∂t
(θ, t ) = − U

4π

∫ 2π

0

ŷ(θ, t ) − ŷ(θ ′, t )

sin2[(θ − θ ′)/2)]
dθ ′, (15b)

∂ ŷ

∂t
(θ, t ) = − U

4π

{∫ 2π

0

x̂(θ, t ) − x̂(θ ′, t )

sin2[(θ − θ ′)/2]
dθ ′ − 2

∫ 2π

0
�̂θ (θ ′, t ) cot

(
θ − θ ′

2

)
dθ ′

}
, (15c)

∂B̂t
1

∂t
(θ, t ) = −U

(
B̂t

1

)
θ
+ B0x̂tθ + B0U (�̂θθ − x̂θθ ), (15d)

∂B̂t
2

∂t
(θ, t ) = U

(
B̂t

2

)
θ
+ B0x̂tθ − B0U (�̂θθ − x̂θθ ). (15e)

We express the perturbed quantities in Fourier series. The even and odd modes are coupled in the current-vortex sheet model;
this differs from the linear stability analysis of the vortex sheets in the hydrodynamic flows such as inviscid vortex sheets
with/without surface tension [26] and regularized vortex sheets [21,23]. The coupling of the even and odd modes in this system
makes the analysis more complicated. An ansatz for the solution of this model is of the form,

�̂(θ, t ) = P1(t ) cos(kθ ) + Q1(t ) sin(kθ ), (16a)

x̂(θ, t ) = P2(t ) cos(kθ ) + Q2(t ) sin(kθ ), (16b)

ŷ(θ, t ) = P3(t ) cos(kθ ) + Q3(t ) sin(kθ ), (16c)

B̂t
1(θ, t ) = P4(t ) cos(kθ ) + Q4(t ) sin(kθ ), (16d)

B̂t
2(θ, t ) = P5(t ) cos(kθ ) + Q5(t ) sin(kθ ), (16e)

where k is the wave number. This ansatz is substituted into Eq. (15). The integrals are calculated by applying the complex residue
theorem,

1

2π

∫ 2π

0
sin(kθ ′) cot

(
θ − θ ′

2

)
dθ ′ =

{− cos(kθ ) for k > 0,

0 for k = 0,
(17a)

1

2π

∫ 2π

0
cos(kθ ′) cot

(
θ − θ ′

2

)
dθ ′ =

{
sin(kθ ) for k > 0,

0 for k = 0,
(17b)

1

4π

∫ 2π

0

cos(kθ ) − cos(kθ ′)
sin2((θ − θ ′)/2)

dθ ′ = k cos(kθ ), (17c)

1

4π

∫ 2π

0

sin(kθ ) − sin(kθ ′)
sin2((θ − θ ′)/2)

dθ ′ = k sin(kθ ). (17d)

Thus, we have the system of equations for the amplitude Pi and Qi, for 1 � i � 5,

dZ
dt

=
(

A −E
E A

)
Z, (18)
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where

Z = (P1 P2 · · · P5 Q1 Q2 · · · Q5)T , (19a)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 B0
2ρμU − B0

2ρμU

0 0 −kU 0 0

kU −kU 0 0 0

−k2B0U k2B0U 0 0 0

k2B0U −k2B0U 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (19b)

E =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 k2B0U kU 0
0 0 k2B0U 0 −kU

⎞
⎟⎟⎟⎟⎠. (19c)

The growth rates from the linearized equations are obtained
by

λ(k) = 0, (20a)

λ(k) = ±ikU, (20b)

λ(k) = ±
√

k2
(
U 2 − v2

A

)
, (20c)

where vA = B0/
√

ρμ denotes the Alfvén speed. The growth
rate (20) indicates that the instability occurs when

U > vA, (21)

i.e., the Alfvén speed is smaller than the half of the veloc-
ity jump across the interface. This equation is expressed as
MA > 2, by defining the Alfvén Mach number MA = 2U/vA.
The growth rate (20c) agrees with the linear stability from the
MHD equations in Chandrasekhar [9] and Ren et al. [29].
The linear stability is identified as MA � 2 from Eq. (20c);
however, we should be careful for MA = 2 when the growth
rate (20c) becomes zero.

