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Elastohydrodynamic autoregulation in soft overlapping channels

Magnus V. Paludan , Matthew D. Biviano , and Kaare H. Jensen *

Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

(Received 13 January 2023; accepted 15 August 2023; published 18 September 2023)

Controlling fluid flow from an unsteady source is a challenging problem that is relevant in both living and
man-made systems. Animals have evolved various autoregulatory mechanisms to maintain homeostasis in vital
organs. This keeps the influx of nutrients essentially constant and independent of the perfusion pressure. Up
to this point, the autoregulation processes have primarily been ascribed to active mechanisms that regulate
vessel size, thereby adjusting the hydraulic conductance in response to, e.g., sensing of wall shear stress. We
propose an alternative elastohydrodynamic mechanism based on contacting soft vessels. Inspired by Starling’s
resistor, we combine experiments and theory to study the flow of a viscous liquid through a self-intersecting
soft conduit. In the overlapping region, the pressure difference between the two channel segments can cause one
pipe segment to dilate while the other is compressed. If the tissue is sufficiently soft, this mode of fluid-structure
interactions can lead to flow autoregulation. Our experimental observations compare well to a predictive model
based on low-Reynolds-number fluid flow and linear elasticity. Implications for conduit arrangement and passive
autoregulation in organs and limbs are discussed.

DOI: 10.1103/PhysRevE.108.035106

I. INTRODUCTION

Fluid flow in soft conduits is ubiquitous, and it is well
established that the deformation of individual channels can
impact flow quantity and quality [1]. For instance, many
animals, including mammals, have evolved autoregulatory
mechanisms in which cardiovascular vessels expand and con-
tract to maintain an approximately steady oxygen and nutrient
supply [2–4]. This process is critical in sensitive organs such
as the brain, kidneys, and liver, where constant perfusion rates
are essential for homeostasis [5–7]. Presently, the feedback
mechanism linking flow rates and conduit resistance is as-
cribed to active cellular processes that integrate the sensing
of local shear and metabolic rates to actuate vascular muscles
in myogenic processes [2,6,8].

It remains unclear, however, if a simpler and purely me-
chanical process could account for some of the observed flow
autoregulation. The three-dimensional arrangement of veins
and arteries may hold clues to such a mechanism. In some
cases, veins and arteries that feed into and out of the same
organ, or region of an organ, come into direct contact within
a confined space [Fig. 1(a)]. Examples of such overlapping
conduits can be found in or near the brain [9], spinal cord
[10], penis [11], pelvis [12], and kidney [13].

Blood flow across organs, as mentioned earlier, is driven by
a pressure difference �p between the incoming artery and out-
going vein generated by the heart muscle [8]. If the pressure
drop over the organ is sufficiently large, the two overlapping
tubes have the potential to deform in such a way that the
inlet conduit expands while the outlet contracts [Figs. 1(b)
and 1(c)]. This increases the net hydraulic resistance of the
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system, thus creating conditions suitable for a sublinear pres-
sure drop versus flow rate relation. We hypothesize that this
fluid-structure interaction could contribute to the observed
autoregulation processes. This conjecture is further supported
by the fact that similar interactions between overlapping pipes
enable essential physiological processes, e.g., venous restric-
tion during mammalian penile erection [11,14]. It is also
worth noting that conduit proximity is involved in several
medical conditions. The May-Thurner syndrome, where the
right iliac artery and the left iliac vein overlap in the pelvis,
can cause leg edema due to vein compression [12]. Similarly,
in the nutcracker syndrome, the aorta and superior mesenteric
artery compress the renal vein leading to hematuria and ab-
dominal pain [15].

While the physiological (dis)advantages of proximal soft
pipes are evident, the essential flow characteristics of soft
overlapping conduits have received relatively little atten-
tion. Substantial research, however, has been conducted on
individual flexible tubes (see, e.g., reviews by Pedley [16]
and Heil and Hazel [1]). A notable example is the Starling
resistor experiment in which a soft pipe is placed inside a
sealed pressurized jacket [17–21]. This mimics, for instance,
the action of extravascular muscles that act to either compress
or expand flow vessels as part of the active control processes
discussed previously. Flow limitation can occur in Starling’s
device if the jacket pressure increases proportionately to the
pressure drop across the flexible conduit [22–24]. The detailed
flow-rate characteristics depend, however, on the upstream,
downstream, and jacket pressure and the geometrical and ma-
terial parameters of the flexible soft tube, such as its length,
radius, thickness, and stiffness. While Starling’s resistor is rel-
evant to the proposed autoregulatory mechanism, the detailed
flow at the intersection between two connected overlapping
channels has, to our knowledge, not been studied previously.
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(a) (b) (c)

FIG. 1. Fluid-structure interactions in a self-intersecting soft
pipe. (a) Conceptual sketch of the blood supply to the human brain.
The artery (red) that feeds into the brain overlaps with the vein (blue)
that exits the brain. The artery and vein are connected via capillary
beds in the brain. (b) The self-intersecting soft pipe connects in serial
an inlet pipe (i), a connector pipe (ij), and an outlet pipe (j). The
inlet (i) and outlet (j) overlap within the region marked by gray. The
overlap has elastic modulus E , and the tissue thickness separating
the conduits (i) and (j) is denoted τ . (c) If the pressure in pipe
(i) exceeds the pressure in pipe (j), the elastic expansion of pipe
(i) causes compression of pipe (j).