For further analysis, we calculate the eigenvector of the
linearized equations. All eigenvalues in Eq. (20) are double
roots of the characteristic equation. The eigenvalue λ = 0 has
the two independent eigenvectors,

Z1 = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0)T , (22a)

Z2 = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T . (22b)

The eigenvalues λ(k) = ±ikU have four independent eigen-
vectors, Zi, 3 � i � 6, which are not listed here. The

eigenvalues λ(k) = ±
√

k2(U 2 − v2
A) also have the four inde-

pendent eigenvectors,

Zi = (
0, 0, 0, 0, 0,±v2

A,±U 2,U
√


,

− kUvA

√

, kUvA

√



)T
, i = 7, 8, (23a)

Zi = ( ± v2
A,±U 2,U

√

,

− kUvA

√

, kUvA

√

, 0, 0, 0, 0, 0

)T
, i = 9, 10,

(23b)

by defining 
 = U 2 − v2
A. Thus, the linear system has a full

set of eigenvectors when 
 
= 0. However, when 
 vanishes,

the eigenvalues λ(k) = ±
√

k2(U 2 − v2
A) become zero, and the

number of eigenvectors associated with them reduces to 2,
which yields the solution of the form proportional to t . This
resonance behavior indicates that the interface is unstable
for the limiting value of the Alfvén Mach number, MA = 2.
Therefore, the criterion for the linear stability of the MHD
KHI is concluded as MA < 2. The resonance behavior in the
limiting value is highly contrasted to the KHI in the pure
hydrodynamic flows.

IV. NUMERICAL RESULTS

In this section, we present numerical results from the
current-vortex sheet model. The physical variables are nondi-
mensionalized to x/L → x, γ /(2U ) → γ , 2Ut/L → t , and
Bi/B0 → Bi, where B(t = 0) = B0t. The equation for the
vortex sheet strength (11) is nondimensionalized to

dγ

dt
= 1

M2
Asθ

(〈B〉 · js)θ , (24)

which introduces the Alfvén Mach number. Equation (13)
remains the same after nondimensionalization.

A. Numerical method

It is well known that the Kelvin-Helmholtz instability de-
velops a roll-up due to the formation of a singularity [30], and
this produces a difficulty in numerical computations [1]. To
overcome it, we apply the vortex blob method, which gives
a desingularization parameter δ > 0 to the integral kernel of
the Birkhoff-Rott equation, following Krasny [21]. The reg-
ularized Birkhoff-Rott equation, after nondimensionalization,
is given by

u(θ, t ) = 1

2

∫ 1

0

sinh 2π (y − y′)
cosh 2π (y − y′) − cos 2π (x − x′) + δ2

× γ (θ ′, t )sθ (θ ′)dθ ′, (25a)

v(θ, t ) = − 1

2

∫ 1

0

sin 2π (x − x′)
cosh 2π (y − y′) − cos 2π (x − x′) + δ2

×γ (θ ′, t )sθ (θ ′) dθ ′, (25b)
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FIG. 1. Evolution of the vortex sheet for MA = 1.8 and 1.0.

denoting x = x(θ, t ), y = y(θ, t ), and x′ = x(θ ′, t ), y′ =
y(θ ′, t ). The δ parameter in Eq. (25) acts as the numerical
viscosity on the interface. A small value of the regularization
parameter provides fine resolution of the interface, but it re-
quires a large number of points and makes the computation
expensive [21,22]. Thus, we choose δ = 0.15 for all the results
in this section. This value of δ was used in the previous works
on the vortex sheet in the MHD flows [18–20].

To solve the equations numerically, we discretize the in-
terface {x j}N

j=0, the vortex sheet strength {γ j}N
j=0, and the

magnetic fields {Bi j}N
j=0, i = 1, 2. The trapezoidal rule is

applied to evaluate the interface velocity (25). For time-
advancing of Eqs. (6), (11), and (13), the standard fourth-order
Runge-Kutta method is employed. All the spatial derivatives
are calculated by the central difference, except the case of
MA ≈ 2 which will be explained below.

The initial condition is set to

x(θ, 0) = θ, y(θ, 0) = 0, �(θ, 0) = θ − a0 sin(2πθ ),

(26a)

Bi(θ, 0) = ex, for i = 1, 2, (26b)

and 0 � θ � 1, by giving a perturbation only to the circulation
of the interface, where ex is the unit vector in the x axis, The
initial amplitude is set to a0 = 0.01. This initial condition was
used in Baker and Nachbin [26]. To present numerical results,
we divide the regime into MA > 2 and MA < 2, from the linear
stability analysis.

B. Results for MA < 2

We first consider the regime of MA < 2 for simulations and
choose MA = 1.8 and 1.0 as representative cases of stability.
For both cases, the number of points and time step are given
by N = 200 and 
t = 5 × 10−4.
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A
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M
A

 = 1 max
min

FIG. 2. Amplitude of the vortex sheet for MA = 1.8 and 1.0. The
blue (upper) curve represents the maximum height of the sheet, and
the red (lower) curve represents the minimum depth of the sheet.

Figure 1 shows the evolution of the vortex sheet for MA =
1.8 and 1.0. The scale of the y axis is enlarged for a clear
view. For both cases, the vortex sheet oscillates longitudinally
and roll-up is not formed, indicating the stability of the sheet.
However, the sheet for MA = 1.8 has a much larger amplitude
and oscillates more dynamically than that for MA = 1.0. Let
us look closer into the evolution of the sheet for MA = 1.8.
The sheet grows fast initially and slows down at 0.6 < t <

1.8. The sheet for 0.5 < θ < 1 then goes down until t = 4.5.
We see that the peak of the sheet moves largely in the hori-
zontal direction. This transverse oscillation will be due to the
occurrence of the Alfvén surface wave, which propagates on
the interface. For the case of MA = 1.0, the sheet moves trans-
versely only a little. The Alfvén surface wave is important
in space plasma and its behavior was investigated by many
authors [27,28].

The amplitude of the vortex sheet for MA = 1.8 and 1.0 is
plotted in Fig. 2. The blue (upper) curve represents the maxi-
mum height of the sheet, and the red (lower) curve represents
the minimum depth of the sheet. The amplitude of the sheet
for MA = 1.8 goes up and down irregularly from the Alfvén
oscillation, while that for MA = 1.0 oscillates relatively regu-
larly. The oscillation period of the sheet of MA = 1.8 is about
five times longer than that of MA = 1.0. From Eq. (20), the
linear stability analysis predicts the period of oscillation T =
1/(0.5 + √

12 − 0.52) = 0.73 for MA = 1.0, which is slightly
shorter than the numerical result in Fig. 2.

To examine the oscillatory behavior of the vortex sheet, we
plot the magnetic field Bt

1 and current sheet strength js for
the case of MA = 1.8. Figure 3 shows that the current sheet
strength of the peak and valley of the sheet is strong when
the sheet approaches the maximum and minimum. We also
observe that the current sheet strength of the peak and valley
is fairly strong at t = 3.2, where the peak and valley begin to
shift transversely in the opposite direction. The color pattern
of the magnetic field is similar to the current sheet strength,
although their values are quantitatively different.

In addition, we run simulations for MA close to 2 and have
difficulties in the computation. For MA ≈ 2, the computation
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FIG. 3. Magnetic field and current sheet strength for MA = 1.8. (a) Magnetic field Bt
1, and (b) current sheet strength js.

often stops in the middle of run. In this case, the surface wave
is stronger and this may influence the numerical stability. We
pay attention to the first and second terms in Eq. (13), which
can be regarded as a type of the advection equation where γ

plays as the wave speed. Therefore, to circumvent the numer-
ical instability, we change the central difference for γ (Bt

i )θ in
Eq. (13) into the second-order upwind difference:

γ
∂Bt

1

∂θ
≈

⎧⎨
⎩

γ j
3Bt

1, j−4Bt
1, j−1+Bt

1, j−2

2
θ
for γ j � 0,

γ j
−Bt

1, j+2+4Bt
1, j+1−3Bt

1, j

2
θ
for γ j < 0.