In this paper we characterize the transport capacity of a
self-intersecting soft channel using a combination of experi-
ments and theory. We measure the flow-rate vs pressure-drop
relation of a fluidic device that comprises two overlapping
rectangular channels separated by an elastic sheet. The chan-
nels are connected via a resistive connector, mimicking the
connecting organ or tissue. We vary the geometrical channel
parameters (width and height), the sheet thickness, and the
resistance of the connector. Our data indicate that purely pas-
sive autoregulation is possible in relatively soft overlapping
channels when the organ resistance is not too large compared
to the overlapping channels. On the other hand, if the channels
are rigid or the organ resistance is too large, no flow control
is observed. The experiments thus confirm the feasibility of
the proposed passive autoregulatory mechanism if the overlap
occurs relatively close to the target tissue. To rationalize our
observations, we develop a theory based on low-Reynolds-
number hydrodynamics and linear elasticity that capture the
main system features. Finally, based on Murray’s law, we
estimate autoregulatory efficiency in human limbs and organs.

II. EXPERIMENTAL SETUP

This study aims to explore the hypothesis that fluid-
structure interactions in a flexible self-intersecting conduit
can autoregulate fluid flow (Fig. 1). To this end we have
characterized pressure-driven flow in a multilayered fluidic
device to quantify the flow in overlapping channels [Fig. 2(a)].
The device comprises two channels [(i) and (j)] that are seri-
ally connected via an internal resistor (ij) [Fig. 2(b)]. These
three vessels correspond to the artery (i), vein (j), and organ
(ij) (Fig. 1). An impermeable elastic sheet of thickness τ

constitutes the soft shared boundary between channels (i)
and (j). The transmural pressure, i.e., the pressure difference
between channels (i) and (j), causes the sheet to deflect into
the outlet channel (j), thereby reducing the channel height [see
conceptual drawing in Figs. 1(b) and 1(c) and Fig. 2(c)]. Our
fluidic device allows configuring the channel geometries, the
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FIG. 2. Multilayered microfluidic device. (a) Photograph of the
device. The internal structure is conceptually sketched. (b) Schematic
(y, z) drawing of the device. (c) Schematical 3D drawing (x, y, z) of
the device. Pressure is applied at channel (i)’s inlet, and channel (j)’s
outlet is connected to ambient pressure.

sheet material and thickness, and the magnitude of the organ
resistance.

In our experiments, we measured the flow rate Q across
the fluidic device by sweeping the applied pressure �p ≈
0–8 kPa at the inlet of channel (i). The outlet pressure of
channel (j) was kept at atmospheric conditions. The system
was allowed to equilibrate for 20 s and reach a steady state
before measuring the flow rate at each step in the pressure
sweep. Glycerol with viscosity μ = (1.2 ± 0.1)×10−1 Pa s
and density ρ = (1.23 ± 0.01)×103 kg/m3 was used as fluid.
The pressure drop across the fluidic device was measured us-
ing two pressure sensors (26PC, Honeywell, USA) at the inlet
and outlet of the device. The flow rate was measured using an
electronic scale (Quintix124-1S, Sartorius, Germany).

The long and shallow rectangular overlapping chan-
nels were milled from a single piece of polyoxymethylene
(Nomad 3, Carbide 3D, USA). We varied the chan-
nel height h0 = (251–325) ± 25 μm and width 2w =
(2.1–2.4) ± 0.1 mm, while keeping the channel length � =
30 ± 1 mm constant. The polymer sheet (Elite Double 22,
Zhermack, Italy) with Poisson’s ratio ν = 0.49 [25] and elas-
tic modulus E = 363 ± 58 kPa (measured via a single can-
tilever beam test [26]) was clamped along the edges of the two
overlapping channels. To explore the impact of vessel elastic-
ity, we modified the membrane thickness τ = (0.40–1.00) ±
0.05 mm. To study the effects of organ resistance, we varied
the interior resistor radius a(ij) = (0.25–2.00) ± 0.10 mm and
resistor lengths L = (5.9–18.5) ± 0.5 cm. To limit the effects
of vessel compliance in the organ resistor, we used either rel-
atively thick-walled silicone rubber tubings or polyetherether-
ketone tubing. The interior resistances were characterized
by measuring the pressure-drop to flow-rate relationship via
the method outlined above, and the hydraulic resistance
was found by fitting a straight line to the pressure-flow
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TABLE I. Parameters of microfluidic devices and network resistors used in the experiments. Each microfluidic device is assigned a color
(column 5) and each network resistor a symbol (column 9). The following parameters were kept constant in the experiments: Channel
length � = 30 ± 1 mm, viscosity μ = (1.2 ± 0.1)×10−1 Pa s, the membrane’s Young’s modulus E = (363 ± 50) kPa, and Poisson’s ratio
ν = 0.49 [25].

Channel height Channel width Membrane Radius Length
Device h0 [μm] 2w [mm] thickness τ [μm] Color Resistor a [mm] L [cm] Symbol

1 251 ± 25 2.4 ± 0.1 400 ± 50 • 0 2.0 ± 0.1 8.0 ± 1.0 •
2 325 ± 25 2.4 ± 0.1 400 ± 50 • 1 0.25 ± 0.01 5.9 ± 0.5 �
3 223 ± 25 2.1 ± 0.1 400 ± 50 • 2 0.25 ± 0.01 11.7 ± 0.5 �
4 233 ± 25 2.4 ± 0.1 1000 ± 50 • 3 0.25 ± 0.01 18.5 ± 0.5 �
5 233 ± 25 2.4 ± 0.1 500 ± 50 •

data. For clarity, we have assigned different colors and sym-
bols to match each device and organ configuration. For an
overview, see Table I.

III. RESULTS

Having outlined the experimental methods, we now fo-
cus on the observed pressure-drop vs flow-rate data. To
contextualize our observations, we introduce two nondimen-
sional variables critical to the hypothesized autoregulation
mechanisms. For the elastic interactions between the two
overlapping conduits to be significant in the overall flow ca-
pacity, the pressure difference across the elastic sheet must be
sufficient to deform. From linear plate theory, we can estimate
the pressure �pc required to deflect the membrane from its
neutral position a distance h0 until it contacts the bottom outlet
channel as �pc ∝ Eτ 3h0/w

4. The nondimensional pressure
ratio

P̃ = APPLIED PRESSURE

CONTACT PRESSURE
= �p

�pc
(1)

quantifies whether the applied pressure is large enough to
cause significant deformations (P̃ close to unity) or negli-
gible deformations (P̃ close to zero). Even with significant
outlet conduit compression, the internal or organ resistance
(in our case, a rigid channel linking the two overlapping
conduits) can dominate the overall flow characteristics if it
is large compared to the summed resistance of the inlet and
outlet channels. We quantify the nondimensional resistance
by taking the ratio of internal or organ resistance (R(ij)) to the
sum of base (i.e., deformation-free) resistances of the inlet and
outlet channels (R(i)

0 and R(j)
0 )

R̃ = ORGAN RESISTANCE

OVERLAP RESISTANCE
= R(ij)

R(i)
0 + R(j)

0

. (2)

In our experiments, the resistance ratio varies in the range
R̃ = 10−4–101.

Experimental observations

We begin our discussion by considering the limit of a
rigid shared boundary corresponding to a relatively thick
membrane [Fig. 3(a)]. In this experiment, even when the
resistance ratio is relatively small, R̃ ≈ 10−4, we observe
a linear ohmic relationship between the applied pressure
�p and the observed flow rate Q. For this device 4 (with

membrane thickness τ = 1.0 mm, width 2w = 2.4 mm, and
height h0 = 0.23 mm) we can estimate the contact pressure
�pc ≈ 10 kPa which is larger than maximum applied pres-
sure �p = 7 kPa in the experiment. Proceeding to consider
deformations of the soft shared channel boundary, we exam-
ine a set of experiments using a relatively thin and/or wide
membrane [Figs. 3(b) and 3(c)]. In these cases, sublinear
relations between flow and pressure are observed. Notably,
the regimes in which the flow rate is approximately con-
stant, or varies slowly, as a function of applied pressure,
correspond to successful autoregulation [Fig. 3(b)]. In con-
trast to device 4 [in Fig. 3(a)] device 1 [in Fig. 3(b)] has a
thinner membrane (membrane thickness τ = 0.4 mm, width
2w = 2.4 mm, height h0 = 0.25 mm), and we can estimate
�pc ≈ 1 kPa, consistent with the observed deviation from
linear behavior at �p ≈ 7 kPa. To facilitate the subsequent
discussion, we use device 1’s contact pressure (i.e., �p∗

c =
7 kPa) as a scale relative to which we contextualize all subse-
quent pressure data. For device 4, the contact pressure is larger
than �p∗

c because of the thicker membrane. In return, when
the applied pressure reaches the baseline contact pressure,
�p = �p∗

c , the pressure ratio is small compared to unity, and
no digression from the 1:1 line is observed. By increasing the
pressure beyond �p∗

c , it is, of course, possible to access the
nonlinear regime with any device. It is also worth mentioning
that the flow rate tends to be approximately constant when the
pressure ratio is increased beyond unity (see Appendix A).
However, to mimic the action of a force-limited muscular
pump [27], such as the heart, we constrain the pressure range
in the subsequent analysis.

Another interesting observation is that the variations in
the internal (organ) resistance R(ij) also had a strong impact
on the flow. In particular, deviations from the linear flow
behavior were not observed when the resistance ratio reached
R̃ � 10. This can be made apparent by considering the data in
Fig. 3(b). For low relative resistance, R̃ ≈ 10−4 (device 1 with
resistor 0; see Table I), the sublinear flow-pressure character-
istics deviate significantly from the 1:1 line. In contrast, when
the internal resistance is increased to R̃ ≈ 7 (device 1 with
resistor 3), no digression from the 1:1 line is observed. While
the flow rate magnitude can be tuned at low internal resistance
[Fig. 3(c), devices 1, 2, and 3 with resistor 0] by varying
the channel width and height, an increase in organ resistance
[R̃ ≈ 4–15, Fig. 3(d), devices 1, 2, and 3 with resistor 3]
leads to the organ resistance-dominated regime where flow
increases approximately linearly with applied pressure.
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FIG. 3. Flow-to-pressure relationships for selected device configurations. Colors and symbols represent measurements for different device
and internal resistance configurations; see Table I. Each shown (�p, Q) measurement consists of an average of 10 consecutive individual
measurements. Error bars indicate the standard deviation. The dashed lines accompanying the measurements are our mathematical model,
Eq. (27), with input parameters from Table I. The shaded regions around the dashed lines represent error propagation of the model, Eq. (27),
using error estimates of the input parameters given in Table I. (a) Fluid device with a relatively thick elastic sheet (device 4, Table I). The
resistance ratio is increased from R̃ ∼ 10−4 to R̃ ≈ 5. (b) Fluid device with a relatively thick elastic sheet (device 1, Table I). The resistance
ratio is increased from R̃ ∼ 10−4 to R̃ ≈ 7. (c) Fluid devices with different channel height and width (devices 1, 2, and 3, Table I). R̃ ∼ 10−4

in all three configurations. (d) Same as (c) but with R̃ ≈ 4−15.

We conclude this section with a general comment about
the fluid flow conditions. Up to this point, we have argued
that pressure-induced elastic deformations are responsible for
the sublinear trends in the experimental data (Figs. 1 and 2).
It is, however, well established that inertial effects can lead
to similar patterns [28]. To estimate the magnitude of such
effects in our setup, we calculated the Reynolds number Re =
(ρ〈v〉h0)/μ ≈ (0.5–1.0)×10−2, where 〈v〉 = Q/(2wh0) is the
average fluid velocity. This magnitude of Re suggests that
inertial effects are not the primary driver of the observed data
patterns.