(27)

The forward and backward differences in Eq. (27) are
switched for γ (Bt

2)θ , because of the difference sign of γ (Bt
2)θ

in Eq. (13).
The evolution of the vortex sheet for MA = 1.9 by em-

ploying the upwind scheme is shown in Figs. 4 and 5. The
numerical parameters are given by N = 400 and 
t = 10−4.
In Fig. 4, the profiles at t = 1 and 2 are similar to the case of
MA = 1.8. However, the sheet at the center begins to steepen

at t = 2.7, and a kink appears at t = 3.0. Subsequently, roll-
up is evolved at the center of the sheet, as shown in Fig. 5.
The x and y axis are of the same scale in Fig. 5, while they
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FIG. 4. Evolution of the vortex sheet for MA = 1.9 at early times.
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FIG. 5. Evolution of the vortex sheet for MA = 1.9 at t � 4. The
x and y axis are of the same scale.

are different in Fig. 4. We also observe corrugations on the
sheet at t = 4 and 4.5. The magnetic field Bt

1 and vortex sheet
strength γ on the sheet for MA = 1.9, at t = 2, 2.7, 3 and 4,
are plotted in Fig. 6. Both Bt

1 and γ are disturbed at t = 2.7
and have a peak at the center at t = 3, which will be excited

by the singularity formation. We see that the wave propagates
outward at t = 4.

We also attempted to calculate the critical Alfvén Mach
number, MA = 2. The sheet for MA = 2 is unstable and roll-up
is evolved, similarly as MA = 1.9. (The result is not shown
here.) The instability in the limit of MA → 2 is consistent
with our linear stability analysis, and this instability would be
expected, because resonance of eigenvalues may occur when
MA is close to 2.

The instability for MA ≈ 2 can be further explained by
nonlinear surface waves. Hunter and Thoo [12] propose an
asymptotic equation for nonlinear surface waves on the KHI
in an incompressible MHD flow and show that an initially
linearly stable solution, under a certain condition, develops
a singularity in finite time, resulting in the instability of the
solution. (See also Ali and Hunter [31].) They discuss that sur-
face waves propagate with distinct speeds λi = U ± √−
,
i = 1, 2, and as 
 decreases to zero, the wave speeds λ1

and λ2 coalesce and give rise to instability. Here, 
 is the
same as that defined in Sec. 3, in our setting. Therefore, their
argument is in accordance with our linear stability analysis.
Our numerical results indicate that the nonlinear instability
for MA ≈ 2 is closely related with the propagation of surface
waves.

C. Results for MA > 2

For simulations of the unstable regime, we choose MA =
∞, 10, 5, and 3 as representative cases. The number of points
and time step are given by N = 1600 and 
t = 5 × 10−5 for
MA = 10, and N = 800 and 
t = 10−4 for MA = 5 and 3. For
MA = ∞, the numerical parameters are given by N = 1600
and 
t = 0.005, since there is no magnetic field applied to
the flow.

Figure 7 shows the evolution of the vortex sheet for MA =
∞ and MA = 10. In both cases, the spiral cores roll up
strongly and the outer spiral turns stretch at late times. We
observe that the outer spiral turns of MA = 10 stretch further
out than those of MA = ∞ at t = 4, and the maximum y value
of MA = 10 is slightly lower. Figure 8 shows the evolution of
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FIG. 6. Magnetic field Bt
1 and vortex sheet strength on the sheet for MA = 1.9.
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FIG. 7. Evolution of the vortex sheet for (a) MA = ∞ and (b) MA = 10.

the vortex sheet for MA = 5 and 3. For MA = 5, the roll-up
of the spiral core is weakened significantly and the spiral is
pinched and stretched at late times. For MA = 3, the sheet has
only a few spiral turns and, the width of the sheet is more
narrowed at late times. The results in Fig. 8 demonstrates
acting of an induced force to push in longitudinally and stretch
out transversely as the magnetic field increases.