IV. THEORY

To expand upon our understanding of the experimental ob-
servations and evaluate the feasibility of flow autoregulation
under physiological conditions, we now proceed to develop
a mathematical model. Our goal is to derive a relationship
between the flow rate, Q, and the applied pressure drop across
the fluidic device, �p. We note that a full numerical solu-
tion to the coupled elastohydrodynamic problem is possible
using, e.g., finite-element methods [29]. Here, however, we
deliberately focus on a simpler approach with the limited
goal of extracting key physical phenomena and parameter
dependencies.

We begin by defining the governing equations. The fluid
flow in the device inlet (i) and outlet (j) channels, and in
the internal conduit (ij), are governed by the incompressible
Navier-Stokes equation

ρ[∂t v + (v · ∇)v] = −∇p + μ∇2v (3)

and the continuity equation

∇ · v = 0, (4)

where v is the fluid velocity field and p is the pressure. The
linear Kirchoff-Love equation governs the elastic sheet defor-
mation [30,31]

∇2
||∇2

||u = pt (x, z)

D
, (5)

where u is the sheet deformation, ∇2
|| is the Laplace oper-

ator in the (x, z) plane [see Fig. 2(c)], and D = Eτ 3

12(1−ν2 ) is
the sheet’s flexural rigidity. The transmural pressure, pt =
p(i) − p(j), is the local position-dependent pressure difference
between channels (i) and (j). As we advance, we label physi-
cal quantities (e.g., fluid velocity, pressure, dimensions) with
superscripts (i), (j), and (ij) for channels (i), (j), and (ij),
respectively.

In our experiments, the pressure was applied to the inlet of
channel (i), and the pressure at the outlet of channel (j) was
set to atmospheric. Since the outlet of channel (i) is connected
to the inlet of channel (j) via the organ resistor where an
intermediate pressure drop �p(ij) is deposited, the pressure
boundary conditions read

p(i) = �p and p(j) = 0, z = 0, (6)

p(i) − p(j) = �p(ij) z = �. (7)

The no-slip fluid velocity boundary conditions in channels (i)
and (j) require that

v(i)(x = ±w, y, z) = v(i)
(
x, y = h(i)

0 , z
)

= v(i)(x, y = −u(x, z), z) = 0, (8)

v(j)(x = ±w, y, z) = v(j)(x, y = −h(j)
0 , z

)
= v(j)(x, y = −u(x, z), z) = 0. (9)

Finally, the boundary conditions for the clamped membrane
are

∂xu = u(x, z) = 0, at x = ±w, (10)

∂zu = u(x, z) = 0, at z = 0, �. (11)

Having established the governing equations and boundary
conditions, we continue our pursuit of a quantitative relation
between the flow rate Q and pressure drop �p. Before pro-
ceeding, however, we note that our equation system includes
the undetermined internal pressure drop �p(ij) [Eq. (7)]. In the
following, we assume that it is linked to the organ flow Q(ij)
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rate via the Hagen-Poiseuille equation

Q(ij) = �p(ij)

R(ij)
, (12)

where R(ij) is the internal hydraulic resistance. Moreover, an
essential feature of our systems is the serial coupling of the
inlet (i), organ (ij), and outlet (j) channels. Since the elastic
sheet is impermeable, the fluid flow rate through the circuit
is conserved, which leads to a statement of Kirchoff’s current
law in the form

Q ≡ Q(i) = Q(ij) = −Q(j). (13)

For each channel in the serial connection, the flow rate is
computed by integrating the axis velocity component over the
cross-sectional area (A). For example, the flow rate in the inlet
channel (i) is

Q(i) =
∫ w

−w

dx
∫ h(i)

0

−u(x,z)
dy v(i)

z (x, y, z). (14)

To determine the Q − �p relationship of the flow circuit, the
velocity and pressure distribution is found for each conduit
under the constraint of continuity [Eq. (13)]. This, however,
is complicated by the two-way coupling of the fluid-elasticity
problem. First, the sheet deformation u depends on the trans-
mural pressure difference pt [Eq. (5)]. Second, the fluid
velocity and pressure distribution depend on the sheet defor-
mation via the no-slip boundary conditions [Eqs. (8) and (9)].
To solve the coupled problem, we apply the standard approach
(see, e.g., [32]) and use the following three-step procedure:
First, we solve for the sheet deformation u given an arbitrary
pressure profile pt as input. Similarly, we compute the pres-
sure and flow velocity for a given sheet deformation profile
u. Finally, we apply the continuity constraint to determine a
self-consistent pressure, flow, and deformation solution.

To enhance the physical clarity of the subsequent interpre-
tation of our data, we begin by appropriately simplifying the
governing equations for both the fluid and the elastic solid.
The lubrication equations can approximate the fluid flow in
channels (i) and (j) since the channels are shallow and long
(h(i,j)

0 
 2w 
 �) and the Reynolds number is small, Re ∼
10−2. This leads to

∂z p(i)(z) = μ∂2
y v(i)

z and (15)

∂z p(j)(z) = μ∂2
y v(j)

z . (16)

The velocity and pressure boundary conditions [Eqs. (6) and
(7)] are

v(i)
z = 0 at y = h(i)

0 and y = −u, (17)

v(j)
z = 0 at y = −h(j)

0 and y = −u. (18)

The sheet deformation can be approximated by the
Euler-Bernoulli equation under the conditions that the defor-
mations are relatively small (umax = h0 < τ ) and that the sheet
is thin and long (τ 
 2w 
 �),

∂4
x u = pt (z)

D
. (19)

It is worth noting that by disregarding the effects of the axial
z coordinate, we have also ignored the potential end effects.

The membrane corners, however, are located away from the
overlapping flow channel and are thus likely, at least to a first
approximation, to play a relatively small role in determining
the deflection. Finally, the elastic boundary conditions are

u(x, z) = ∂xu(x, z) = 0 at x = ±w. (20)

Conveniently, the sheet deformation is now governed by an
ordinary differential equation in x [Eq. (19)] even though the
transverse pressure difference has an implicit z dependency
[Eqs. (15) and (16)]. This allows us to solve for the deforma-
tion u while treating the transmural pressure pt as constant
and for the flow velocities, v(i)

z and v
(j)
z , while treating the

deformation u as constant. Using this approach, we find the
usual fourth-order sheet deformation profile

u(x, z) = h(j)
0

pt (z)

�pc

(
1 − x

w

)2(
1 + x

w

)2
, (21)

where �pc = 24Dh(j)
0

w4 is the contact pressure at which the max-

imum deformation u(x = 0) = h(j)
0 equals the height of outlet

channel (j). Next, it emerges that the flow velocities are of the
usual parabolic form

v(i)
z = 1

2μ
∂z p(i)

(
y − h(i)

0

)
(y + u(x, z)), (22)

v(j)
z = 1

2μ
∂z p(j)

(
y + h(j)

0

)
(y + u(x, z)). (23)

Finally, this allows us to calculate the inlet and outlet conduit
flow rates

Q(i) = − �

R(i)
0

∂z p(i) f [εpt (z)/pc], (24)

Q(j) = − �

R(j)
0

∂z p(j) f [−pt (z)/pc], (25)

where R(i)
0 = 12μ�

2w(h(i)
0 )3

and R(j)
0 = 12μ�

2w(h(j)
0 )3

are the base resis-

tances of channels (i) and (j), respectively, corresponding to
the undeformed geometry. The parameter ε = h(i)

0 /h(j)
0 is the

ratio of the channel (i) and (j) heights (note that in our experi-
ments, ε = 1), and the function f (s) is the polynomial

f (s) = 1 + 8
5 s + 128

105 s2 + 1048
3003 s3, (26)

where the coefficients stem from the integration of the lubri-
cation equations.

Before proceeding with our exploration of the �p − Q
relation, we note that a closed-form solution to Eq. (13) was
found by Christov et al. [32] for pressure-driven flow in a
single rectangular duct with an elastic lid (see also the re-
lated work by members of our team on individual compliant
channels [33]). In the present study, however, the two chan-
nels interact via a shared soft boundary, and the flow rate in
channel (i) depends on the pressure in both channels (i) and
(j), and vice versa for channel (j). This complicates efforts to
determine a similar closed-form expression for the flow rate,
and it is not, to our knowledge, generally possible. However,
robust numerical solutions can be determined by employ-
ing, e.g., a basic finite-difference method, thereby revealing
the Q − �p relationship for a specific choice of parameters
(see Appendix B).
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TABLE II. The pressure-drop vs flow-rate relationship [Eq. (27)]
in the limits of low resistance (R̃ 
 1), high resistance (R̃ � 1), low
pressure (P̃ 
 1), and high pressure (P̃ ∼ 1).

R̃ 
 1 R̃ � 1

P̃ 
 1 �p
2R0

�p
R(ij)

P̃ ∼ 1 �p
2R0

(1 − 0.7P̃ + 0.2P̃2) �p
R(ij)

To unpack the basic dependence on physical parameters in
our data, we leave the detailed numerical analysis to future
works and focus instead on an approximate analytical solu-
tion. This, it turns out, is most conveniently developed starting
in the limit of large internal resistance (R̃ � 1). To separate
ourselves from nonessential mathematical complications, we
further limit our attention to the experimental case at hand, in
which the inlet and outlet channels have equal heights, thereby
fixing the parameter ε = h(i)

0 /h(j)
0 = 1. (This implies that the

base resistances are equal, i.e., R0 ≡ R(i)
0 = R(j)

0 .) Since we
assume the resistance ratio is large, the majority of the pres-
sure drop is deposited across the organ resistor, and we can
approximate the transmural pressure as pt (z) ≈ �p, i.e., in-
dependent of the longitudinal position z. This results in the
sheet deformation being independent of z, which allows us
to integrate Eqs. (24) and (25) using the pressure boundary
conditions in Eqs. (6) and (7). Then, combining the resulting
flow rates Q(i) and Q(j) with the organ flow rate in Eq. (12), the
solution to the circuit equation (13), reads

Q = �p

R0

1

2R̃ + f −1(P̃) + f −1(−P̃)
, (27)

where the function f is defined in Eq. (26). This result differs
from the numerics by less than 30% even when the resistance
ratio is small, R̃ ∼ 0.1. However, the error is already reduced
to approximately 10% for moderate resistance ratios R̃ ∼ 1,
and further decreased to less than 5% when the resistance ratio
R̃ ∼ 10.

To elucidate the physical meaning of the flow-rate relation
in Eq. (27), we first note that the result is consistent with the
equivalent rigid system by setting P̃ = �p/�pc 
 1, which
yields a linear pressure-flow relation

Q0 = �p

2R0(1 + R̃)
, (for �pc 
 �p). (28)

The remaining two terms f (P̃) and f (−P̃) in the denominator
of Eq. (27) contain the effect of the opening inlet channel
( f (P̃) > 1) and the closing outlet conduit [ f (−P̃) < 1].

The functional form for the pressure-drop vs flow-rate
relation can best be appreciated by performing a series ex-
pansion of the flow rate Q in Eq. (27) (Table II). For low
internal resistance (R̃ 
 1), the flow is dominated by the over-
lap resistance 2R0 = R(i)

0 + R(j)
0 . In contrast, in the opposite

limit (R̃ � 1), the flow resistance is dominated by the organ
resistance R(ij). On the other hand, at relatively high pressures
(P̃ ≈ 1), the flow rate depends nonlinearly on applied pressure
when the resistance R̃ 
 1 is small. In this limit, the flow rate
Q ∼ �p/R0(1 − 0.7P̃ + 0.2P̃2) deviates substantially from
the linear trend.