Figure 9 plots the magnetic field Bt
1 and current sheet

strength js (= Bt
1 − Bt

2) along the sheet for MA = 10 and 3.

The magnetic field Bt
1 is large at the center of the sheet at early

times and increases drastically at θ = 0 and 1 (corresponding
to the starting point of the sheet) at late times for both cases of
MA = 10 and 3. At t = 4, the magnetic field at θ = 0 reaches
49.2 for MA = 10 and 17.1 for MA = 3, which are not shown
here. There are significant differences in the magnetic field
at t = 4 between MA = 10 and 3. For MA = 10, the peaks
increases rather gradually from the center to the outside, and
the differences of Bt

1 at θ = 0 from other points in the sheet
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FIG. 8. Evolution of the vortex sheet for (a) MA = 5 and (b) MA = 3.

are very large, whereas for MA = 3, several large peaks form
over the sheet irregularly and their intensities are comparable.
The current sheet strength for MA = 10 is the largest at about
θ = 0.4 at t = 1, and the peak is shifted to θ = 0.08 at t = 4.
In the case of MA = 3, the peak of the current sheet strength
also shifts to the outside up to t = 3, and the peaks of dif-
ferent signs are formed at t = 4. Note that Bt

2 is not drawn
here, because of the symmetric relation between Bt

1 and Bt
2,

i.e., Bt
2(θ ) = Bt

1(1 − θ ). We plot the temporal growth of the
maximum of the magnetic field Bt

1 for MA = 10, 5, and 3 in
Fig. 10. It shows that the peak of Bt

1 grows faster for larger
MA, or smaller initial magnetic field.

The vortex sheet strengths along the sheet for MA = ∞, 10,
and 3 are plotted in Fig. 11. The vortex sheet strengths for
MA = ∞ and 10 are concentrated on the center of the sheet,
and the peak of the vortex sheet strength for MA = 10 is
slightly lower than that for MA = ∞. For the case of MA = 3,
the vortex sheet strength is the strongest at the center up to
t = 2. At t = 4, the sheet strength has large oscillations with

a complex structure. The peak at the center is much decreased,
unlike other cases, and the maximum is at the outside, not at
the center.

Figure 12 shows the magnetic field Bt
1 and current sheet

strength js along the sheet for MA = 10 and MA = 3, at t = 4.
This figure confirms the result of Fig. 9 and provides a clearer
view of the magnetic field and current sheet strength. In
Fig. 12, the magnetic field Bt

1 for MA = 10 is the strongest at
the outer arm of the spiral and is weak in the inner spiral turns.
For MA = 3, the magnetic field is also the strongest around the
starting and ending points of the sheet and is relatively strong
in some parts of the inner turns. The current sheet strength for
MA = 10 is weak at the outmost spiral turn, in contrast to the
magnetic field, and is the strongest at the second outer spiral
turn, while the corresponding lower turn of the double spiral is
the strongest in negative. The sign of the current sheet strength
in each spiral turn from outside to inside alternates and its
intensity decreases. For MA = 3, the current sheet strength
in the upper (lower) second outer turn of the spiral is the
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FIG. 9. Magnetic field Bt
1 and current strength js (= Bt

1 − Bt
2) along the sheet. (a) MA = 10 and (b) MA = 3.
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FIG. 10. Growth of the maximum of Bt
1 for MA = 10, 5, and 3.

strongest in negative (positive) and is weak in the inner turns.
The peak of js in Fig. 9(a) corresponds to the upper second
outer spiral turn in Fig. 12(a), and the valley of js near θ = 0.2
in Fig. 7(b) corresponds to the upper second outer spiral turn
in Fig. 12(b).