10−3 10−2 10−1
10−3

10−2

10−1

QE (ml/min)

Q
T

(m
l/

m
in

)

FIG. 4. Lubrication model flow rates (QT ) vs experimentally
measured flow rates (QE ). (x, y) error bars indicate standard de-
viation in flow rate measurements and error propagation in the
lubrication model [Eq. (27)] with parameters in Table I. The solid
black line indicates a 1:1 relationship.

V. DISCUSSION

To evaluate the ability of the model to rationalize the data,
we have superposed the measurements in Fig. 3 with the
model using the parameters and color or symbol encoding
in Table I. The dashed colored lines correspond to Eq. (27)
with no free parameters. The shaded regions around the lines
in Fig. 3 correspond to error propagation of Eq. (27) with
respect to uncertainties in measured geometrical and material
parameters. (We note that the model is relatively sensitive
to small variations in geometrical and material parameters
because, for instance, the hydraulic resistance scales with the
inverse cube of the channel height.) Across our experiments,
we find reasonable agreement with theory (Figs. 3 and 4).
Notably, the juxtaposition of data and theory lends credence
to a simple physical picture: Autoregulation is possible if
the applied pressure is sufficient to deform the overlapping
conduits, and if the internal resistance of the system is not
too great. The potential efficacy of the autoregulation process
and the relevance of this mechanism to physiological flows is
discussed in the following section.

A. Autoregulation efficiency

To quantify the autoregulatory efficiency of flow across
overlapping channels, it is fitting to compare the slope of the
flow rate Q [Eq. (27)] to the rigid-pipe limit Q0 [Eq. (28)]. We
therefore introduce the differential conductance ratio

C = Q′

Q′
0

, (29)

where the primes denote differentiation with respect to
the applied pressure drop �p. When C 
 1 is small, the
deformation-induced autoregulation mechanism imposes a
comparatively constant current through the system (Q ≈
const), irrespective of the applied pressure. In contrast, when
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FIG. 5. Elastohydrodynamic autoregulation efficiency C̃
[Eq. (30)] plotted as a function of the resistance ratio R̃. Measured
values of C̃ are labeled according to Table I.

C ≈ 1, the pressure-drop vs flow-rate relation follows the rigid
pipe system (Q = Q0).

The magnitude of the differential conductance ratio C, de-
pends on the applied pressure �p and on the geometric and
material parameters. It is, however, apparent from Fig. 3(b),
that the strongest effect is obtained at or near the contact pres-
sure �p = �pc. To evaluate the potential for smoothing in an
organ, we therefore consider the magnitude of the differential
conductance ratio C̃ at this point. Using Eqs. (27) and (28)
leads to

C̃ = C(P̃ = 1, R̃) = (R̃ + A)(R̃ + 1)

(R̃ + B)2
, (30)

where A ≈ 0.69 and B ≈ 1.97 are pure numbers independent
of geometry and materials, and R̃ is the resistance ratio. The
smallest differential conductance ratio C̃ ≈ 0.18 is achieved
when the resistance ratio vanishes, R̃ = 0, while it approaches
1 asymptotically as the resistance increases [Fig. 5(b)].

To test the predicted relation between C̃ [Eq. (30)] and
system parameters, we directly computed Q′ and Q′

0 from
our experiments from linear fits to the high- and low-pressure
data (i.e., at P̃ ≈ 1 and P̃ ≈ 0, respectively). The measured
differential conductance ratios are not inconsistent with the
model (Fig. 5).

B. Application to physiological flow conditions

We end our analysis by exploring the feasibility of over-
lapping channels as an autoregulatory mechanism under
physiological conditions (Fig. 1). In the preceding analysis,
we identified two key physical conditions which must be met
for physiologically relevant flow control to occur. First, the
overlapping tube segment should be soft: The applied pressure
�p must exceed approximately half the stress �pc required
for the tissue to deform significantly [e.g., Fig. 3(b)]. Second,
the hydraulic resistance of the organ or tissue R(ij) should
be no greater than ten times that of the overlapping segment
R(i)

0 + R(j)
0 = 2R0 for autoregulation to occur (Fig. 5).

It is difficult to ascertain whether these criteria are met
based on data available on anatomical features and material
properties, At this point, we, therefore cannot draw definite
conclusions on the occurrence of the proposed autoregulation
mechanism. We are, however, able to explore the process’
feasibility based on literature data. Indeed, vascular pressure
and tissue properties have been widely studied, and in many
animals, blood pressure typically falls in the range 103–104 Pa

level
overlap capillary bed

0 1 2 3 ... m

FIG. 6. Organ capillary tree model based on Murray’s law.

[34]. The elastic modulus E of several soft mammal tissues
also overlaps with this range E ∼ 103–104 Pa (e.g., brain and
lung); however, the stiffness of, e.g., connective tissues can be
much larger (E ∼ 109 Pa for tendons) [35]. The first criterion
(�p ≈ �pc) is thus met in some, but of course not all, tissues.

To explore whether the organ or tissue resistance is compa-
rable to that of a potential conduit overlap, we first note that
experimental data on the hydraulic resistance of whole organs
(or hydraulically isolated embedded subunits) are scarce. To
proceed, we, therefore, develop an approximate tissue model
based on Murray’s law of a branching network [36–38]; see
Fig. 6. We begin at the inlet by one of the overlapping
segments of diameter d0 and length L. The diameter of sub-
sequent N daughter branches related to parent branches via
Murray’s law

dk

dk−1
= N−1/3 for k = 1, . . . , m, (31)

where m is the depth of the network and the power 1/3
assumes that the network is Murray-optimized to minimize
the total power dissipation. The total hydraulic resistance of
the network linking the two overlapping channels is

R(ij) = 2
m∑

k=1

1

Nk

128ηL

πd4
k

= 256ηL

πd4
0

N1/3(Nm/3 − 1)

N1/3 − 1
, (32)

calculated based on the Hagen-Poiseuille law under low-
Reynolds-number conditions. Note the prefactor of 2 in
Eq. (32), which represents that the network first branches form
an individual conduit into many and then from many back
into a single channel [Fig. 5(a)]. We also note that Eq. (32)
assumes constant branch length L. It is possible to relax this
condition [39], but we will not do that here.

The relative significance of tissue and overlap resistance
can be captured by considering the ratio of the two given by
the parameter R̃ [Eq. (2)]:

R̃(N, m) = R(ij)

2R0
= N1/3 Nm/3 − 1

N1/3 − 1
. (33)

From Eq. (33) it is apparent that resistance ratio R̃ varies
nonlinearly with the branching number N , and the capil-
lary bed depth m. In mammalian circulatory systems, each
branching layer typically adds N < 10 daughter conduits, and
the capillary bed depth varies from m = 1 (a single channel
overlapping with itself) to m ≈ 10 starting near the heart.
Recall that a low value of m indicates local autoregulation
(i.e., few network layers in the organ or limb), and a high
value of m indicates that the vessel overlap supplies or car-
ries out waste from a deep capillary bed. In any case, the
resistance ratio increases with both branching number (N) and
depth (m). Therefore, with the parameters estimated above,
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the highest value of R̃ ∼ 103 is found with, say, N = 7 and
m = 10. This example could approximate autoregulation in
extremities (e.g., toes or fingers) by a vessel overlap close to
the heart. However, with R̃ ∼ 103 the corresponding differ-
ential conductance ratio is close to unity, C̃ ≈ 1, and passive
autoregulation is not feasible. On the other hand, the lowest
value of R̃ ≈ 2.85 is found when N = 2 and m = 2, depicting
autoregulation by overlapping vessels at the entrance to an
organ with relatively few branches. In that case, the rela-
tively small differential conductance ratio, C̃ ≈ 0.58, suggests
that passive autoregulation is feasible. The variation of the
differential conductance ratio C̃ with resistance for different
capillary networks is illustrated in Fig. 5(b).

To explore the significance of the differential conductance
ratio we will consider it in relation to the human kidney
glomerulus. This structure plays a crucial role in filtering
blood, and it is plausible that it utilizes passive flow autoreg-
ulation to carry out its function. More specifically, the renal
arterial tree delivers blood to the kidney, starting with the siz-
able renal artery and branching out into smaller vessels [40].
Within this intricate network are the afferent arterioles that
supply the glomerulus, which is then drained by the efferent
arterioles. Notably, these two arterioles are situated in close
proximity near the Bowman’s capsule opening, creating the
potential for the passive autoregulation process expounded
upon in this article. To quantify the differential conductance
ratio for this afferent-efferent arteriole pair, we will assume
that the pressure drop across them is large enough such that
elastohydrodynamic interactions can occur (i.e., the pressure
ratio is close to unity) and that the branching in the glomerulus
network follows Murray’s law. This allows using Eqs. (30)
and (33) to quantify the corresponding differential conduc-
tance ratio. Since the glomerulus network is small, we can
estimate its depth as m = 2–3. With a branching number of
N = 2, injecting these values into Eqs. (33) and (30) results
in a differential conductance ratio range of C̃ = 0.59–0.70,
which is within the necessary range for passive autoregulation.

VI. CONCLUSION

Fluid flow autoregulation is critical for maintaining a
steady nutrient supply in many living systems. While flow
control is presently ascribed to active processes, this paper
explores the possibility of an alternative elastohydrodynamic
process. Inspired by Starling’s resistor, we have built a passive
fluidic device that comprises two linked channels separated
by an elastic sheet. The pressure difference between the two
overlapping channels causes one to dilate and the other to
compress. This fluid-structure interaction causes the overall
conductance to decrease with increasing pressure, thus lead-
ing to an entirely passive flow-limiting autoregulatory mecha-
nism. To quantify the efficacy of the flow control process, we
introduced the differential conductance ratio C̃. This nondi-
mensional quantity compares the differential conductance in
a soft conduit network to that of a rigid conduit system. Small
values of C̃ correspond to successful flow control. Our results,
which include experiments and modeling, reveal that this
regime is accessible when the pressure is sufficient to deform
the tissue and when the organ resistance is not too large.
While compliant vessels have the potential for self-regulating
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FIG. 7. Measured flow-vs-pressure relationship for device
2 beyond the contact pressure (pc ≈ 10 kPa). In (a) the resistance
ratio is R̃ ≈ 10−4, and in (b) the resistance ratio is R̃ ≈ 15.

fluid flow, the physiological relevance of the proposed process
remains unclear. To test this hypothesis, additional data related
to the arrangement of conduits and their mechanical properties
near the entrance to critical organs are required.
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APPENDIX A: FLOW CAPACITY WHEN APPLIED
PRESSURE EXCEEDS THE CONTACT PRESSURE

This Appendix outlines observations on flow rate capac-
ity when the applied pressure exceeds the contact pressure
obtained via linear plate theory. It should be noted that our
mathematical model presented in Sec. IV is valid only in the
pressure range P̃ = 0–1 and breaks down when the applied
pressure exceeds the contact pressure (at P̃ = 1). In our ex-
periments, however, we were able to apply pressure beyond
the contact pressure, up to P̃ ≈ 2.5, before the onset of leak-
ages from the fluid devices. We show measurements of the
flow-rate-pressure-drop relationship for our device 2 (Fig. 7).
When the resistance ratio is relatively small (R̃ ≈ 10−4), the
postcontact pressure flow rate tends to a constant [Fig. 7(a)].
However, for a relatively large resistance ratio (R̃ ≈ 15), the
flow rate remains close to linear with an increasing applied
pressure. It is not inconceivable that the large-resistance-ratio
experiment could access a stronger nonlinear regime, albeit at
much larger pressure when the compressed channel’s aperture
is decreased significantly.