Figure 13 plots the vortex sheet strength for MA = 10
and MA = 3, at t = 4. For MA = 10, the sheet strength is
concentrated on the innermost core of the spiral, which is
barely observable, and is positive over the sheet, whereas for
MA = 3, the sheet strength is the strongest in the outer arm of
the sheet and oscillates in sign over the sheet.

V. CONCLUSIONS

We have studied the stability and evolution of the KHI in
a MHD flow by describing the interface by a current-vortex
sheet. We examine the linear stability of the current-vortex
sheet model and obtain the growth rate of the interface. We
show that the interface is linearly stable for MA < 2 where
the magnetic field is larger than the half of the velocity jump,
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FIG. 11. Vortex sheet strength along the sheet for MA = ∞, 10, and 3.

setting ρμ = 1. Furthermore, it is revealed that the interface
is linearly unstable in the limit of the critical Alfvén Mach
number MA = 2, because of resonance of eigenvalues.

We consider a parallel magnetic field to the interface ini-
tially. The normal component of the magnetic field is zero at
t = 0 and remains unchanged at t > 0. One may generalize
the model to include the normal component of the magnetic
field. The evolution equation for the normal component of the
magnetic field can be derived easily. We have checked that
even with the normal component of the magnetic field, the
growth rate of the linear stability of the KHI remains the same.

We have conducted the numerical simulations for the
current-vortex sheet for both regimes of MA < 2 and MA > 2.

The numerical results show the stabilizing effects of the mag-
netic field on the evolution of the current-vortex sheet when
the magnetic field is sufficiently large. For the regime MA < 2,
the sheet oscillates both longitudinally and transversely, in
general. The transverse surface wave is pronounced for a
large MA, or small magnetic field. Remarkably, the interface
is nonlinearly unstable for MA close to 2, for MA < 2, which
may be due to the propagation of surface waves.

For the regime MA > 2, the roll-up of the spiral is weak-
ened and the spiral is more pinched and stretched for smaller
MA. There are significant differences of the evolution between
large and small values of MA. For a large MA, the magnetic
field is strong only at the outer spiral turn, but for a small MA,
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FIG. 12. Magnetic field Bt
1 and current sheet strength js at t = 4. (a) MA = 10 and (b) MA = 3.
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FIG. 13. Vortex sheet strength at t = 4. (a) MA = 10 and (b) MA = 3.

it is relatively strong also in the inner spiral turns. For a large
MA, the vortex sheet strength is the strongest at the center,
whereas for a small MA, the peak at the center is decreased
and the sheet strength at the outer turn becomes large at late
times.

The nonlinear instability for MA ≈ 2 is of special interest.
It seems that the sheet tends to steepen, due to surface waves,
and forms a singularity. More theoretical and numerical in-
vestigations on the formation of the singularity and the effect
of surface waves in this regime are called for. The numerical
investigation for the singularity formation near the critical
time requires the computation of the vortex method with
zero regularization parameter [32,33], which is a sophisticated
task.

The vortex sheet model is a sharp interface model in an
incompressible and ideal fluid. This model provides useful
virtues and insights in the understanding of the dynamics of
the KHI, in general. However, there are limitations of the
model in the application of real astrophysical system, par-
ticularly with finite thickness [7]. The vortex sheet model is
not suitable to describe the astrophysical phenomena such
as the tearing instability which leads to form “magnetic

islands” [15], and the coalescence instability in which parts
of the current sheet merge or separate [34]. The extension of
the vortex sheet model, or other vortex models, to deal with
these phenomena is an interesting subject to challenge.

One may further consider the formation of turbulence from
the vortex sheet model. Tryggvason et al. [35] showed that
the limiting solution of the vortex blob model reproduced
many features associated with viscous flows with increasing
Reynolds number. Numerical simulations of the KHI by us-
ing the vortex blob model showed the appearance of chaotic
and turbulent motions of the interface at the late nonlinear
stage [22,23,36]. The long-time computation of the magnetic
KHI by using the vortex sheet model requires sophisticated
numerical procedures. We leave this subject for future study.
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