APPENDIX B: NUMERICAL FLOW-PRESSURE
RELATIONSHIP SOLUTION

This Appendix outlines a numerical scheme to solve the
coupled flow-pressure equations in two overlapping soft chan-
nels (i) and (j) connected via a resistor (ij). Pressure is applied
to the inlet of channel (i), and the outlet of channel (j) is
connected to atmospheric pressure. We seek to solve the
flow-pressure relationship of the serial connection between
channels (i), (j), and (ij). Flow continuity is enforced by
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Eq. (13), and the flow rates through each channel are given by
Eqs. (12), (24), and (25). The pressure boundary conditions
are given by Eqs. (6) and (7).

The flow rates in channels (i) and (j) are coupled since they
both depend on the transmural pressure difference pt (z) =
p(i)(z) − p(j)(z). To find a numerical solution to the flow con-
servation equation, we will apply a finite-difference method
(FDM) scheme that iteratively approximates the pressure
drops in channels (i) and (j). From Eqs. (24) and (25) we
have that

p(i)(z + �z) − p(i)(z)

�z
≈ ∂ p(i)

∂z
= − Q(i)R(i)

0

� f (εpt (z)/pc)
, (B1)

p(j)(z + �z) − p(j)(z)

�z
≈ ∂ p(j)

∂z
= − Q(j)R(j)

0

� f (−εpt (z)/pc)
, (B2)

where R(i)
0 = 12μ�

2w(h(i)
0 )3

and R(j)
0 = 12μ�

2w(h(j)
0 )3

are the base resis-

tances of channel i and j, respectively, corresponding to the
undeformed geometry. The function f (x) is given in Eq. (26).
The parameter ε = h(i)

0 /h(j)
0 links the channel heights in chan-

nels (i) and (j). The channel height ratio ε = h(i)
0 /h(j)

0 links
channels (i)’s and (j)’s. Note also that pt (z) = p(i)(z) − p(j)(z)
coupling Eqs. (B1) and (B2). Rearranging Eqs. (B1) and (B2)
allows us to approximate the pressures as

p(i)(z + �z) = p(i)(z) − �z
Q(i)R(i)

0

� f [ε(pt (z)]/pc)
, (B3)

p(j)(z + �z) = p(j)(z) + �z
Q(j)R(j)

0

� f [−(pt (z)]/pc)
, (B4)

which provide explicit approximations for the pressure gradi-
ents in channels (i) and (j).

The finite-difference method scheme is initiated by dis-
cretizing channels (i) and (j) into small pieces, �z = �/1000.
For an initial guess of the flow rate, Q [given by Eq. (13)],
and a specific choice of input pressure �p, the pressures in
channels (i) and (j) are initialized as linearly decreasing [start-
ing at p(i)(0) = �p] and increasing [starting at p(j)(0) = 0],
consistent with the pressure boundary conditions in Eq. (6).
The initial guess of the flow rate Q also sets the pressure drop
across the bypass resistor via �p(ij) = QR(ij). Hence, the other
pressure boundary condition [Eq. (7)] can be formulated as
the residual of the parameter δ:

δ = |p(i)(�) − p(j)(�) − QR(ij)|. (B5)

For the specific choice of applied pressure �p, the pres-
sure residual in Eq. (B5) is minimized with respect to flow
rate Q, using the MATLAB programming solver fminsearch.
Once the flow rate that satisfies the pressure boundary con-
ditions is found, the algorithm is run again for a new value
of applied pressure, �p. Starting at �p = 0, we sweep in
applied pressure until the contact pressure �p = pc is reached
[or, in terms of the pressure ratio, from P̃ = 0 to P̃ = 1;
see Eq. (1)]. Setting the channels heights (and widths and
lengths) in channels (i) and (j) equal, meaning that ε = 1 and
R(i)

0 = R(j)
0 , allows us to compare the numerical solution to

the approximated analytical solution [Eq. (27)]. We compare
the solutions for different pressure ratio values and resistance
ratio values [Eqs. (1) and (2), respectively]. The resistance
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FIG. 8. Flow-vs-pressure relationship computed via the finite-
difference method [Eqs. (B1) and (B2)] and our approximate
analytical solution [Eq. (27)]. (a), (b) The finite-difference method
solution (black solid line) and the analytical solution [black dashed
line; Eq. (27)] with resistance ratio (a) R̃ = 0 and (b) R̃ = 15.
(c) Logarithm of the discrepancy E between the numerical and an-
alytical solutions [Eq. (B6)] for the pressure range P̃ = 0 − 1 and
resistance R̃ = 0–15.

ratio enters the numerical solution via R(ij) in the pressure
residual, Eq. (B5). To unpack the differences and similarities
between the numerical and analytical solutions, we will con-
sider the relative discrepancy

E (P̃, R̃) = (Qnum − Qan/Qnum) (B6)

between the numerical solution Qnum and the analytical so-
lution Qan which is a function of the pressure ratio P̃ and
the resistance ratio R̃. At low applied pressure, P̃ ≈ 0, both
the numerical and analytical solutions yield approximately
linear relationships between flow and pressure [Figs. 8(a) and
8(b)] regardless of resistance ratio. At relatively high applied
pressure, P̃ ≈ 1 and low resistance ratio, R̃ = 0, both the
numerical and analytical flow-pressure relationships deviate
from linear [Fig. 8(a)]. The critical pressure at which the
deviation from linear flow-pressure characteristics sets in is
lower for the approximate analytical model compared to the
numerical solution [Fig. 8(a)], which leads to the relatively
large discrepancy between the two solutions of E ≈ 0.3. For
intermediate values of pressure (P̃) and resistance (R̃), the
discrepancy varies between E ≈ 10−4–10−1 and is largest for
high pressure and low resistance, and smallest for low pres-
sure and (or) high resistance [Fig. 8(c)].
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